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Abstract
Alzheimer’s disease is insidious progressive age related neurological disorder 
which leads to the loss of cognitive functions, memory processes and associated 
behavior. The role of environmental factor and genetic susceptibility in the etiology 
of Alzheimer’s disease has been reviewed in recent years. Organophosphates, 
a class of insecticide are widely used in the agriculture, home, garden, public 
health programs and therefore associated with the risk of developing Alzheimer’s 
disease in exposed population. Frequent exposure of organophosphates to human 
populations especially in developing countries has generated insightful concerns 
among the health scientists about their neurotoxic consequences. The exposure is 
quite imminent as most of the people are unaware of its toxic insults and handle 
these chemicals without the safety measures. The exposure may also occur through 
the consumption of contaminated food products and environmental toxicity. 
Recent studies suggested that exposure to organophosphates has also been linked 
with the neurological disorders including Alzheimer’s disease. The involvement of 
various molecular and neurochemical signatures in its neurotoxicity are reported 
but the specific biomarkers, targeted mechanism of action and epidemiological 
link between the organophosphate exposure and pathophysiology of Alzheimer’s 
disease are not clearly understood. The present review has therefore been aimed 
to add new information to the literature which may help to find out protective and 
preventive strategies against their neurotoxicity and may establish a possible link 
of organophosphate exposure and Alzheimer’s disease. 
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Introduction
The lack of full proof therapy for neurodegenerative disorders 
and CNS diseases resulted in an increase negative impact on 
the quality of life and become an economic burden onto the 
society. Alzheimer’s disease is a progressive neurodegenerative 
disorder associated with the loss of cholinergic neurons and 
the presence of excessive neuritic plaques containing amyloid 
β protein and abnormal tau protein filaments in the form of 
neurofibrillary tangles [1, 2]. Decreased level of acetylcholine 
in Alzheimer’s disease patients appears to be a critical element 
in producing dementia and memory disorders [3]. Cholinergic 
neurodegeneration have also been found to be associated 
with the loss of acetylcholine [4]. The disease includes multiple 
pathophysiological factors, including flawed amyloid beta 

protein metabolism, abnormalities of glutamatergic, adrenergic, 
serotonergic and dopaminergic neurotransmission and also 
the involvement of inflammatory cytokines [1, 5]. Although the 
Alzheimer’s disease is an age related progressive neurological 
disorder, early onset of disease in the 40s and 50s has also been 
reported in people [6]. Several factors such as environmental 
exposure and genetic predisposition could be involve [7, 8] in 
reducing the synthesis of acetylcholine, deposition of amyloid 
beta [9] alterations in tau protein in the brain [10], oxidative 
stress and inflammatory cytokines [11]. The disease is rapidly 
progressive, leading to the loss of cognitive functions, especially 
memory processes and associated behavior. The precise cause of 
Alzheimer’s disease is not entirely known, but the role of genetic 
factors, including amyloid precursor protein (APP), presenilin 
1, presenilin 2 and apolipoprotein E gene has been found to 
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be associated with the pathophysiology of Alzheimer’s disease 
[12]. The prevalence of Alzheimer’s disease due to genetic 
susceptibility in the pesticide exposed population becomes a 
serious matter of concern in recent years [5, 13].

The production and consumption of pesticides have increased 
many folds after the Green Revolution in India and many other 
parts of the globe. Most of these pesticides are neurotoxic in 
nature; their direct or indirect exposure to human may lead to the 
neurological deformities and disorders. Of various insecticides, 
organophosphates are frequently used in agriculture, homes 
and public health programme to control pests and vectors and in 
veterinary practices to control ectoparasites, hence distributed 
in the environment [14, 15]. Human exposure to these 
organophosphates is quite imminent due to the indiscriminate 
and excessive use in occupational and non-occupational settings 
[16, 17] which may associate with various neurodegenerative 
diseases [5, 18, 19]. Cases of organophosphate poisoning from 
India and many other countries have been frequently reported 
[15, 20]. Also, these organophosphate compounds are expected 
to involve in the highest incidences of suicidal poisoning in India 
[15, 21]. High levels of residues of organophosphate and their 
metabolites detected in the dietary products and biological 
tissues of exposed individuals are again a matter of concern due 
to associated toxic health effects [22-24]. The possible role of 
pesticide exposure, especially organophosphates in Alzheimer’s 
disease and dementia has not received large attention and 
therefore its consequences occur in the society [25]. The present 
review has therefore been focused on organophosphates 
induced mitochondrial dysfunctions, apoptotic signaling, amyloid 
processing, β-amyloid segregation and impairment of synaptic 
transmission to establish a possible epigenetic link between the 
pesticide exposure and pathophysiology of Alzheimer’s disease 
and clinical implications.

