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ABSTRACT  
 
The effects of radiation on oscillatory MHD free convective flow of a viscous incompressible electrically conducting 
fluid confined between vertical walls in a rotating system have been studied. The flow is due to the periodically 
oscillating motion of one of the walls. The exact solutions of the governing equations have been obtained by using the 
Laplace transform technique. The variations of velocity, fluid temperature and shear stress at the moving wall are 
presented graphically. The velocity components increase with an increase in magnetic parameter. The primary 
velocity decreases whereas the secondary velocity increases with an increase in radiation parameter. There is an 
enhancement in fluid temperature as time progresses. The absolute value of the shear stress at the moving wall due to 
the primary flow increases whereas the absolute value of the shear stress at the moving wall due to the secondary flow 
decreases with an increase in either rotation parameter or radiation parameter. The rate of heat transfer at the 
moving wall increases with an increase in radiation parameter. 
 
Keywords: MHD free convection, radiation, rotation, Prandtl number, Grashof number.  
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INTRODUCTION 

 
Radiative convective flows are encountered in countless industrial and environment processes e.g. heating and cooling 
chambers, fossil fuel combustion energy processes, evaporation from large open water reservoirs, solar power 
technology and space vehicle re-entry. Radiative heat transfer plays an important role in manufacturing industries for 
the design of reliable equipment. Nuclear power plants, gas turbines and various propulsion devices for aircraft, 
missiles, satellites and space vehicles are examples of such engineering applications. If the temperature of the 
surrounding fluid is rather high, radiation effects play an important role and this situation does exist in space 
technology. In such cases, one has to take into account the effect of thermal radiation. The hydrodynamic rotating flow 
of an electrically conducting viscous incompressible fluids has gained considerable attention because of its numerous 
applications in physics and engineering. The free convective flow in channels formed by vertical plates has received 
attention among the researchers in last few decades due to it's widespread importance in engineering applications like 
cooling of electronic equipments, design of passive solar systems for energy conversion, design of heat exchangers, 
human comfort in buildings, thermal regulation processes and many more. Many researchers have worked in this field 
such as Singh [1], Singh et. al. [2], Jha et.al. [3], Joshi [4], Miyatake et. al. [5], Tanaka et. al. [6]. Bestman and 
Adjepong [7] have studied the unsteady hydromagnetic free- convection flow with radiative heat transfer in a rotating 
fluid. The transient free convection flow between two vertical parallel plates has been investigated by Singh et al. [8]. 
Jha [9] has studied the natural Convection in unsteady MHD Couette flow. Narahari et.al.[10] have discussed the 
transient free convection flow between long vertical parallel plates with constant heat flux at one boundary. The 
radiation effects on MHD Couette flow with heat transfer between two parallel plates has been examined by Mebine 
[11]. Jha and Ajibade [12] have studied the unsteady free convective Couette flow of heat generating/absorbing fluid. 
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The effects of thermal radiation and free convection currents on the unsteady Couette flow between two vertical 
parallel plates with constant heat flux at one boundary have been studied by Narahari [13]. Kumar and Varma [14] 
have investigated the radiation effects on MHD flow past an impulsively started exponentially accelerated vertical 
plate with variable temperature in the presence of heat generation. Rajput and Pradeep [15] have studied the effect of a 
uniform transverse magnetic field on the unsteady transient free convection flow of an incompressible viscous 
electrically conducting fluid between two infinite vertical parallel plates with constant temperature and Variable mass 
diffusion. Rajput and Kumar [16] have discussed the combined effects of rotation and radiation on MHD flow past an 
impulsively started vertical plate with variable temperature. Reddy et al. [17] have presented the radiation and 
chemical reaction effects on free convection MHD flow through a porous medium bounded by vertical surface. The 
unsteady MHD heat and mass transfer free convection flow of polar fluids past a vertical moving porous plate in a 
porous medium with heat generation and thermal diffusion   has been studied by Saxena and Dubey [18]. The mass 
transfer effects on MHD mixed convective flow from a vertical surface with Ohmic heating and viscous dissipation 
have been investigated by Babu and Reddy [19].  Saxena and Dubey [20] have analyzed the effects of MHD free 
convection heat and mass transfer flow of visco-elastic fluid embedded in a porous medium of variable permeability 
with radiation effect and heat source in slip flow regime. Devi and Gururaj [21] have studied the effects of variable 
viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law velocity. 
The radiation effect on the unsteady MHD convection flow through a non uniform horizontal channel has been studied 
by Reddy et al. [22]. Das et. al. [23] have investigated the radiation effects on free convection MHD Couette flow 
started exponentially with variable wall temperature in presence of heat generation. The effect of radiation on transient 
natural convection flow between two vertical walls has been discussed by Mandal et al.[24]. Das et. al. [25] have 
studied radiation effects on free convection MHD Couette flow of a viscous incompressible heat generating fluid 
confined between vertical plates. Recently, Sarkar et. al. [26] have investigated the effects of radiation on MHD free 
convective couette flow in a rotating system. 

