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ABSTRACT  
 
The objective of this paper is to give sufficient conditions for the existence of globally 
exponentially stable, bounded and periodic and almost periodic for some fifth order non-linear 
differential equations. 
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INTRODUCTION 
 

We shall consider here the fifth order non-linear differential equations of the form;    
 ���� � ������ � ������� � 	����� � 
���� � �� � 
���                                       (1.1) 
 
Where a, b and e are positive constants and f, g and p are continues functions which depend only 
on the arguments displayed explicitly. 
 
The problem of concerned here is to determine conditions on these functions under which all 
solutions of (1.1) are globally exponentially stable, bounded and periodic (or almost periodic). A 
lot of research study have been done on these properties of solutions for various kind of fifth 
order non-linear differential equating using Lyapunov’s direct method, see [1, 7].  
 
However, our purpose for this study is to use the frequency-domain technique [see 2 – 7, 9, 10] 
and to study the above mentioned property for the solutions of (1.1). For more exposition on the 
frequency domain technique, see [1, 8]. My approach in this study has an advantage over [5] and 
the results obtained in this study generalize the results in [5] and also generalize to the fifth order 
non-linear differential equations results of Afuwape [4] and Barbalat [6]. The frequency-domain 
conditions obtained for equation (1.1) are necessary conditions for the existence of a positive 
definite Lyapunov function of the Lure’ Postnikov form with a negative sign derivative. This 
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study utilizes substantially, the generalized theorem of Yacubovich [9], which is stated without 
proof. 
Generalized Yacubovich’s Theorem [7]. 
 
Consider the system 
 � ′ � �� � ����� � 
��� � � � ���      (1.2) 
 
Where A is an n×n real matrix, B and C are n×m real matrices with C* as the transpose of C,   ���� � ��������� ( j = 1, 2, - - m) and P(t) is an n-vector. 
 
Suppose that in (1.2), the following assumptions are true: 
(i) A is a stable matrix; 
(ii)  P(t) is bounded for all t in RR; 
(iii)  For some constant µ�� � 0   �� � 1,2,3 … … . . %� 

 0 & '(�)(�*'(�)�(�
)(*)�( & µ��, ��� + �,��       (1.3) 

(iv) There exist a diagonal matrix D > 0, such that the frequency-domain in equality 
          -�.� � /0 � 1� 02�3.� 4 0     (1.4) 
 
holds for all ω in R, where G(iω) = C*(iωI - A)-1 B is the transfer function and  

 / � 53�
 6 7
µ�(8 , �� � 1,2,3 … … … . . %� 

 
Then, system (1.2) has the following properties 
(i) Existence of a bounded solution which is globally exponentially stable; 
(ii) Existence of a solution which is Periodic (almost periodic). 
 
1. Formulation of result 
The Routh-Hurwitt conditions for stability of Solutions of the linear homogeneous equation of 
(1.1) will be given as follows 
 
  � 4 0, ��� � �� 4 0, ��� � ��� � ��5 � ��� 4 0       
                  ��� � ����5 � ��� � ��5 � ��9 4 0, � 4 0                            (2.1) 
 
The following notations shall be used throughout this study. Equations v2a – vc + e = 0 and v2 – 
vb + d = 0 have two real positive roots given by v1, v2, v3  and v4 respectively.  
Where, :7 � 1/2�<� � �9 � 4���7 9>  ?                                          (2.2) :9 � 1/2�<� � ��9 � 4���7 9> ?                                         (2.3) :@ � 1/2<� � ��9 � 45�7 9> ?                                              (2.4) :A � 1/2<� � ��9 � 45�7 9> ?                                              (2.5) 
 
Such that,  
b2 – 4d > 0, c2 – 4ae > 0 and 0 < v1 < v3 <v2 < v4  
The main objective of this study is to prove the theorem below. 
 