Organophosphates Induced Neurotoxicity
The possible association of chronic pesticide exposure with the 
increased prevalence of dementia and Alzheimer’s disease has 
been reported [13, 26]. Organophosphates severely damage 
the brain and affect the behavioral pattern and neurological 
activities in exposed individuals [27-29]. The specific pattern 
of damage is cholinergic dysfunctions associated with 
learning and cognitive deficits, impaired neurobehavioral and 
neuropsychological performance [20]. Human exposure to 
organophosphate including monocrotophos, chlorpyrifos and 
dichlorvos is extensively reported due to their wide applications 
and presence as a contaminant in the dietary and food products 
[15, 22]. Study on farmers in Egypt using organophosphates, 
including monocrotophos reported that 50% of the workers 
had neurological symptoms such as loss of reflexes [30]. The 
workers, including applicators, technicians, and engineers 
working in Egyptian cotton production have been found to have 
a substantially higher degree of chlorpyrifos exposure associated 
with neurobehavioral deficits [31]. They further demonstrated 
a dose effect relationship between urinary trichloro-2-pyridinol 
(TCPy), a biomarker for chlorpyrifos exposure and both plasma 
butyl cholinesterase (BChE) and red blood cell AChE in chlorpyrifos 

exposed workers [17]. In another study, [32] reported that 
chlorpyrifos can result in persistent alterations in axonal transport 
in the living mammalian brain which may lead to neurological 
deficits in humans repeatedly exposed to organophosphates. 
[33], in his study suggested that exposure through different 
organophosphorus pesticides could lead to the cognitive, 
psychomotor and emotional disturbances in individuals. The 
presence of residues of organophosphates, including chlorpyrifos 
and its metabolites in maternal prenatal and postnatal blood, 
cord blood and in maternal and child urine has suggested the 
developmental neurotoxicity of organophosphates [34-36]. In 
a recent study, [37] reported that exposure to phosphomedon 
in rats caused neurobehavioral abnormalities such as reduce 
food intake, weight loss, increase water intake, low defecation 
frequency and altered locomotion frequency. At the same time 
a severe histopathological changes were also observed, which 
was found to be associated with the neurobehavioral changes 
suggesting the neuronal loss. In the environment, the risk of 
exposure through multiple chemicals at a single time may 
cause their synergistic effects. In this connection a study on the 
exposure of real life doses of malathion, DEET and permethrin, 
alone or in combination in rats have been reported to cause 
significant neurobehavioral deficits and neuronal degeneration 
[38]. Repeated dose of malathion and diazinon in rats has 
been found to cause oxidative stress, inhibit brain and plasma 
cholinesterase cause, histopathological and immune alterations 
in brain and other body organs [39]. Recently, [40] showed that 
combined exposure of chlorpyrifos and lead acetate reduce the 
activities of brain antioxidant enzymes and AChE and increased 
lipid peroxidation. The changes were further linked to the altered 
histopathological structure of the cerebral cortex in rats [41] 
found that diazinon and its oxygen metabolite diazoxon increases 
oxidative stress in astrocytes and adversely affect astrocyte 
function, resulting in inhibited neurite outgrowth in hippocampal 
neurons linked to the decreased levels of astrocytic fibronectin.

Organophosphate Induced Oxidative 
Stress and Alzheimer's Disease
Organophosphates induced free radical generation linked with 
enhanced oxidative stress in humans has been suggested as one 
of the key mechanism of their neurotoxic alterations [42, 43]. The 
amyloid β protein is found to be an important factor to enhance 
oxidative stress linked with increased levels of lipid peroxidation 
products including malondialdehyde, 4-hydroxynonenal (HNE) 
and acrolein [44, 45]. These toxic products, formed as a result 
of oxidative stress alter the cellular structure and physiological 
function of the brain and leads to neurodegenerative diseases, 
including Alzheimer's disease [46, 47]. The involvement of lipids, 
inflammatory mediators in the production and accumulation of 
β-amyloid and enhanced oxidative stress in Alzheimer’s disease 
has also been reported [48-50]. We have also reviewed and 
suggested that the generation of reactive oxygen and nitrogen 
species as a result of pesticide exposure could damage the 
lipid membrane and alter the composition of lipid rafts leading 
to various brain related disorders [51]. On the other hand 
the accumulation of transition metals including iron further 
involve in the generation of free radicals through the process 
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of Fenton’s reaction. Docosahexenoic (DHA), dietary essential 
polyunsaturated fatty acids (PUFA), another target in oxidative 
damage has been found to link with the cognitive decline and 
neuronal dysfunction in Alzheimer's disease [52]. The alterations 
in the brain lipid profile, including phospholipids, sphingomylein, 
ceramide and ganglioside could modulate the signaling 
cascade and neural function, leading to neurological disorders, 
including Alzheimer’s disease [53, 54]. Further altered levels of 
sphingomyelins andceramides in Alzheimer’s disease brains have 
been reported as a result of sphingomyelin hydrolysis [55].

