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ABSTRACT 

 
Portfolio optimization has been one of the important research fields in financial decision 
making. The most important character within this optimization problem is the uncertainty of the 
future returns. To handle such problems, we utilize probabilistic methods alongside with 
optimization techniques. We develop single stage and two stage stochastic programming with 
recourse with the objective is to minimize the maximum downside semi deviation. We use the so-
called “ Here-and-Now”  approach where the decision-maker makes decision”now” before 
observing the actual outcome for the stochastic parameter. We compare the optimal portfolios 
between the single stage and two stage models with the incorporation of the deviation measure. 
The models are applied to the optimal selection of stocks listed in Bursa Malaysia and the return 
of the optimal portfolio is compared between the two stochastic models. The results show that the 
two stage model outperforms the single stage model in the optimal and in-sample analysis  
 
Keywords: Portfolio optimization, Maximum Semi deviation Measure, Downside risk, 
Stochastic Linear Programming. 
______________________________________________________________________________ 

 
INTRODUCTION 

 
Portfolio optimization has been one of the important research fields in financial decision making. 
The most important character within this optimization problem is the uncertainty of the future 
returns. To handle such problems, we utilize probabilistic methods alongside with optimization 
techniques. Stochastic programming is our approach to deal with uncertainty. Stochastic 
Programming is a branch of mathematical programming where the parameters are random.  The 
objective of stochastic programming is to find the optimum solution to problems with uncertain 
data. This approach can deal the management of portfolio risk and the identification of optimal 
portfolio simultaneously. Stochastic programming models explicitly consider uncertainty in 
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some of the model parameters, and provide optimal decisions which are hedged against such 
uncertainty 
 
In the deterministic framework, a typical mathematical programming problem could be stated as 

,1,...mi0,(x)gs.t

f(x)min

i

x

=≤
                 (1.1) 

 

wherex  is from nR  or nZ . Uncertainty, usually described by a random element )(ωξ , where ω  

is a random outcome from a space Ω , leads to situation where instead of just f(x) and (x)gi one 

has to deal with ξ(ω))f(x,  and ξ(ω))(x,gi .  Traditionally, the probability distribution of ξ  is 

assumed to known or can be estimated and is unaffected by the decision vector x .  The problem 
becomes decision making under uncertainty where decision vector xhas to be chosen before the 
outcome from the distribution of )(ωξ can be observed. 
 
Markowitz used the concept of risk into the problem and introduced mean-risk approach that 
identifies risk with the volatility (variance) of the random objective [5, 6].  Since 1952, mean-
risk optimization paradigm received extensive development both theoretically and 
computationally.  Konno and Yamazaki proposed mean absolute deviation from the mean as the 
risk measure to estimate the nonlinear variance-covariance of the stocks in the mean-variance 
model [4]. It transforms the portfolio selection problem from a quadratic programming into a 
linear programming problem.  At the same time, the popularity of downside risk among investors 
is growing and mean-return-downside risk portfolio selection models seem to oppress the 
familiar mean-variance approach.  The reason for the success of the former models is that they 
separate return fluctuations into downside risk and upside potential.  This is especially relevant 
for asymmetrical return distributions, for which mean-variance model punish the upside potential 
in the same fashion as the downside risk.  This led Markowitz to propose downside risk 
measures such as (downside) semi variance to replace variance as the risk measure [6].  
Consequently, one observes growing popularity of downside risk models for portfolio selection 
[7]. 
 
Young [8] introduced another linear programming model which maximize the minimum return 
or minimize the maximum loss (minimax) over time periods and applied to the stock indices 
from eight countries, from January 1991 until December 1995.  The analysis showed that the 
model performs similarly with the classical mean-variance model.  In addition, Young argues 
that, when data is log-normally distributed or skewed, the minimax formulation might be more 
appropriate method, compared to the classical mean-variance formulation, which is optimal for 
normally distributed data.   
 
Dantzig [5] and independently Beale [1] suggested an approach to stochastic programming and 
termed as stochastic programming with recourse.  Recourse is the ability to take corrective action 
after a random event has taken place.  The main innovation is to amend the problem to allow the 
decision maker the opportunity to make corrective actions after a random event has taken place. 
In the first stage a decision maker a here and now decision. In the second stage the decision 
maker sees a realization of the stochastic elements of the problem but he is allowed to make 
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further decisions to avoid the constraints of the problem becoming infeasible.   
 

In this paper we develop single stage and two stage stochastic programming with recourse for 
portfolio selection problem and the objective is to minimize the maximum downside deviation 
measure of portfolio returns from the expected return. We use the so-called “Here-and-Now” 
approach where the decision-maker makes decision ”now” before observing the actual outcome 
for the stochastic parameter.   
 
The main objective of this study is to solve portfolio optimization problem using two different 
stochastic programming models.  We apply these models to the optimal selection of stocks listed 
in Bursa Malaysia and compare the optimal portfolios between the single stage and two stage 
models.   
 