THEOREM 2.1: Consider (1.1) where the functions f, g and P are continuous with f(0) = 
g(0) = 0 and P(t) bounded in RR. Suppose that there exist positive parameters c, d, µ1 and µ2 such 
that inequality 
      (µ1 µ2)

2 ≤ 16 (dµ2 – eµ1) (cµ1 – bµ2)        (2.6)      
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is satisfied and the functions f and g satisfy respectively the following inequalities 

   � & B�C�*B�CD�
C*CD & � � µ7, �E + Ê�                                              (2.7) 

   5 & G�C�*G�CD�
C*CD & 5 � µ9,   �E + Ê�         (2.8) 

 
Then equation (1.1) has property (I) and if in addition P(t) is periodic (or almost periodic), then it 
has property (II) 
 
2. Preliminary Results 
The main tool in the proof of our theorem is the function (ω) defined by inequality (1.4). For us 
to determine the function (ω), we shall, by setting x1 = x2, reduce (1.1) to system (1.2) with 
 

� �
H
IJ

�7�9�@�A�KL
MN ;   � �

H
IJ

0 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1�� �5 �� �� ��L
MN   

 

� �
H
IJ

0 00 00 00 01 1L
MN ;   � �

H
IJ

0 11 00 00 00 0L
MN ;   
��� �

H
IJ

0000
���L
MN ;  

 

                                     ���� � P
, ��9�	Q ��7�R      (3.1)  

 
The transfer function G(iω) = C* (iω1 – A)-1 B for system (3.1) becomes 

   2�3.� � 1 ∆> 6 3. 3.�.9 �.98      (3.2)  

 
Where ∆ = (ω4a – ω2c + e) + iω (ω4 – bω2 + d). In order for us to get the function (ω), we shall 
make use of the generalized theorem of Yacubovich as given in the introduction and this requires 

the existence of strictly positive number τ1 and τ2 such that D = 53�0�T��  �U5  / � 53�0� 7
V(�  

(i = 1, 2,). After some calculations, we obtain 
 

    -�.� � 6-77 -79-97 -998      (3.3) 

Where, 

                             -77 � W7 6X7*7 � .9 �YZ[*Y\]^_�
|∆|\ 8      (3.4) 

                             -99 � W9 6X9*7 � .9 �YZ*Y\a^b�
|∆|\ 8                                                  (3.5) 

 -79 � 7
9|∆|\ c.9W9�.A � .9� � 5� � W7�.A� � .9� � �� � 3.<W9�.A� � .9� � �� �

W7.9�.A � .9� � 5�?d � -e97        (3.6)     
 
With -e97 as the complex conjugate of -e97  �U5  |∆|9 � ∆∆D. We shall employ Sylvester’s 
criterion to verify inequality (3.3) and this requiires that л11, л22 and det л(ω) to be positive for all 
ω in RR. These shall be proved by two lemmas. 
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Lemma 1:   Let f9�g� � ��g � g� � 5� � ��\[*�]^]�\
��*�\^�a*b�   

Where ω2 = v. Then -22 (ω) is positive for all v > 0, provided that  
µ2 < m2(d) = S2(v0) = min S2(v), and v3 < v < v4 
and, f9�gh� � f9�g9� � 1 2�> �� � � �⁄ ��� � ��9 � 4���7 9> � �5 � � �⁄ �  
 
Where v0 is the unique real root of A2(v) = 0 with v3 < v0 < v4 and m2(d) is the minimum of S2(v) 
and attainable at say v = v0. 
 

Furthermore, if v2 ≠ b/2, then, S2(v2) > S2(b/2) and if v = b/2 with � � 9a]*a\[
A  and 

 j < 2b(b2 – 4d)(b – c/a), j > 0, then, S2(v2) > S2(b/2). 
 
Proof: For -22(ω) to be positive for all ω k RR, the following inequality must be valid;  
(ω2 = v) 

     X9 l �g9 � g� � 5� � ��\*�]^_�\
��*�\^�]*b�                                     (3.7) 

Let, 

 X9 l f9�g� � ��g9 � g� � 5� � ��\[*�]^_�\
��*�\^�]*b�                                                          (3.8) 

 
On differentiating S2(v), we have,  
A2(v)  = S2

1(v). v2(-v2 + vb - d)2 = [(b – 2v) {v2(-v2 + vb - d)2 – v(v2a – vc+e)2} + (v2a – vc + e) 
(v2a – vc -e) (-v2 + vb -d)] 
 
Obviously, S2

1(v) can be zero in the interval (v3v4) if  
A2(v) = 2v7 + 7(a2 – 5b)v6 + (4b2 – 6a2b – 12ac + 4d)v5 + (5a2d + b3 + 5c2 + 10abc – 2ae -4bd)v4 