Organophosphate Induced Neuronal 
Loss via Apoptosis
Acetyl cholinesterase (AChE), an enzyme involved in the synaptic 
transmission is the prime target of action of organophosphates. 
They inhibit the activity of AChE in an irreversible manner and 
caused over accumulation of the levels of acetylcholine at 
the synaptic junction leading to desensitization of receptors 
and finally paralysis and cell death [49, 56]. Mitochondrial 
dysfunction and oxidative metabolism are considered to be the 
key mechanism for organophosphates induced apoptosis and 
in the pathogenesis of Alzheimer's disease [57]. Mitochondria 
play a vital role in apoptotic pathways, as it contains decisive 
apoptotic factors, including cytochrome C in their inter-
membranous space [58]. Once the cytochrome C release into the 
cytosol, it initiates the activation of caspase-cascade mechanisms 
of apoptosis [59]. The anti-apoptotic protein family, such as Bcl-
2 and Bcl-xL strictly regulate the release of cytochrome C and 
maintain the ratio between Bcl2/Bax [60, 61]. The decrease in 
the ratio of Bcl2/Bax due to oxidative stress initiates the release 
of cytochrome C and activation of caspase-cascade and leads 
to the apoptosis [62]. The activation of caspases provides a 
crucial factor in the implementation of mitochondria mediated 
apoptosis [63]. Enhanced oxidative stress following exposure to 
monocrotophos in rats has been found to affect mitochondrial 
complex I, II and IV associated with decreased production of ATP 
[64]. The over activation of apoptotic factors in central nervous 
system can contribute to the neuronal cell death and may cause 
neurodegenerative disorders such as Alzheimer’s and Parkinson’s 
diseases [65, 66]. Several studies have suggested that the 
toxicological response of organophosphates and its compounds 
may cause neuronal apoptosis linked with organophosphate 
induced delayed neuropathy (OPIDN) [58, 67].

The alteration in lipid rafts composition may also initiate the 
neurodegeneration and apoptosis through various pathways 
including aggregation of amyloid beta. Increased expression 
of apoptotic proteins including Bax, JNK, c-jun, ERK1/2, MAP 
kinases and decreased expression of anti-apoptotic proteins 
such as p38 MAP kinase, Bcl-2, Bcl-xL have been reported in the 
organophosphate induced neurotoxicity [60, 61, 68] reported 
that exposure to chlorpyrifos may induce apoptosis in primary 
cortical neurons cultured from embryonic day 17 or newborn 
rats independently of AChE inhibition. They further suggested 
that the activation of the ERK1/2 and JNK MAP kinases involve 
in apoptotic and activation of the p38 MAP kinase in anti-
apoptotic mechanism in cortical neurons following exposure 

to chlorpyrifos. Exposure to organophosphates enhanced the 
levels of intracellular calcium, which triggered the activation of 
calpains in nerve tissues [69]. This activated calpains may further 
activate the cyclin-dependent kinase 5 (Cdk5) and involved 
in the neuronal cell death [59, 70]. The detailed mechanism 
of neuronal apoptosis is illustrated in the Figure 1. Exposure 
to organophosphates, including monocrotophos, dichlorvos, 
chlorfenvinphos, chlorpyrifos, malathion, quinalphos etc. have 
been found to disrupt the balance of antioxidant and pro-oxidant 
in the brain and linked with enhanced oxidative stress [51, 71]. 
Increased lipid peroxidation in brain regions and cerebro-spinal 
fluid of rats has been reported following exposure to malathion 
[72]. Exposure of triazophos in rats has been found to cause 
increased lipid peroxidation associated with decreased mRNA 
and protein expression of brain derived neurotrophic factor 
(BDNF) and reduced glutathione in hippocampus suggesting the 
role of oxidative stress in the toxicity of triazophos [73]. Further 
evidences also indicated that the generation of reactive nitrogen 
species through activated astrocytes and oxidative stress are 
involved in various neurodegenerative diseases, including 
Alzheimer’s disease, ischemia, epilepsy etc. [74-76].