In the present paper, our aim is to study the effects of radiation on MHD free convective flow of a viscous 
incompressible electrically conducting fluid between two infinitely long vertical walls in a rotating system in the 
presence of an applied transverse magnetic field. It is observed that both the primary velocity 1u  and the secondary 

velocity 1v  increase with an increase in magnetic parameter 2M . The primary velocity 1u  decreases whereas the 

secondary velocity 1v  increases with an increase in radiation parameter R . The fluid temperature decreases with an 

increase in either radiation parameter R  or Prandtl number Pr  whereas it increases with an increase in time τ . 
The absolute value of the shear stress 

0x
τ  at the wall ( 0)η =  due to the primary flow increases and the absolute 

value of the shear stress 
0y

τ  at the wall ( 0)η =  due to the secondary flow decreases with an increase in either 

radiation parameter R  or rotation parameter 2K . Further, the rate of heat transfer (0)'θ−  at the wall ( 0)η =  

increases whereas the rate of heat transfer (1)'θ−  at the wall ( 1)η =  decreases with an increase in radiation 

parameter R . 
 
FORMULATION OF THE PROBLEM AND ITS SOLUTIONS 
Consider the unsteady MHD free convective flow of a viscous incompressible electrically conducting fluid between 
two infinite vertical parallel walls separated by a distance h . Choose a cartesian co-ordinates system with the x - axis 
along one of the walls in the vertically upward direction and the z - axis normal to the walls and the y -axis is 

perpendicular to xz-plane [See Fig.1]. The channel and the fluid rotate in unison with a uniform angular velocity Ω  
about z  axis. Initially ( 0)t ≤ , both the walls and the fluid are assumed to be at the same temperature hT  and 

stationary. At time > 0t , the wall at ( 0)z =  suddenly to start move in its own plane with an oscillatory velocity 

0 cosu tω∗ , 0u  being the mean velocity and ω∗  being the frequency of the oscillations and it is heated with the 

temperature ( )0
0

h h

t
T T T

t
+ − , 0T  being the temperature of the wall at ( 0)z =  and 0t  being constant whereas the 

wall at ( )z h=  is stationary and maintained at a constant temperature hT . A uniform magnetic field of strength 0B  

is imposed perpendicular to the walls. It is also assumed that the radiative heat flux in the x -direction is negligible as 
compared to that in the z - direction. As the walls are infinitely long, the velocity and temperature fields are functions 
of z  and t  only. 
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Fig.1: Geometry of the problem 

 
Under the usual Boussinesq's approximation, the fluid flow is governed by the following system of equations  

 
22
0

2
2 ( ) ,h

Bu u
v g T T u

t z

σν β
ρ

∗∂ ∂− Ω = + − −
∂ ∂

 (1) 

 
22
0

2
2 ,

Bv v
u v

t z

σν
ρ

∂ ∂+ Ω = −
∂ ∂

 (2) 

 
2

2
,r

p

qT T
c k

t zy
ρ ∂∂ ∂= −

∂ ∂∂
 (3) 

where u  is the velocity in the x -direction, v  is the velocity in the y -direction, g  the acceleration due to gravity, 

T  the fluid temperature, β ∗  the coefficient of thermal expansion, ν  the kinematic coefficient of viscosity, ρ  the 

fluid density, σ  the electric conductivity, k  the thermal conductivity, pc  the specific heat at constant pressure and 

rq  the radiative heat flux. 