The remainder of the paper is organized as follows.  In the next section we discuss the maximum 
downside semi deviation measure and formulate the equivalent single stage stochastic linear 
programming model for portfolio selection problem.  Then we extend the single stage model to 
two stage stochastic programming with recourse model.   Section 3 devoted to the experimental 
analysis on real-life data from Bursa Malaysia. Finally, some concluding remarks are given in 
section 4.  
 

MATERIALS AND METHODS 
 
Consider a set of securities n}1,2,...,i:{iI == for an investment.  At the beginning of the holding 
period the investor wishes to apportion his budget to these assets by deciding on a specific 

allocation T
n21 )x,...,x,(x=x such that 0xi ≥ (i.e., short sales are not allowed) and ∑

∈
=

Ii
i 1x  

(budget constraint). At the end of a certain holding period the assets generate returns, 
T

n21 )r~,...,r~,r~(~ =r . At the beginning of the holding period the returns are random.  Suppose that 

r~ are represented by a finite set of discrete scenarios }S,...,2,1ω:ω{ ==Ω , whereby the 

returns under a particular scenario Ω∈ω  take the values Tr )r,...,r,r( nω2ω1ωω = with associated 

probability 0pω > , ∑
∈

=
Ωω

ω 1p .  The portfolio return under a particular realization of ωr   is 

),(RR ωω rx= and the expected portfolio return is ∑
∈

=
Ωω

ωω ),(Rp ),(R rxrx ω . 

 
Let )],(RM[ ωrx  be the minimum of the portfolio return. The maximum (downside) semi 

deviation measure is defined as     
 )],[R(  Min- )],(R[[)],(R[MM ωωω rxrxErx =        (2.1) 

 )],(R[MM ωrx is a very pessimistic risk measure related to the worst case analysis.  It does not 

take into account the distribution of outcomes other than the worst one.  
   

Ω∈∀ω , let  )],R(  -  ),(R[ max  
ω

ωωΩ
η rxrx

∈
=                                                                 
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  Subject to       for)] ,R(  -  ),(R[ max    
ω

Ωωη ωωΩ
∈∀≥

∈
rxrx  

Then, we have ηω     )],(R[MM =rx                                                                                       (2.2)       

Subject to       for)] ,R(  -  ),(R[ max    
ω

Ωωη ωωΩ
∈∀≥

∈
rxrx      

      
 
2.1 Single Stage Stochastic Linear Programming Portfolio Optimization Model with MM 

deviation measure 
 
Portfolio optimization problem where (2.1) is minimized constraining the expected portfolio 
return at the end of investment period can be formulated as a single stage stochastic linear 
programming model, S_MM below: 
 

η  Minimize                                                                                                                   (2.3) 

IiUxL

1x

     ),R(  - ),(R

α    ),( R                        

:to  Subject

iii

Ii
i

ω

∈∀≤≤

=
≤

≥

∑
∈

ηω

ω
rxrx

rx
 

 
2.2 Two Stage Stochastic Linear Programming Model with recourse formulation for 

S_MM 
 
We now introduce dynamic model where future changes, recourse, to the initial compositions are 
allowed.  Assuming the investor can make corrective action after the realization of random 
values by changing the composition of the optimal portfolio, we formulate the single period 
stochastic linear programming model of S_MM as a two-stage stochastic programming problem 
with recourse. Consider the case when the investor is interested in a first stage decision x  that 
hedges against the risk of the second-stage action.  At the beginning of the investment period, the 
investor selects the initial composition of the portfolio, x assuming there is a known distribution 
of future returns.  At the end of the planning horizon, once a particular scenario of return is 
realized, the investor rebalances the composition by either purchasing or selling the selected 
stocks.  Let a set of second stage variables,ωi,y  to represent the composition of stock i after 

rebalancing is done, i.e., ωi,iωi,    Pxy += or ωi,iωi,  -   Qxy = where 
ωi,P  and 

ωi,Q  are the quantity 

purchased and sold respectively.   
 
The maximum downside deviation of portfolio returns from the expected return in terms of the 
second stage variablesy can be formulated as follows:. 

)],(R),(R[max)],(R[MM ωωωωΞωωω ryryry −=
∈

                                                           (2.4) 

For every scenario Ω∈ω , let the auxiliary variable )],(R),(R[max , ωωωωΩω
η ryry −=

∈
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subject to      for)] ,R(  -  ),(R[ max    
ω

Ωωη ωωωωΩ
∈∀≥

∈
ryry                                  

Then, we have ηω     )],(R[MM =rx                                                                                             

subject to       for)] ,R(  -  ),(R[ max    
ω

Ωωη ωωωωΩ
∈∀≥

∈
ryry                                       (2.5)  

    
We formulate the two stage stochastic linear programming model, 2S_MM, for portfolio 
optimization problem that minimizes second stage MM and constraining the expected portfolio 
return as follows: 

 
 
 