Organophosphate induced 
Inflammation and Alzheimer’s disease
The role of inflammation in the etiology and pathogenesis 
of Alzheimer’s disease has been suggested [77, 78]. The 
activation of these inflammatory cytokines occurs due to the 
enhanced oxidative stress, which may involve in the process 
of neurodegeneration in Alzheimer’s diseases [79]. The role of 
microglia in Alzheimer’s disease has been suggested due to the 
presence of plaque associated microglia that exhibits a reactive 
phenotype [77, 80]. The inflammatory response is primarily 
expressed by the activation of glial cells, macrophages and 
oligodendrocytes in the brain associated with the triggering 
of pro-inflammatory cytokines including interleukin (IL)-1β, 
IL-18 and IL-33 and linked with the infection, autoimmunity, 
neuroinflammation and associated disorders [81-83]. These 
activated microglias are involved in the process of apoptosis and 
neuronal death via the secretion of various proinflammatory 
molecules and cytokines (IL-1, IL-6 and TNF-α) and also facilitate 
the production and deposition of amyloid in the brain [77, 84, 85] 
have demonstrated that dichlorvos exposure in rats can activate 
microglial cells and cause apoptosis through the upregulation 
of pro-inflammatory molecules like nitric oxide, TNF-α, and 
IL-1β. The microglial apoptosis has also been found to be 
associated with the increased expression of Bax in mitochondria, 
cytochrome c release from mitochondria, and caspase-3 
activation. The role of inflammasomes in the pathophysiology 
of neuroinflammation and neurodegenerative diseases including 
dementia, memory and cognitive dysfunctions has been reported 
in the last decades [78, 83, 86]. Also the role of inflammasomes 
in the etiologies of Alzheimer’s disease has been suggested 
[87]. The roles of DNA methylation and hydroxymethylation in 
the development and potential treatment of AD have also been 
reported [88, 89] in their review has suggested that oxidative 
stress, neuroinflammation, microtubule alterations, synthesis 
of beta amyloid, calcium dyshomeostasis and mitochondrial 
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dysfunction all are contributing factors in organophosphate 
induced neurological diseases.

Prevention and Suggestions
The risk of human exposure to organophosphates is enhanced 
several times in developing countries due to the irregularities 
in safety measures. Due to the high risk of neurotoxic impact 
of these organophosphate compounds on human health, 
especially on developing children, it deserves the attention of 
regulatory agencies and prevention authorities. There is a need 
to develop the protective measures for agricultural workers and 
other individuals occupationally exposed to these pesticides. 
The industrial manufacturers should have to use proper safety 
measures and also aware the workers, users and general 
public about their harmful consequences through improper 
handling and uses. There should be trainings and workshops 
on these pesticides, including organophosphates to awareness 
and educate the users in agricultural sectors and public health 
programs. The research should be continued in the area of 
developing substitute of these toxic compounds for their use 

in agriculture and public health. Specific biomarkers could be 
identified in the study of molecular mechanisms of neurotoxicity 
of organophosphate compounds through parallel studies in 
humans and animals which could help to develop a protective 
and effective cure [90]. At the same time these biomarkers may 
also provide strategies to identify the risk in exposed individuals. 
In recent years natural and pharmacological agents have been 
found to combat the neurotoxic effects of organophosphate 
compounds [91-95]. Further, to assess the neurotoxic impact 
of specific pesticides in human populations, there is a need to 
perform well designed epidemiological studies which could 
provide useful information to research scientist working in the 
area of occupational, environmental and human health. Also, 
animal and alternate animal model research must be going on 
to find out the mechanisms of neurotoxicity of these pesticides 
at low dose levels comparable with real world exposure. Invasive 
research on molecular basis may improve the understanding of 
mechanism of neurotoxicity from organophosphate exposure 
and hence will be useful to develop protective measures. 

Figure 1 Organophosphates induced neuronal apoptosis and molecular signaling. Organophosphate compounds increased the generation 
of free radical species resulting into the imbalance of apoptotic proteins, including Bax and anti-apoptotic Bcl-2, Bcl-xL which 
alters the mitochondrial membrane potential and facilitate the release of cytochrome-C and activation of neuronal apoptotic 
pathway. Due to the enhanced oxidative stress and lipid peroxidation the composition of lipid rafts became altered and involve 
in the accumulation of amyloid beta leading to Alzheimer’s disease, initiation of ceramide production and altered expression of 
JNK, ERK1/2, MAP kinases resulting to apoptosis. Organophosphates exposure also increased the levels of intracellular calcium 
and activates the calpains and ckd5 leading to neuronal apoptosis and neurodegenerative diseases.
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Conclusion
The use of pesticides, especially organophosphates and its 
associated neurochemical alterations and neurological disorders 
in both adults and children become a serious concern among the 
health scientists to use protective and preventive approaches 
for minimizing its neurotoxicity. Some of the organophosphates 
are banned in India and in several other countries, but their 
injudicious use is further a matter of concern world over. The 
present review may help to understand the detailed mechanism 
of organophosphate induced neurotoxicity and to find out 
preventive measures accordingly. The study may provide new 
insights into neurotoxicity and open new vistas for regulatory 
agencies to use the human data in risk assessments of pesticides. 
In the present study, an attempt has been made to add new 
information to the literature regarding the overall neurotoxicity 

and the general mechanisms of toxic actions of organophosphate 
pesticides. A detailed understanding of the molecular and 
cellular toxic events linked with signaling cascade in the brain 
is required for effective cure, prevention and management of 
organophosphate induced neurotoxicity.
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