The initial and the boundary conditions for velocity and temperature distribution are  
 0 , for 0 and 0,hu v T T z h t= = = ≤ ≤ ≤  

 ( )0 0
0

cos , 0, at 0 for > 0,h h

t
u u t v T T T T z t

t
ω∗= = = + − =  (4) 

 0 , at for > 0.hu v T T z h t= = = =  

It has been shown by Cogley et al.[21] that in the optically thin limit for a non-gray gas near equilibrium, the following 
relation holds  

 
0

4( ) ,pr
h

h
h

eq
T T K d

y T
λ

λ
λ

∗∞ ∗
∗

∂ ∂
 = −
 ∂ ∂
 

∫  (5) 

 where Kλ
∗  is the absorption coefficient, λ∗  is the wave length, 

p
e

λ∗  is the Plank's function and subscript 'h′  

indicates that all quantities have been evaluated at the temperature hT  which is the temperature of the plate at time 

0t ≤ . Thus, our study is limited to small difference of plate temperature to the fluid temperature. 
On the use of the equation (5), equation (3) becomes  

 ( )
2

2
4 ,p h

T T
c k T T I

t y
ρ ∂ ∂= − −

∂ ∂
 (6) 

 where  

 
0

.p

h
h

e
I K d

T
λ

λ
λ

∗∞ ∗
∗

∂ 
 =
 ∂
 

∫  (7) 

Introducing non-dimensional variables  

 1 12
0 0

( , )
, , ( , ) , ,h

h

T Tz t u v
u v

h u T Th

νη τ θ −
= = = =

−
 (8) 

equations (1), (2) and (6) become  
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2

2 21 1
1 12

2 ,
u u

K v Gr M uθ
τ η

∂ ∂
− = + −

∂ ∂
 (9) 

 
2

2 21 1
1 12

2 ,
v v

K u M v
τ η

∂ ∂
+ = −

∂ ∂
 (10) 

 
2

2
,Pr R

θ θ θ
τ η

∂ ∂= −
∂ ∂

 (11) 

where 
2 2

2 0B h
M

σ
ρν

=  is the magnetic parameter, 
2

2 h
K

ν
Ω=  the rotation parameter, 

24I h
R

k
=  the radiation 

parameter, 
2

0

0

( )hg T T h
Gr

u

β
ν

∗ −
=  the Grashof number and pc

Pr
k

ρν
=  the Prandtl number. 

The corresponding initial and boundary conditions for 1u  and θ  are  

 1 10 , 0 for 0 1 and 0,u v θ η τ= = = ≤ ≤ ≤  

 1 1cos , 0, at 0 for > 0,u vωτ θ τ η τ= = = =  (12) 

 1 10 , 0 at 1 for > 0,u v θ η τ= = = =  

where 
2hωω

ν

∗

=  is the frequency parameter. 

Combining equations (9) and (10), we get 
 

 
2

2
2

,
F F

Gr Fθ λ
τ η

∂ ∂= + −
∂ ∂

 (13) 

 where  

 2 2 2
1 1, 2 and 1.F u iv M i K iλ= + = + = −  (14) 

 
The initial and the boundary conditions for F  and θ  are  
 0, 0 for 0 1 and 0,F θ η τ= = ≤ ≤ ≤  

 cos , at 0 for > 0,F ωτ θ τ η τ= = =  (15) 

 0, 0 at 1 for > 0,F θ η τ= = =  

Taking Laplace transformation, the equations (13) and (11) become  

 
2

2
2

,
d F

sF Gr F
d

θ λ
η

= + −  (16) 

 
2

2
,

d
Prs R

d

θθ θ
η

= −  (17) 

 where  

 
0 0

( , ) ( , ) and ( , ) ( , ) .s sF s F e d s e dτ τη η τ τ θ η θ η τ τ
∞ ∞− −= =∫ ∫  (18) 

