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Introduction
Epigenetic modifications of DNA are covalent chemical changes 
at the moiety of the nucleic bases with no alterations in the 
DNA sequence [1]. Among others, DNA methylation is one of 
the most important epigenetic processes, and there is a vast 
literature describing the strong evidences about the correlation 
between methylation of DNA and alterations of gene expression. 
In particular, alterations in the methylation pattern were found 
to be related to different diseases such as human carcinomas [2], 
leukemia [3], lung [4], thyroid [4], pancreas [4] and prostate [5] 
tumours, to mention a few examples. Despite 7-methylguanine 
(7-mG) is considered as non-promutagenic with minimal 
biological relevance [6], the development of analytical methods 
for its determination is of relevance since its presence and level 
increase, as a consequence of the presence of methylating agents, 
can be correlated to pro-mutagenic and carcinogenic, such as 
O6-methylguanine and methyladenine [7]. In other words, the 
determination of 7-mG can serve as internal or indirect biomarker 
for the monitoring, control and estimation of exposure degree to 
different methylating agents [8].

Many different analytical methodologies have been developed 
for the determination of 7-mG (N7-guanine adducts), including 

chromatography [9], high pressure liquid chromatography (HPLC) 
[10], 32P-postlabeling methods [11], gas chromatography [12] 
and liquid chromatography tandem mass spectrometry [13] 
as representative examples of such methods. Unfortunately, 
and despite their high sensitivity, they are time-consuming 
and expensive, which hinders their implementation for routine 
analyses. In this regard, electrochemical methods have taken a 
step forward and represent very promising tools for DNA studies 
since they can provide not only a rapid and accurate analysis but 
also an economically viable tool which would allow their easy 
implementation [14-17]. Nevertheless, and despite the progress 
performed in this area of research, there is still much work to 
undertake regarding the reproducibility and repeatability in 
performance of these electrochemical methods.

In the particular case of 7-mG electrochemical response, some 
works can be already found in the literature. For example, Bojarska 
et al. [18] studied the polarographic behaviour of different 
7-mG derivatives (7-methylguanosine and 7-methylguanosine 
5'-phosphate) using direct-current polarography, cyclic 
voltammetry and differential pulse polarography. Shubietah et 
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al. [19] also investigated the voltammetric behaviour of 7-mG 
by using differential pulse cathodic stripping voltammetry at a 
hanging mercury drop electrode. Schleifer et al. [20] quantified 
the presence of N7-methylguanine and O6-methylguanine DNA 
by HPLC coupled to a carbon based electrochemical detector 
for determining guanine alkyl adducts [20]. More recently, 
Brotons et al. first reported a more extensive work regarding the 
electrochemical behaviour of 7-mG at screen-printed graphite 
electrodes (SPGEs), examining the detection and quantification of 
7-mG by cyclic voltammetry (CV) and square wave voltammetry 
(SWV). They also evaluated the effect of different parameters 
including i) 7-mG concentration, ii) pH and iii) SPGE pretreatment 
on the electroanalytical performance of 7-mG. Interestingly, the 
same authors reported a linear correlation between the current 
intensity and 7-mG concentration within a concentration range of 
1-35 µM. In addition, this analysis was possible even in the presence 
of guanine (G) and adenine (A) as inherent interferents [21].

The electrooxidation of nucleic bases involves the landing and 
slight adsorption upon the electrode surface dominated either 
by a π-π interaction between the pyrimidine or purine rings and 
the sp2 to sp3 character ratio of carbonaceous materials such as 
graphite or graphene or by the interaction of the ring moieties 
of the nucleic base with edge plane surfaces that depict higher 
electron transfer rates. Hence, the control of the strongest or 
weakest adsorption of nucleic bases upon the electrode surface 
is relevant and will govern the electron transfer rate of the 
electrooxidation reaction.

On the other hand, it is also well-known that the DNA bases 
adsorb on some metal solid surfaces such as noble metal 
materials, and in particular, on Au electrodes [22-26]. In 
addition, by using electrochemical methods, this adsorption 
desorption process has been also described to be sensitive 
to the surface structure of the Au electrode, that is, to its 
specific atomic arrangement. Taking advantage of this surface 
structure sensitivity, our preliminary results have previously 
demonstrated that the adsorption-desorption properties of 
cytosine (C) and methylcytosine (mC) on Au surfaces are highly 
sensitive to the surface structure. Concerning this fact, the 
use of Au (111) electrode surfaces provided a discriminatory 
determination and quantification of the presence of C and mC 
throughout the logarithm of the potential of the peak due to 
the adsorbed nucleobase with concentration [27,28]. Following 
a similar approach, the aim of this article is to explore first 
the influence of the methyl group at N7 position of guanine 
nucleobase on the adsorption at well-defined single crystalline 
gold structures and its comparison with the non-modified 
guanine (G) residues. Cyclic voltammetric responses of G and 
7-mG have been performed at phosphate buffer solution and 
the adsorption-desorption peak potentials of 7-mG have been 
correlated with the concentration of 7-mG in the absence and 
presence of G. Finally, the feasibility for the electroanalytical 
sensing and quantification of 7-mG throughout its adsorption-
desorption properties on different Au surfaces will be discussed.