η  Minimize                                                                                                                   (2.6) 

Ωω     ),R(           
ΩωI,i    UyL

Ii    UxL
Ωω    α  ),R(  ),(R

Ωω    1y

1xtoSubject

ωiωiωi

iii

Ii
ωi

Ii
i

∈∀≥
∈∀∈∀≤≤

∈∀≤≤
∈∀≥+

∈∀=

=

∑

∑

∈

∈

ηωω

ωωω

ry

ryrx   

 
3. NUMERICAL ANALYSIS 

 
We tested our models on ten common stocks selected at random from a set of stocks that were 
already listed on the main board of Bursa Malaysia on December 1989 and still in the list on 
May 2004. The closing prices were obtained from Investors Digest.  We use empirical 
distributions computed from past returns as equiprobable scenarios. Observations of returns over 

SN  overlapping periods of length t∆  are considered as the SN  possible outcomes (or scenarios) 

of the future returns and a probability of 
sN

1  is assigned to each of them.  For each stock, we 

obtain 100 scenarios of the overlapping periods of length 1 month, i.e. SN . 

 
To evaluate the performance of the two models, we examined the portfolio returns resulting from 
applying the two stochastic optimization models.  We make comparison between S_MM and 
2S_MM models by analyzing the optimal portfolio returns, in-sample portfolio returns and out-
of-sample portfolio returns over 60-month period from to 06/1998 to 05/2004.  At each month, 
we use the historical data from the previous 100 monthly observations as scenarios and solve the 
resulting optimization models using the minimum monthly required return α equals to one.  
 
3.1 Comparison of Optimal Portfolio returns between S_MM and 2S_MM 
 
Figures 1 presents the graphs of optimal portfolio returns resulting from solving the two models;  
S_MM  and 2S_MM (see appendix). The optimal portfolio returns of the two models exhibit the 
same pattern.  There is a decreasing trend in the optimal returns in both models.  However, in 
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figure 1, it can be seen that the optimal portfolio returns from 2S_MM are higher than the 
optimal portfolio returns from S_MM in all testing periods.  This shows that an investor can 
make a better decision regarding the selection of stocks in a portfolio when he takes into 
consideration both making decision facing the uncertainty and the ability of making correction 
actions when the uncertain returns are realized compared to considers only making decision 
facing the uncertainty alone. 

 
Optimal Portfolio Return : S_MM and 2S_MM
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Figure 1:  Comparison of Optimal portfolio Returns S_MM and 2S_MM models 

 
3.2 Comparison of Average In-Sample Portfolio returns between S_MM and 2S_MM 

We use average realized returns to comparison In-Sample portfolio returns between S_MM 
model and 2S_MM model and the results are presented in Figure 2. There is an increasing trend 
in the months from December 1999 until April 2000, then decreasing trend until June 2001.  
Starting from June 2001 until May 2004, both averages show an increasing trend.   
 

Average In-Sample Portfolio Return : S_MM and 2S_MM
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Figure 2:  Comparison of Average In-Sample Portfolio Return between S_MM and 2S_MM models  
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The average in-sample portfolio returns of 2S_MM are higher than the average in-sample 
portfolio returns in all testing periods.   
 
3.3 Comparison of Out-Of-Sample Portfolio returns between S_MM and 2S_MM models 

The comparison of out-of-sample portfolio returns between S_MM and 2S_MM is also done 
using the average return. The results of Out-Of-Sample analysis are presented in Figure 3. 
Throughout the testing periods, the average returns from the two models show similar patterns.  
There is an increasing trend in the months from December 1999 until December 2000, then 
decreasing trend until June 2001.  Starting from June 2001, both averages show an increasing 
trend.  The average out-of-sample of the two-stage model, 2S_MM is higher than those of single 
stage model, S_MM.  Certainly, the models have been applied directly to the original historical 
data treated as future returns scenarios thus loosing the trend information.  Possible application 
of some forecasting procedures prior to the portfolio optimization models, we consider, seems to 
be an interesting direction for future research.   For references on scenarios generation see [2]. 
 

Average Out-of-Sample Portfolio Returns: S_MM and 2S_MM
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Figure 3: Comparison of Out-Of-Sample Analysis between single stage S_MM and two stage 

2S_MM models 
 

CONCLUSION 
 
In this paper, a portfolio selection of stocks with maximum downside semi deviation measure is 
modeled as a single stage and a two stage stochastic programming models.  Single stage model 
incorporates uncertainty in the model and in the two stage model the uncertainty is incorporated 
in the models and at the same considers rebalancing the portfolio composition at the end of 
investment period.  The comparison of the optimal portfolio returns, the in-sample portfolio 
returns and the out-of-sample portfolio returns shows that the performance of the two stage 
model is better than that of the single stage model.  Here, we use historical data as scenarios of 
future returns.  In our future research we will generate scenarios of future asset returns using 
appropriate scenario generation method before applying to our developed models. 
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