The corresponding boundary conditions for F  and θ  are  

 
2

1 1 1 1
(0, ) , (0, ) ,

2
F s s

s i s i s
θ

ω ω
 = + = − + 

 

 (1, ) 0, (1, ) 0.F s sθ= =  (19) 

The solution of the equations (16) and (17) subject to the boundary conditions (19) are given by  

 

2

2

sinh (1 )1
for 1

sinh

( , )

1 sinh (1 )
for 1,

sinh

sPr R
Pr

s sPr R

s

s R
Pr

s s R

η

θ η

η

 + −
≠

+
= 
 + − =
 +

 (20) 
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s R
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 = 
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where 
2

1

R
b

Pr

λ−=
−

. 

Then the inverse Laplace transforms of equations (20) and (21) give the solution for the temperature and the velocity 
distributions as  

2
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where  
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λ  is given by (14). On separating into a real and imaginary parts one can easily obtain the velocity components 1u  

and 1v  from equation (23). If the frequency parameter 0ω =  then the equation (23) is identical with the equation 

(23) of Sarkar et. al. [20]. This means in the absence of frequency of oscillations we can obtain the fluid velocity 
components when the wall at ( 0)η =  starts impulsively. 

For large time τ , equations (22) and (23) become 
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and λ  is given by (14). 
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RESULTS AND DISCUSSION 
 

We have presented the non-dimensional velocity and temperature distributions for several values of magnetic 
parameter 2M , rotation parameter 2K , Grashof number Gr , radiation parameter R , Prandtl number Pr , time τ  
and frequency parameter ω  in Figs.2-11. It is seen from Fig.2 that the primary velocity 1u  and the secondary 

velocity 1v  increase with an increase in magnetic parameter 2M . This indicates that the applied magnetic field is 

effectively moving with the free stream. The resulting Lorenzian body force will therefore not act as a drag force as in 
conventional MHD flows, but as an aiding body force. This will serve to accelerate the fluid velocity components. 
Fig.3 reveals that the primary velocity 1u  decreases in the region 0 < 0.46η≤  and it vanishes at a critical distance 

from the wall which is approximately at ( 0.46)η =  and then it increases whereas the secondary velocity 1v  

increases in the region 0 < 0.14η≤  and it vanishes at a critical distance from the wall which is approximately at 

( 0.14)η =  and then it decreases with an increase in rotation parameter 2K . The rotation parameter 2K  defines the 

relative magnitude of the Coriolis force and the viscous force in the regime, therefore it is clear that the high magnitude 
Coriolis forces are counter-productive for the primary velocity. It is observed from Fig.4 that the primary velocity 1u  

increases whereas the secondary velocity 1v  decreases with an increase in Grashof number Gr . It means that the 

buoyancy force has an accelerating influence on primary velocity while it has a retarding influence on secondary 
velocity. Back flow arises in the second half of the channel as buoyancy force increases. For <1R , thermal 
conduction exceeds thermal radiation and for >1R  this situation is reversed. For 1R= , the contribution from both 
modes is equal. It is seen from Fig.5 that an increase in radiation parameter R  leads to a decrease in the primary 
velocity 1u  and increase in secondary velocity 1v . Back flow arises in the second half of the channel with an increase 

in radiation parameter. Fig.6 shows that the the primary velocity 1u  decreases whereas the secondary velocity 1v  

increases near the wall ( 0)η =  and it decreases away from the wall ( 0)η =  with an increase in Prandtl number Pr
. Physically, this is true because the increase in the Prandtl number is due to increase in the viscosity of the fluid which 
makes the fluid thick and hence causes a decrease in the primary velocity of the fluid. It is revealed from Fig.7 that the 
primary velocity 1u  decreases in the region 0 < 0.32η≤  and then increases whereas secondary velocity 1v  

decreases with an increase in time τ . It is seen from Fig.8 that both the primary velocity 1u  and the secondary 

velocity 1v  decrease near the wall ( 0)η =  and increase away from the wall ( 0)η =  with an increase in frequency 

parameter ω . The critical distances from the wall ( 0)η =  of the primary and the secondary velocity are 

approximately at ( 0.34)η =  and ( 0.52)η =  respectively. Further, it is seen from Figs.3-8 that the value of the fluid 

velocity components become negative at some region between two walls which indicates that there occurs a reverse 
flow at that region. Physically this is possible as the motion of the fluid is due to the wall motion in the upward 
direction against the gravitational field. 
  