+ (4b2d – 4acd + 4bc2 + 4ce +5d2)v3 + (4d2 – 3c2d – 2ade – 2bce – 3e)v2 – (2be + d3 - cde)v + de 
= 0                                     (3.9) 
 
We note that, the graph of S2(v) against v, are asymptotes at v3 and v4. 
On substituting v = b/2 into S2(v), we have 

                 f96� 2> 8 � a\*Ab
A � a�[a\*9a]^A_�\

9�a\*Ab�       (3.10) 

Similarly, we obtain 
  S2(v1) = 1/2a (b – c/a) (c – (c2 – 4ae) 1/2) – (d – e/a)   (3.11) 
and,   
S2(v2) = 1/2a (b – c/a) (c + (c2 – 4ae) 1/2) – (d – e/a)               (3.12) 
 
Let us consider the following cases with the relation  

    � � 9a]*a\[
A      

(A) If v2 = b/2, then 

      f9�g9� � a\*Ab
A � f9�� 2> �                       (3.13) 

 
Therefore, S2(v2) = S2(b/2). 
(B) If v2 > b/2, then for some j > 0, v2 = b/2 + j, thus 

      f9�g9� � a\*Ab
A � �� � ]

[�j                              (3.14) 

and,   
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                        f9�� 2⁄ � � a\*Ab
A � 9m\

a�a\*Ab�     (3.15) 

(C) If v2 < b/2, then for some E > 0, v2 = b/2 – j.  
thus, 

        f9�g9� � a\*Ab
A � �� � ]

[)j     (3.16)      

and,  

       f9�� 2⁄ � � a\*Ab
A � 9m\

a�a\*Ab�               (3.17) 

 
On choosing j< 2b (b2 – 4d) (b – c/a), we obtain the inequality  
S2(v2) > S2(b/2)  
 
 
hence,  
m2(d) = S(v0) ≤ S2(v2) with A2(v0) = 0.  
This completes the proof. 
 
Lemma 2: For all v > 0, det π(ω) > 0 (ω2 = v). 
 
PROOF: 
 det π(ω) = -77-79 � |-79|9 

= τ1τ2n 7
o\po\ � �

|∆|\ 6�\*�a^b
oq � �\[*�]^_

o\ � r\\^�rq\Arqr\ 8s                              (3.18) 

 
This will be positive for all v > 0 in RR, if  gK � ��9 � 2��gA � ��9 � 2�� � 25 � X9 � �X7�g@ � 62�� � �9 � 2�5 � �X9 � �X7 �
rqoqo\Ar\ 8 g9 � 659 � 2�� � 5X9 � �X7 � r\oqo\Arq 8 g � �9 4 0                     (3.19) 

 
If v = 0, then det π(ω) > 0. But if v ≠ 0, then by choosing µ1µ2 and the following inequalities; 
a2 > 2b, b2 > 2(ac + d), c2 < 2(ae - bd), d2 > 2ac                           (3.20) 
gives; 

  
oqo\A�]oq*ao\ l rqr\ l A�bo\*_oq�

oqo\         (3.21) 

thus,  
π22 π33 - |π23|

2 > 0 for all v in RR, if (µ1µ2)
2 < 16(dµ2 – eµ1) (cµ1 – bµ2). 

  
3. Proofs of the main results 
The proofs of the theorem stated in section 2  
 
Proof of theorem 2.1 
Let f(z) = cz + 	Q(z) and g(z) = dz + 
,(z)  
 
Where, c and d are positive parameters. Set x1 = x, the equation becomes  
x(v) + ax(iv) +bx(iii)

 + f(xii) + g(xi) + ex = P(t),  
which reduces to the equivalent form; 
  x1

1 = x2 

  x1
2 = x3 

  x1
3 = x4 

  x1
4 = x5 
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x1
5 = -ex1 – dx2 – cx3 – bx4 – ax4 –	Q(x3) – 
,(x2) + P(t) 

 
Written in vector for gives; 
X1 = Ax – Bφ(�) + P(t), G =C*X 
 
With X, A, B, C, P and φ(�) in system (3.1). The frequency domain condition reduces the matrix 
inequality (3.3) which satisfied for all ω in RR. This is true by using Lemmas 1 and 2. The 
conclusions of theorem 2.1 thus follow from the generalized theorem of Yacubovich. 
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