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ABSTRACT

Portfolio optimization has been one of the importaesearch fields in financial decision
making. The most important character within thisimgzation problem is the uncertainty of the
future returns. To handle such problems, we util@ebabilistic methods alongside with
optimization techniques. We develop single stagktam stage stochastic programming with
recourse with the objective is to minimize the maxn downside semi deviation. We use the so-
called “Here-and-Now approach where the decision-maker makes decisimn’nbefore
observing the actual outcome for the stochastiapeater. We compare the optimal portfolios
between the single stage and two stage modelsthgtincorporation of the deviation measure.
The models are applied to the optimal selectiostotks listed in Bursa Malaysia and the return
of the optimal portfolio is compared between the stochastic models. The results show that the
two stage model outperforms the single stage modbe optimal and in-sample analysis

Keywords: Portfolio optimization, Maximum Semi deviation Meas, Downside risk,
Stochastic Linear Programming.

INTRODUCTION

Portfolio optimization has been one of the impartasearch fields in financial decision making.
The most important character within this optimiaatiproblem is the uncertainty of the future
returns. To handle such problems, we utilize prdiséilc methods alongside with optimization
techniques. Stochastic programming is our appro@chdeal with uncertainty. Stochastic
Programming is a branch of mathematical programmihgre the parameters are random. The
objective of stochastic programming is to find tp@imum solution to problems with uncertain
data. This approach can deal the management dbjpontisk and the identification of optimal
portfolio simultaneously. Stochastic programmingdels explicitly consider uncertainty in

Pelagia Research Library



Anton Abdulbasah Kamil et al Adv. Appl. Sci. Res., 2010, 1 (1):1-8

some of the model parameters, and provide optiraaistbns which are hedged against such
uncertainty

In the deterministic framework, a typical mathermaltiprogramming problem could be stated as
min  f(x)
x (1.1)

st g;(x)<0, i=1,.m

wherex is from R" or Z". Uncertainty, usually described by a random eldfr) , where«
is a random outcome from a spa@e leads to situation where instead of juiét) and g;(x)one
has to deal withf(x,((w)) and g;(x&{(w)). Traditionally, the probability distribution of is

assumed to known or can be estimated and is utedféy the decision vector. The problem
becomes decision making under uncertainty whergsidacvectorx has to be chosen before the
outcome from the distribution af( « ) can be observed.

Markowitz used the concept of risk into the probland introduced mean-risk approach that
identifies risk with the volatility (variance) ohé random objective [5, 6]. Since 1952, mean-
risk optimization paradigm received extensive depeient both theoretically and
computationally. Konno and Yamazaki proposed nazsolute deviation from the mean as the
risk measure to estimate the nonlinear variancestance of the stocks in the mean-variance
model [4]. It transforms the portfolio selection problem franquadratic programming into a
linear programming problem. At the same time,gbpularity of downside risk among investors
is growing and mean-return-downside risk portfodielection models seem to oppress the
familiar mean-variance approach. The reason fersticcess of the former models is that they
separate return fluctuations into downside risk apside potential. This is especially relevant
for asymmetrical return distributions, for which amevariance model punish the upside potential
in the same fashion as the downside risk. This Matkowitz to propose downside risk
measures such as (downside) semi variance to eeptadance as the risk measure [6].
Consequently, one observes growing popularity afraside risk models for portfolio selection

[7].

Young [8] introduced another linear programming eloghich maximize the minimum return
or minimize the maximum loss (minimax) over timeipds and applied to the stock indices
from eight countries, from January 1991 until Debem1995. The analysis showed that the
model performs similarly with the classical meamiaace model. In addition, Young argues
that, when data is log-normally distributed or skdwthe minimax formulation might be more
appropriate method, compared to the classical masance formulation, which is optimal for
normally distributed data.

Dantzig [5] and independently Beale [1] suggestedyaproach to stochastic programming and
termed as stochastic programming with recoursecof®se is the ability to take corrective action
after a random event has taken place. The mabvation is to amend the problem to allow the
decision maker the opportunity to make correctieteoas after a random event has taken place.
In the first stage a decision maker a here and dewision. In the second stage the decision
maker sees a realization of the stochastic elen@fntise problem but he is allowed to make
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further decisions to avoid the constraints of thebfem becoming infeasible.

In this paper we develop single stage and two ssagehastic programming with recourse for
portfolio selection problem and the objective ismi;mimize the maximum downside deviation
measure of portfolio returns from the expectedrretWe use the so-called “Here-and-Now”
approach where the decision-maker makes decisiow™before observing the actual outcome
for the stochastic parameter.

The main objective of this study is to solve pditfamptimization problem using two different
stochastic programming models. We apply these taddehe optimal selection of stocks listed
in Bursa Malaysia and compare the optimal portol@tween the single stage and two stage
models.

