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ABSTRACT

An oscillatory flow of a Jeffery fluid in an elastic tube of variable cross section has been investigated at low
Reynolds number. The main concentration is on the excess pressure of the tube. The equations have been solved
numerically and investigations are made for different cases on the tube. The results are displayed graphically to
study the influence of physical parameters like Jeffrey parameter on the excess pressure velocity and flux. We
observe that as the Jeffrey parameter increases the excess pressure decreases. Further effect of excess pressure is
more for a tapered tube than straight and locally constricted tube. The theoretical findings may have potential
applicationsin medicine especially in finding remedy for atherosclerosis.
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INTRODUCTION

The study of oscillatory flows of a viscous fluid tylindrical tubes of varying cross-section hasereed the
attention of many research workers as it playsgyaificant role in understanding the important pbiagical
problems such as the blood flow in an arteriostierblood vessel. Lee and Fung [1] and Manton [2yéh
considered the steady flow of a viscous fluid icalty constricted, rigid, axisymmetric tubes at |&Reynolds
number and determined the physically important skrass distribution on the wall of the tube. Bsien of these
results to unsteady and oscillatory flows has hemsidered by Ramachandra Rao and Devanathand8][4fland
Sehneck and Ostrach [5]. The steady and unsteads through constricted or dilated pipes and chiarfioe large
Reynolds numbers have been investigated by Smith. [8/omersley [8,9] has considered the oscillatmgtion of
a viscous fluid in a thin walled elastic tube unddinear approximation for long waves. Morgan &iely [10],
Anliker and Raman [11] and Rubinow and Keller [B2¢ some of the few who have considered analyyi¢hi
flows in elastic tubes in order to understand toed flow in arteries.

Nevertheless, models of biological ducts demandinatusion of the solid mechanics of the tube walhd
specifically the muscle action forcing deformatamd any material stiffness. A key difficulty withe addition of
the tube mechanics is that the shape of the defdemaoundary must be determined as part of thetisalu
rendering the exercise a free-boundary problem.aMadlable literature treating this version of freblem is much
focused largely on the dynamics of the ureter (F{&®]) or tailored to other specific biological digations
(Miftakhov & Wingate [14]). In the current articleye approach this problem from a more general petsge, and
construct a relatively simple mathematical modal thcorporates the solid mechanics of tube ofwh# and the
biofluid is taken as non-Newtonian Jeffrey fluicdhéFe are some works done on non-Newtonian fluidisfiKa
Kumari et al.[15], Kavitha et al.[16] ). The arcby Tang & Rankin [17] is most closely related solubrication
solutions for a tube modelled as a stretched memebira which the tension is spatially varied in ortte drive a
peristaltic motion. Sreenadh et al. [18] studiedt@nflow of non uniform cross section.

More recently Vajravelu et. al [19] studied thevilof a Herschel-Bulkley fluid in an elastic tubdsé, as the blood
is frequently referred to as non-Newtonian fluigffiey fluid is the simplest form of the non-Newiamn fluid. Now
a days there is a favorable interest on wall priggerof the tube. (Hemadri et al.[20]). Among saVenon-
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Newtonian fluid models, Jeffrey fluid model is praed by many authors to describe flow of physimalyfluids in

tubes and channels. Vajravelu et al. [21] studiedinfluence of heat transfer on peristaltic tramspf Jeffrey fluid

in a vertical porous stratum and many authors are concentrating on this Jeffrey model as it désziclosely
some physiological and industrial fluids, [22-24]e note that not much work is done on the flowedfray fluid in

an elastic tube to the knowledge of the authors.

In view of this, the present paper deals with tkeilatory flow of Jeffrey fluid in an elastic tubélere we are
concentrating on the external pressure and velafitthe fluid flow. We find some interesting invigsttions of
different parameters on the velocity and extermakgure, which warrant further study on the non-fdeian fluid

phenomena in elastic tubes.