 
Fig.2: Velocity components for 2M  when 1R= , 2 5K = , 0.03Pr = , 5Gr = , 4ω =  and 0.2τ =  
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Fig.3: Velocity components for 2K  when 1R= , 2 15M = , 0.03Pr = , 5Gr = , 4ω =  and 0.2τ =  

 
 

 
Fig.4: Velocity components for Gr  when 1R= , 2 15M = , 0.03Pr = , 2 5K = , 4ω =  and 0.2τ =  

 

 
Fig.5: Velocity components for R  when 15Gr = , 2 2M = , 0.03Pr = , 2 5K = , 4ω =  and 0.2τ =  
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Fig.6: Velocity components for Pr  when 5R = , 2 15M = , 5Gr = , 2 5K = , 4ω =  and 0.2τ =  

 
Fig.7: Velocity components for τ  when 1R= , 2 15M = , 5Gr = , 2 5K = , 4ω =  and 0.03Pr =  

 

 
Fig.8: Velocity components for ω  when 2 15M = , 1R= , 2 5K = , 0.03Pr = , 5Gr =  and 0.2τ =  

 
The effects of radiation parameter R , Prandtl number Pr  and time τ  on the temperature distribution have been 
shown in Figs.9-11. It is observed from Fig.9 that the fluid temperature θ  decreases with an increase in radiation 
parameter R . This result qualitatively agrees with expectations, since the effect of radiation decrease the rate of 
energy transport to the fluid, thereby decreasing the temperature of the fluid. Fig.10 shows that the fluid temperature 
θ  decreases with an increase in Prandtl number Pr . Prandtl number Pr  is the ratio of viscosity to thermal 
diffusivity. An increase in thermal diffusivity leads to a decrease in Prandtl number. Therefore, thermal diffusion has 
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tendency to reduce the fluid temperature. It is revealed from Fig.11 that an increase in time τ  leads to rise in the fluid 
temperature distribution θ . It indicates that there is an enhancement in fluid temperature as time progresses. 
  

 
Fig.9: Temperature profiles for R  when 0.2τ =  and 0.03Pr =  

 

 
Fig.10: Temperature profiles for Pr  when 0.2τ =  and 1R=  

 

 
Fig.11: Temperature profiles for τ  when 1R=  and 0.03Pr =  

 

The non-dimensional shear stress at the wall ( 0)η =  and at the wall ( 1)η =  are respectively obtained as follows:  
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λ  is given by (14), 1s  and 2s  are given by (24). 

 
Numerical results of the non-dimensional shear stresses at the wall ( 0)η =  are presented in Figs.12-15 against 
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magnetic parameter 2M  for several values of rotation parameter 2K , radiation parameter R , Grashof number Gr  
and time τ  when 0.03Pr = . Figs.12 and 13 show that the absolute value of the shear stress 

0x
τ  due to the primary 

flow at the wall ( 0)η =  increases whereas the absolute value of the shear stress 
0y

τ  due to the secondary flow at the 

wall ( 0)η =  decreases with an increase in either rotation parameter 2K  or radiation parameter R . It is observed 

from Fig.14 that the absolute value of the shear stress 
0x

τ  at the wall ( 0)η =  as well as the absolute value of the 

shear stress 
0y

τ  at the wall ( 0)η =  increase with an increase in Grashof number Gr . It is revealed from Fig.15 that 

the absolute value of the shear stress 
0x

τ  at the wall ( 0)η =  decreases whereas the absolute value of the shear stress 

0y
τ  at the wall ( 0)η =  increases with an increase in frequency parameter ω . Further, it seen from Figs.12-15 that 

the absolute value of the shear stress 
0x

τ  due to the primary flow at the wall ( 0)η =  increases with an increase in 

magnetic parameter 2M . Since the applied magnetic field is translating with the free stream, it induces an 
acceleration effect in the velocity. Velocities are increased and the shear stress at the wall will therefore be enhanced 
with an increase in 2M . 
  