The remainder of the paper is organized as follolughe next section we discuss the maximum
downside semi deviation measure and formulate thevalent single stage stochastic linear
programming model for portfolio selection problemhen we extend the single stage model to
two stage stochastic programming with recourse modgection 3 devoted to the experimental
analysis on real-life data from Bursa Malaysia.aflin some concluding remarks are given in
section 4.

MATERIALSAND METHODS

Consider a set of securitids={i : i =1,2,...n}for an investment. At the beginning of the holding
period the investor wishes to apportion his budgethese assets by deciding on a specific

allocation x =(X; ,X5,....X, )" such thatx, 20 (i.e., short sales are not allowed) a@xi =1

il
(budget constraint). At the end of a certain hajdiperiod the assets generate returns,
F =(f;,f,....5, )" . At the beginning of the holding period the resiate random. Suppose that

r are represented by a finite set of discrete sces@i{w: o =12,...S}, whereby the
returns under a particular scenasid]  take the values, =(ry, .l ...fn, )’ With associated

probabilityp,, >0, Z p, =1. The portfolio return under a particular reali@atof r, is
wQ

R, = R(x,r, )and the expected portfolio returnR{ x,r,) = > p,R(X.r, ).
wlQ

Let M[ R(x,r,)] be the minimum of the portfolio return. Theaximum (downside) semi
deviationmeasure is defined as
MM R(x,1,,)] = [ E[R(X.r,,)] - Min [R(X,1,,)] (2.1)
MM[ R(x,r, )] is a very pessimistic risk measure related to thest\case analysis. It does not
take into account the distribution of outcomes othan the worst one.

Dw0Q, let q:r%agx[ﬁ(x,rw) - R(X,r)]
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Subject to7 = max[R(x,r,, ) - R(x,r,)] for DwlQ
ol1Q

Then, we haveMM [ R(x,r,, )] =7 (2.2)
Subject to7 = rggx[ﬁ(x,rw) - R(x,r,,)] for DwOQ

2.1 Single Stage Stochastic Linear Programming Portfolio Optimization Model with MM
deviation measure

Portfolio optimization problem where (2.1) is minz®d constraining the expected portfolio
return at the end of investment period can be ftated as a single stage stochastic linear
programming model, S_ MM below:

Minimize n (2.3)
Subjectto:
R(X,r,) = a
R(X,r,)- R(X,r, ) <7
in =1
al
Li SXi SUi Oigl

2.2 Two Stage Stochastic Linear Programming Model with recourse formulation for
S MM

We now introduce dynamic model where future changeourse, to the initial compositions are
allowed. Assuming the investor can make correcdegon after the realization of random
values by changing the composition of the optimadtfplio, we formulate the single period
stochastic linear programming model of S_MM as a-stage stochastic programming problem
with recourse. Consider the case when the invaestmterested in a first stage decisianthat
hedges against thisk of the second-stage action. At the beginnindnefibvestment period, the
investor selects the initial composition of thetfwio, x assuming there is a known distribution
of future returns. At the end of the planning khon, once a particular scenario of return is
realized, the investor rebalances the compositpreither purchasing or selling the selected
stocks. Let a set of second stage varialjes,to represent the composition of stackfter

rebalancing is done, i.ey; , =x; + P, or vy, =X -Q ,whereP, , andQ;, are the quantity
purchased and sold respectively.

The maximum downside deviation of portfolio retufrem the expected return in terms of the
second stage variablggan be formulated as follows:.

MMIR(YoMo)] = maxf R(Yuilw) = R(Ywilo)l (2.4)

For every scenario2, let the auxiliary variabley = max R(Y,,.f ;,) = R( Y.l )]
Anle; :

Pelagia Research Library



Anton Abdulbasah Kamil et al Adv. Appl. Sci. Res., 2010, 1 (1):1-8

subject to7 = max[R( Y, ) - R(Y,.ly)] for DwdQ
ol1Q

Then, we haveMM [ R(x,r,, )] =17
subjectto = rggx[ﬁ( Yol ) - R(Yy.ry)] for DwdQ (2.5)

We formulate the two stage stochastic linear progneng model, 2S MM, for portfolio
optimization problem that minimizes second stage M constraining the expected portfolio
return as follows:

Minimize n (2.6)
Subjectto > x =1
il
D> Vei =1 Do0Q
il
R(X,r,) +R(Y, M, )2a DodQ
L <x <U; 0ol

R(Ypilw)2n HolQ
3.NUMERICAL ANALYSIS

We tested our models on ten common stocks selettemhdom from a set of stocks that were
already listed on the main board of Bursa MalaysiaDecember 1989 and still in the list on
May 2004. The closing prices were obtained fromestors Digest. We use empirical
distributions computed from past returns as eqbigiote scenarios. Observations of returns over
Ng overlapping periods of lengthit are considered as thi¢g possible outcomes (or scenarios)

of the future returns and a probability ﬁli is assigned to each of them. For each stock, we
S

obtain 100 scenarios of the overlapping periodsmdth 1 month, i.eNg.

