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ABSTRACT

The objective of this paper is to give sufficiewminditions for the existence of globally
exponentially stable, bounded and periodic and ainperiodic for some fifth order non-linear
differential equations.
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INTRODUCTION
We shall consider here the fifth order non-lineiffiedential equations of the form;
x@ + ax@) 4 px D 4 x4 gxO 4 ex = P(t) (1.2)

Where a, b and e are positive constants and fdgare continues functions which depend only
on the arguments displayed explicitly.

The problem of concerned here is to determine ¢immdi on these functions under which all
solutions of (1.1) are globally exponentially sgglddounded and periodic (or almost periodic). A
lot of research study have been done on these npiegp®ef solutions for various kind of fifth
order non-linear differential equating using Lyapus direct method, see [1, 7].

However, our purpose for this study is to use tegudency-domain technique [see 2 — 7, 9, 10]
and to study the above mentioned property for thetisns of (1.1). For more exposition on the
frequency domain technique, see [1, 8]. My approachis study has an advantage over [5] and
the results obtained in this study generalize é&selts in [5] and also generalize to the fifth arde
non-linear differential equations results of Afuvegd@] and Barbalat [6]. The frequency-domain
conditions obtained for equation (1.1) are necgssanditions for the existence of a positive
definite Lyapunov function of the Lure’ Postnikoerin with a negative sign derivative. This
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study utilizes substantially, the generalized tkeoiof Yacubovich [9], which is stated without
proof.
Generalized Yacubovich’'s Theorem [7].

Consider the system
x =AX —Bp(c)+P(t) =0 =CX (1.2)

Where A is an nxn real matrix, B and C are nxm neairices with C* as the transpose of C,
@(o) = colpj(aj) (j=1, 2, --m) and P(t) is an n-vector.

Suppose that in (1.2), the following assumptiomstare:
(1) A is a stable matrix;
(i) P(t) is bounded for all t IR,

(i)  Forsomeconstamj >0 (j=1,23........m)
0 < PL2IED < j, (o) # 6)) (13)
(iv)  There exist a diagonal matrix D > 0, such thatfteguency-domain in equality
m(w) = MD + Re DG (iw) > 0 (1.4)

holds for alle in R, where G() = C*(iwl - A)™* B is the transfer function and
— dina (L .
M = diag (ﬁj), G=123........m)

Then, system (1.2) has the following properties
0] Existence of a bounded solution which is gltypakponentially stable;
(i) Existence of a solution which is Periodic (@st periodic).

1 Formulation of result
The Routh-Hurwitt conditions for stability of Soloms of the linear homogeneous equation of
(2.1) will be given as follows

a>0,(ab—c)>0,(ab—c)c—(ad—e)a>0
(ab —c¢)(cd — be) — (ad —e)?> > 0,e > 0 (2.1)

The following notations shall be used throughoig gtudy. Equations® — vc + e = 0 and*v-
vb + d = 0 have two real positive roots given hyw, v and v respectively.
Where,

V, =1/2afc —c? — 4ae)1/2] (2.2)
V, = 1/2a[c + (c? — 4ae) /2] (2.3)
Vs = 1/2[b — (b2 — 4d) /2] (2.4)
V, =1/2[b + (b? — 4d) /2] (2.5)

Such that,
b?—4d >0, 8- 4ae >0and 0 <\K V5 <V, < V4
The main objective of this study is to prove theatem below.

THEOREM 2.1: Consider (1.1) where the functions f, g and Paamtinuous with f(0) =
g(0) = 0 and P(t) bounded R. Suppose that there exist positive parametetsig, andp, such
that inequality

(U1 H2)* < 16 (diz — &) (Ca— buo) (2.6)
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is satisfied and the functions f and g satisfy eetipely the following inequalities

<D cctp, (z#9) 2.7)

d<99°9D < gty (2% 2) 2.8)

Then equation (1.1) has property (1) and if in &ddiP(t) is periodic (or almost periodic), then it
has property (ll)

2. Preliminary Results
The main tool in the proof of our theorem is thadiion () defined by inequality (1.4). For us
to determine the functiom], we shall, by setting;x= x,, reduce (1.1) to system (1.2) with

X1 010 0 0
Xy 0 01 00
X=|X|; A= 0 0 01O
x4/ 0000 1 /
Xs —e —d —c —-b -a
0 0 0 1 0
0 0 1 0 0
B=|0o o|;c=|0 o|; P)y=| O [;
0 0 0 0/ 0/
1 1 00 P(t)
g (x2)
(0)=(A ) 3.1
LA VIS S
The transfer function G@i) = C* (io1 — A)* B for system (3.1) becomes
RN | lw lw
Giw) =Y, (L0, 1) (3.2)

WhereA = (o*a —o’c + €) + i (o* — bw? + d). In order for us to get the functiom)( we shall
make use of the generalized theorem of Yacubowsaliven in the introduction and this requires

the existence of strictly positive numhgrandt, such that D iaD(Tj) and M = diaD(Nij)
(i=1, 2,). After some calculations, we obtain

_ (T11 T2
m(w) = (7T21 T[ZZ) (3.3)
Where,
- ta—w?c+
T =14 (#1 1_ wz%) (3.4)
- *—w?b+d
a2 = 12 (Iiz '+ w? %) 3.8)

Ty = ﬁ{wzrz(w‘* —w?b +d) —1y(w*a— wic+e) +iw[t,(w*a — w?c +e) —
T,w*(w* — w?b + d)]} = 7y, (3.6)
With 7,, as the complex conjugate af,; and |A|> = AA. We shall employ Sylvester's

criterion to verify inequality (3.3) and this raggs thatu;;, 12, and deti(w) to be positive for all
o in R. These shall be proved by two lemmas.
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(v?a-vc+c)?