Basic equations
The constitutive equations for an incompressibfeeefluid are

T=-pl+5
5= 00 FA)

whereT ands are the Cauchy stress tensor and extra stressr tergpectivelyp is the pressurd,is the identity
tensor,), is the ratio of relaxation to retardation timgs,is the retardation time;, is shear rate, and dots over the
guantities indicate differentiation with respectitoe.

Formulation of the Problem:

Consider the flow of a Jeffery fluid in an elagdtibe with thin walls of circular cross-section. Eer0 is the axis of
the tube and = a(z) is the radius of the cross-section of the tube &tuations governing the motion of the fluid
in the tube are

ou  du ou 1 0p 1 9 ,u odu 0J%u

ot ar+WE=_EE+V[—(1+11)E<F+E)+W] @
ow ow ow 1dp 10 T ow\ 0%*w
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where u, w are the velocity components in r andections respectively, is the density of the fluid; is the
kinematic coefficient of viscosity and p is the ggere. The equation of continuity is

ou u aw_
r 9z

0 3

r

The other equation for the radial displacengistgiven by (See Ramachandra Rao[25])

92¢ 1 du B¢

"y (r — 2vpy E)T:a €))

Y
where h ang are the thickness and density of the materiaheftube and = (1_5—02) E is the Young’s modulus
ando is the Poisson’s ratio. The boundary conditiongtie motion of the of the fluid in the tube are

3

U= w = 0; on r=ays(z) (5

wherea,the radius of the tube without elasticity, L ishe length of the tube. We assume tshat% is small for a
tube with slowly varying cross-section.

The non-dimensional quantities are:

B 1 1 . 6 1 £ 1 I _ £ay
U=—u w=—w, t=wt &=—, r=—r, Z=—2z, =
el Uo Qo Qo Qo P PovUy

p (6)

Where U is the characteristic velocity aadis the frequency of oscillatory flow.
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Introducing these non-dimensional quantities ifegs. (1) — (5), they reduce to the following fordrgpping the
bars)

5 26u+ 3R( 6u+ au)_ 6p+ 2[ 1 6(u+6u)]+ ,0%u .
R U L I =Ll [C Wiy =) P ) | LR PR O

26W+ R 6W+ ow_ 6p+16< T 6W) ,0%w 8
@G TRt =t e \G o) T a2 ®
Ju + u + ow 0 9
ar r 262 a ©
p PROTE 1 L0u 18
& Podo atz - RStZ (p 2¢& ar)r:a BSZ (10)
i3
u—Sta, w = 0; on r=3S 11
wherea = a,(2)"/2 (Womersley parameter)R = 222 (Reynolds number)s, = =2 (Strouhal number), B =
v v 0
a)ZLZPOaO andC2 — E
C2ph p

Now we neglect the and higher order terms completely. Under the aptiomof steady oscillation, we take

(w,w,p, &) = e (T,w,p,¢) (12)
Then Eqgs.(7) — (11), we get

Z—I: =0 (13)

%W 10w _ ap

2t t PA+A)w=>1+ )5, (14)

ol i oW

awrtrta =0 (15)

w=0, i =S, on r=s (16a,16b)
i 2
§= thszpe (17)

WhereA? = ia? andp, is the excess pressure on the wall of the tube.

Here pressure is a function of z only and it isetaks excess pressgre.Solving Eq(14) and using (16a) we have

. idpe (1 _]O(A,/l + Aﬂ“)) (18)
A% dz Jo(AJ/1 + A1s)
The flow rate in the elastic tube is given by
Qzleit%szjz(ﬂV1+ﬂls) (19)
A2 dz g (A1 + Ags)

Using (18) in (15) we get,

=

2
izd pze (]1(/1,/1 + A41) _£> +l2§52 J1 (A1 + A;5) dpejl()lms) -~
A2 dz? \J,(AJ1+2s) 2) Adzo J2(A/1+ 4 s) 4z
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Using (16b) in (20) we have,

dp, | 2ds
dz? Sdz

dp
a;(ns) d—; - 2sB%a,(ns)p. = 0 (22)