To evaluate the performance of the two models, xeenned the portfolio returns resulting from
applying the two stochastic optimization models.e Wiake comparison between S_MM and
2S_MM models by analyzing the optimal portfoliowets, in-sample portfolio returns and out-
of-sample portfolio returns over 60-month periodnfrto 06/1998 to 05/2004. At each month,
we use the historical data from the previous 100thlg observations as scenarios and solve the
resulting optimization models using the minimum tidyirequired returm equals to one.

3.1  Comparison of Optimal Portfolio returnsbetween S MM and 2S MM

Figures 1 presents the graphs of optimal portfiatarns resulting from solving the two models;
S MM and 2S_MM (see appendix). The optimal poifoéturns of the two models exhibit the
same pattern. There is a decreasing trend in ghienal returns in both models. However, in
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figure 1, it can be seen that the optimal portfalurns from 2S_MM are higher than the
optimal portfolio returns from S_MM in all testinmeriods. This shows that an investor can
make a better decision regarding the selectiontadks in a portfolio when he takes into

consideration both making decision facing the utatety and the ability of making correction

actions when the uncertain returns are realizedpeoed to considers only making decision
facing the uncertainty alone.

Optimal Portfolio Return : S_MM and 2S_MM
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Figurel: Comparison of Optimal portfolio ReturnsS MM and 2S MM models

3.2 Comparison of Average In-Sample Portfolio returnsbetween S MM and 2S MM

We use average realized returns to comparison tmptea portfolio returns between S_MM
model and 2S_MM model and the results are presentBdjure 2. There is an increasing trend
in the months from December 1999 until April 20@@en decreasing trend until June 2001.
Starting from June 2001 until May 2004, both avesaghow an increasing trend.

Average In-Sample Portfolio Return : S_MM and 2S_MM
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Figure2: Comparison of Average In-Sample Portfolio Return between S MM and 2S MM models
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The average in-sample portfolio returns of 2S_MM &igher than the average in-sample
portfolio returns in all testing periods.

3.3 Comparison of Out-Of-Sample Portfolio returnsbetween S MM and 2S_ MM models

The comparison of out-of-sample portfolio returredvieen S_MM and 2S_MM is also done
using the average return. The results of Out-Of{f8ananalysis are presented in Figure 3.
Throughout the testing periods, the average retirams the two models show similar patterns.
There is an increasing trend in the months fromeDdmer 1999 until December 2000, then
decreasing trend until June 2001. Starting fromeJ2001, both averages show an increasing
trend. The average out-of-sample of the two-stagdel, 2S_MM is higher than those of single
stage model, S_MM. Certainly, the models have lagglied directly to the original historical
data treated as future returns scenarios thusngdhke trend information. Possible application
of some forecasting procedures prior to the padfoptimization models, we consider, seems to
be an interesting direction for future researdfor references on scenarios generation see [2].

Average Out-of-Sample Portfolio Returns: S_MM and 2S_MM
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Figure 3: Comparison of Out-Of-Sample Analysis between single stage S MM and two stage
2S MM models

CONCLUSION

In this paper, a portfolio selection of stocks witlaximum downside semi deviation measure is
modeled as a single stage and a two stage stoclpasgramming models. Single stage model
incorporates uncertainty in the model and in the stage model the uncertainty is incorporated
in the models and at the same considers rebalankagortfolio composition at the end of
investment period. The comparison of the optimattfplio returns, the in-sample portfolio
returns and the out-of-sample portfolio returnsvehdhat the performance of the two stage
model is better than that of the single stage mottgre, we use historical data as scenarios of
future returns. In our future research we will gete scenarios of future asset returns using
appropriate scenario generation method before apgpty our developed models.

Pelagia Research Library



Anton Abdulbasah Kamil et al Adv. Appl. Sci. Res., 2010, 1 (1):1-8

Acknowledgement

The work funded by the FRGS (Fundamental ReseareintGscheme) of Ministry for Higher
Education of Malaysia, Grant 203/PJJAUH/671128 @rsiti Sains Malaysia.

REFERENCES

[1] Beale, E.M.L Journal of the Royal Statistical Socie8eries B 171955, 173-184.

[2] Carino, D.R., Myers, D.H. and Ziemba, WOperations Researcd6,1998, 450-463.

[3] Dantzig, G.BManagement Sciencg, 1955, 197-206. A16.

[4] Konno, H. and Yamazaki, Hlanagement Science, 1991, 519-531.

[5] Markowitz, H.M, Journal of Finance8, 1952, 77-91.

[6] Markowitz,H.M, Portfolio Selection:Efficient Diveification of Investment, John Wiley &
Sons, New York1959.

[7] Sortino, F.A. and Forsey, H.J, On the Use and Misas Downside RiskJournal of
Portfolio ManagementWinter,1996, 35-42.

[8] Young, M.R,Management Sciencé4,1998, 673-683.

Pelagia Research Library