Lemmal: Lets,(v) = (-v+vb—d)+ v Fe—

Wherew? = v. Thenm,; (o) is positive for all v > 0, provided that
H2 < mp(d) = $(Vo) = min $(v), and < v < v
and,

520) = $,(v;) = L (b —/g)(c + (c* — 4ae)'/z — (d — €/g)

Where y is the unique real root ofv) = 0 with 3 < vy < v4 and m(d) is the minimum of &v)
and attainable at say v s.v

2bc—b?a

Furthermore, if y# b/2, then, §v,) > S$(b/2) and if v = b/2 withke =
e < 2b(if — 4d)(b — c/a)s > 0, then, §v,) > S(b/2).

and

Proof: Form,(w) to be positive for alb € R, the following inequality must be valid;
(@*=V)

(w?-vc+e)?
v(-v2+vc—-d)

U, < (w2 +vb—d)+ (3.7)

Let,

Uy < s,(v) = (—v:+vb—d)+ % (3.8)
On differentiating &v), we have,

As(v) = SYv). VA(-v2 + vb - df = [(b = 2V) {\*(-V* + vb - df — v(V’a — vc+ed} + (via — vc + e)
(v’a—vc -e) (-¢+ vb -d)]

Obviously, $*(v) can be zero in the intervals() if

As(v) = 2V + 7(& — 5b)W + (41 — 6&b — 12ac + 4dR+ (5&d + I’ + 5¢ + 10abc — 2ae -4bd)v
+ (4°d — dacd + 4bic+ 4ce +58)v° + (4 — 3¢d — 2ade — 2bce — 3é) (2be + d - cde)v + de
=0 (3.9)

We note that, the graph o$(8) against v, are asymptotes gtawnd \.
On substituting v = b/2 into,&/), we have

b __ b%-4d | b(ab?-2bc+4e)?
Sz( /2) = 7 2(b2-44) (3.10)

Similarly, we obtain

Sy(v1) = 1/2a (b — c/a) (c — e 4ae) 1/2) — (d — ela) (3.11)
and,
Sy(v2) = 1/2a (b — c/a) (c + e 4ae) 1/2) — (d — ela) (3.12)

Let us consider the following cases with the relati
__ 2bc-b?a
T 4

(A)  Ifveo=Db/2, then

5;(0) = 222 = 5, (b)) (3.13)

Therefore, §v,) = S(b/2).
(B) Ifvy>Db/2, then for some > 0, » = b/2 +¢, thus

55) =224 (b 9e (3.14)
and,

326
Pelagia Research Library



Ebiendele, E.P. Adv. Appl. Sci. Res., 2011, 2 (5):323-328

b%-4d 2¢?
s2(b/2) = s T b(b2€—4d)

(C)  Ifva<Db/2, then for some E > 0; % b/2 —¢.
thus,

(3.15)

b2%-4d
4

s2(v2) === — (b= (3.16)

and,

b%—4d 2¢?
s2(b/2) = T b(b2—4d)

(3.17)

On choosing< 2b (If — 4d) (b — c/a), we obtain the inequality
S(v2) > S(b/2)

hence,
ma(d) = S(\) < S(v2) with Ax(vo) = 0.
This completes the proof.

Lemma2:  Forallv >0, det(o) > 0 @ = V).

PROOF:

— 2
detn(w) = 111712 — |71,

v (vz—vb+d vZia-vcte T%+UT%):|
Haukz A2

= ‘L']_Tz[ (318)

M1 7% 4117

This will be positive for all v > 0 iR, if
v° + (a? — 2b)v* + (b? — 2ac — 2d + p, — apy)v® + (Zae —¢?—2bd — buy + cuy —

%)vz +(d2 — 2ac + du, —eul—%)v+e2 >0 (3.19)
If v =0, then dett(w) > 0. But if v# 0, then by choosing;12 and the following inequalities;
&> 2b, 5> 2(ac + d), t< 2(ae - bd), &> 2ac (3.20)
gives;
M2 T 4dpz—ep) (3.21)
4(cur—bu, T2 Uiz
thus,

Toomas - faaf’ > 0 for all v inR, if (Mapo)® < 16(dus — auy) (Cuy — buy).

3. Proofs of the main results
The proofs of the theorem stated in section 2

Proof of theorem 2.1
Let f(z) = cz +f(z) and g(z) = dz §(2)

Where, c and d are positive parameters. $etx the equation becomes
xM + axd™ +bxX™ + f(x") + g(X) + ex = P(t),
which reduces to the equivalent form;

Xll =X

X2 = X

X'3 = X4

Xl4 =X
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x's = -ex — dx — 0% — bxa— a—f (x3) — §(x2) + P(t)

Written in vector for gives;
X! = Ax — Bo(o) + P(t), G =C*X

With X, A, B, C, P andp(o) in system (3.1). The frequency domain conditieduces the matrix
inequality (3.3) which satisfied for ath in R. This is true by using Lemmas 1 and 2. The
conclusions of theorem 2.1 thus follow from the eratized theorem of Yacubovich.
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