Where
a1(ns) = J2(AW1 + Ays)
! Jo(AWT + A15)),(AJ1 + A1)
 JoAWJT+ A;s)
ax(1s) =7 (WT+ As)

(23)

where n = 21,/1+ 1,
For large values af, the Bessel functions are replaced by their asgtigpgeries and we get
i
=1——+ -,
a;(ns) s +
(ns)=-1+ 2 +
a,(ns) = 7S f

Here the inertial forces dominate the viscous feraad the Womersley parametelis greater than 10, which
corresponds to arteries with large diameter. ThE@pmate equations for excess pressure is

d? 2ds i d
Pe P L Pe
dz?  sdz ns” dz

—2sp%(1 - 2) =0 (24)
ps)Pe =

The excess pressure given by (24) is complex, liyngrp, = p, + ip;, and equating real and imaginary parts, we
obtain two coupled ordinary differential equatiafssecond order foP, and R. These equations are rewritten as
four first order equations and are solved usinghdatatica by prescribing the initial conditions ame point z of
the axial section of the tube. In our problem weehaonsidered from z = 1 to z=10, for all the getims of the
tubes. The modulus of pressype| has been evaluated for

a) Straight tube givenby(z) = 1, 1 < z < 10,
b) Tapered tube given byz) = exp (—0.0252),1 < z < 10,

c) Locally constricted tube given by(z) = 1 — 0.5 exp (—(z - 6)2),1 < z < 10.

The initial conditions are taken as

=01 —o r_o i_ 4o =0 25
pr=01 p=0, —==0, —=-0. at z= (25)
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Fig 1: Variation of external pressurewith z for different values of the Jeffrey parameter 44, for atapered tube
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Fig 2: Variation of external pressurewith z for different values of the Jeffrey parameter 44, for a straight tube

01100 [~ g i
0108/ |— (104 5
po. 0106 | 1108 ;
0.104- ]
0.102] 5
0100ke—""" .. ]

0 2 4 6 8 10

06/
05|
04

Flux 03!
02!
0.1

0.0 i\ L L L 1 L L L 1 L L L 1 L L L 1 L L L \E
10 12 14 16 18 2.0

Radius

Fig 4: Variation of flux with radiusfor different Jeffrey parameters.
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Fig 5: Variation of velocity with radiusfor different Jeffrey parameters
RESULTSAND DISCUSSION

We study the flow of a Jeffrey fluid with stenogisan elastic tube. Here the effects of Jeffreyapaater, external
pressure, Pressure radius relations and the efetice of the tube are explained in detail a®¥adl

From fig(1) we observe that as the Jeffrey paramatzeases , the effect of external pressure tsedesing for a
tapered tube. Fig(2) shows that for an increagbenleffery parameter, there is a decrease inftbet ®f external
pressure for a linear tube. If the tube is localbnstricted, we notice that as the Jeffrey paramateeases, the
effect of external pressure on the fluid flow isdEsing, which is shown in fig(3). From fig(4), wbserve that
flux increases with the increment in the Jeffreyapaeter. We notice from fig(5) that as the Jeffpayameter
increases the increasing velocity. From all thegarés we can say that as the axial coordinateceases, the
magnitude of the excess pressure is increasing.oOtee most important phenomenon to be noticed rethat the
magnitude of the excess pressure is high if the tsliapered when compared with straight and lpaalhstricted
tubes.

CONCLUSION

We study the flow of Jeffrey fluid in an elasticby with different possibilities and variation ihet physical
parameters governing the flow. We observe the \fiolig:

1. There is considerable effect of non-Newtonian dgffparameter on the Jeffrey fluid flow in taperikar and
locally constricted tubes. Comparing results in abeve configurations, we find that excess presgplis high if
the tube is tapered.

2. Excess pressure increases with increasing z forem geffrey fluid.

3. The effect of increasing Jeffrey parameter leadsnteancements in the velocity and the flux.
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