 
Fig.12: Shear stresses 

0x
τ  and 

0y
τ  for 2K  when 0.2τ = , 1R= , 5Gr =  and 4ω =  

 

 
Fig.13: Shear stresses 

0x
τ  and 

0y
τ  for R  when 0.2τ = , 2 5K = , 5Gr =  and 4ω =  
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Fig.14: Shear stresses 

0x
τ  and 

0y
τ  for Gr  when 0.2τ = , 1R= , 2 5K =  and 4ω =  

 

 
Fig.15: Shear stresses 

0x
τ  and 

0y
τ  for ω  when 0.2τ = , 1R= , 5Gr =  and 2 5K =  

The rate of heat transfer at the walls ( 0)η =  and ( 1)η =  are obtained as  
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where 1s  is given by (24). 

 
Numerical results of the rate of heat transfer (0)θ ′−  at the wall ( 0)η =  and the rate of heat transfer (1)θ ′−  at the 

wall ( 1)η =  against the radiation parameter R  are presented in the Table 1 and 2 for several values of Prandtl 

number Pr  and time τ . Table 1 shows that the rate of heat transfer (0)θ ′−  increases whereas (1)θ ′−  decreases 

with an increase in Prandtl number Pr . It is observed from Table 2 that the rate of heat transfer (0)'θ−  as well as 

(1)θ ′−  increase with an increase in time τ . Further, it is seen from Table 1 and 2 that the rate of heat transfer (0)θ ′−  

increases whereas (1)θ ′−  decreases with an increase in radiation parameter R . 

 
Table 1. Rate of heat transfer at the plate ( 0)η =  and at the plate ( 1)η =  

 
 (0)θ ′−  (1)θ ′−  

\R Pr  0.01 0.71 1 2  0.01 0.71 1 2  
0.5 
1.0 
1.5 
2.0 

0.23540 
0.26555 
0.29403 
0.32102 

0.44719 
0.46614 
0.48461 
0.50262 

0.52178 
0.53808 
0.55407 
0.56976 

0.72549 
0.73721 
0.74881 
0.76030 

0.18277 
0.16885 
0.15635 
0.14509 

0.08573 
0.08117 
0.07690 
0.07290 

0.05865 
0.05599 
0.05346 
0.05106 

0.01529 
0.01483 
0.01438 
0.01394 

 

Table 2. Rate of heat transfer at the plate ( 0)η =  and at the plate ( 1)η =  

 
 (0)θ ′−  (1)θ ′−  

\R τ  0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

0.5 
1.0 
1.5 
2.0 

0.12551 
0.14014 
0.15398 
0.16712 

0.24165 
0.27144 
0.29960 
0.32631 

0.35779 
0.40275 
0.44522 
0.48550 

0.47392 
0.53405 
0.59084 
0.64469 

0.08767 
0.08110 
0.07518 
0.06984 

0.17980 
0.16619 
0.15396 
0.14292 

0.27193 
0.25128 
0.23273 
0.21601 

0.36405 
0.33637 
0.31151 
0.28909 

   
CONCLUSION 

 
The radiation effects on MHD free convective flow in a rotating system confined between two infinitely long vertical 
walls with variable temperature have been studied. The magnetic field has an accelerating influence on both the 
primary and the secondary velocity. The effect of the rotation is very important in the velocity field. In the prence of  
radiation the primary velocity reduces whereas the secondary velocity accelerates. An increase in either radiation 
parameter R  or Prandtl number Pr  leads to fall in the fluid temperatureθ . There is an enhancement in fluid 
temperature as time progresses. Both the rotation and radiation enhance the absolute value of the shear stress 

0x
τ  at 

the wall ( = 0)η  and reduce the absolute value of the shear stress 
0y

τ  at the wall ( 0)η = . Further, the rate of heat 

transfer (0)θ ′−  at the wall ( 0)η =  increases whereas the rate of heat transfer (1)θ ′−  at the wall ( 1)η =  

decreases with an increase in radiation parameterR . 
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