Methods
Materials and chemicals
Gold single crystal electrodes were made from gold beads (2-3 mm 
diameter), obtained by fusion and subsequent slow crystallization 
of a 99.999% gold wire (Good fellow Metals in all gold samples). 
After careful cooling, the resulting single crystal beads were 
oriented, cut and polished following the procedure described 
in [29] as similarly for Pt beads. Prior to each electrochemical 
experiment, the single crystal electrodes were flame-annealed 
and quenched with ultrapure water (Milli-Q 18.2 MΩ cm). A gold 
bead fully immersed in the electrochemical cell solution was also 
used as a reproducible pattern of a polyoriented gold electrode 
(i.e., a polycrystalline gold electrode). The quality of all these 
gold electrodes has been verified by cyclic voltammetry in 0.1 M 
phosphate buffer solution (pH=7) [30], which was prepared using 
a certain ratio of NaH2PO4 and Na2HPO4 (Panreac 99% purity). The 
pH of the solution was checked with a Crison 507 pH-meter.

Guanine (G) and 7-methylguanine (7-mG) were obtained at the 
highest analytical grade available (from Sigma Aldrich) and were 
used as received without any further purification. Ultrapure 
water was used for all solutions. G and 7-mG solutions were 
prepared in 0.1 M phosphate buffer pH 7 solution. Due to the low 
G solubility, solutions were prepared up to saturated conditions 
and then were filtered through a 0.42 µm pore diameter filter. 
The solubility of 7-mG was found to be closer to 300 µM in 
aqueous solution. A certain amount of 7-mG to reach a specific 
concentration was added into a certain volume of aqueous buffer 
solutions and stirred for 30 min. alternatively, saturated solutions 
of 7-mG were prepared in aqueous buffer solutions and further 
filtrated through a filter with a 0.42 µm pore diameter and the final 
concentration of 7-mG was determined spectrophotometrically. 
In some cases a certain concentration was prepared from the 
dilution of the saturated 7-mG solution. Final concentrations 
of freshly prepared G and 7-mG solutions were determined via 
UV-visible spectrophotometry using an extinction coefficient of 
10,700 cm-1 M-1 at 243.0 nm for G [31] and 7300 cm-1 M-1 at 248.0 
nm for 7-mG [32] in water. 

Electrochemical measurements
The voltammetric experiments were carried out in a standard 
three-electrode cell. The electrode potential was controlled by a 
PGSTAT302N (Metrohm Autolab) system. Solutions were prepared 
as previously described and deaerated with Ar (99.999%, AlphaGaz). 
All experiments were performed at room temperature (22 ± 2ºC). 
The electrode potential was controlled using an AUTOLAB, with 
a gold wire as counter electrode. The potentials were measured 
against a reversible hydrogen electrode (RHE) connected to the cell 
through a Luggin capillary. As usual, the Au single crystal electrodes 
contacted the solution through the hanging meniscus configuration 
at 0 V. As previously stated, a gold bead fully immersed in the 
electrochemical cell solution was also used as a polyoriented gold 
electrode. The electrochemical experiments were performed in 
triplicate (the electrodes were flame-annealed and quenched each 
time) and potential peaks were given as an average value. Limit Of 
Detection (LOD) and Limit Of Quantification (LOQ) were calculated 
with Origin software. 
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Results and Discussion
Figure 1 depicts the characteristic voltammetric profiles obtained 
either with a Au bead (polyoriented surface) or with the three 
basal plane electrodes (Au (100), Au (110) and Au (111)) in 0.1 
M phosphate buffer solution (pH=7) in presence of G (55 µM). 
The voltammetric profile of the polyoriented Au surface (black 
line) shows the presence of a complex voltammetric profile 
with multiple, stable and broad contributions. However, this 
voltammetric response becomes simpler when the response of 
different Au single crystals basal planes, in the same experimental 
conditions, is obtained and incorporated into the discussion. 
The results clearly Figure out how sensitive the adsorption-
desorption of G to the surface structure of the Au electrode is 
and therefore, very distinct and characteristic voltammetric 
signals are recorded for each surface orientation. Interestingly, 
if these voltammetric profiles performed at gold single crystals 
are compared with that observed for a polyoriented surface, it 
is possible to make a reasonably good assignation of each one 
of the broad contributions observed on the polyoriented surface 
due to its corresponding surface structure. 

A similar comparative study can be carried out when G is replaced 
by 7-mG. Thus, Figure 2 illustrates the distinct voltammetric 
features of the different Au surfaces in presence of 7-mG. As 
previously observed in the case of G, it is possible to establish 
some relationships between the voltammetric features obtained 
with the polyoriented gold surface and those obtained with the 
Au basal planes electrodes. However, in the case of Au (111), there 
are two sharp signals at about 0.29 V and 0.37 V in the negative-
going sweep which are not visible in the polyoriented surface. 
These contributions, exclusively observed with the Au (111) 

surface, are very relevant and will be employed in forthcoming 
sections of this work.

It is worth mentioning that the characteristic voltammetric 
features observed in the presence of G and 7-mG are obviously 
different from those obtained in their absence. To illustrate this 
fact, Figure 3 compares the voltammetric responses of each Au 
single crystal electrode in absence and presence of G and 7-mG. 
The response of the different Au surfaces in absence of G and 
7-mG is, as expected, similar to that previously shown in the 
literature [30]. In fact, these voltammetric profiles can be used 
to verify the quality of the surface structure of each electrode.

As previously stated, in case of the Au (111) electrode, two 
sharp contributions were clearly identified in the negative going 
sweep. To gain more information on these contributions, we 
have acquired a collection of voltammograms in which the 7-mG 
concentration was intentionally increased. The results obtained 
under these experimental conditions are shown in Figure 4. The 
results show a clear evolution of the voltammetric profile as a 
function of the 7-mG concentration. Particularly, there are three 
voltammetric contributions which seem to be strongly affected by 
the 7-mG concentration, two of them previously mentioned and 
placed at about 0.29 V and 0.37 V in the negative going sweep 
and the third, a new one at about 0.28 V in the positive going 
sweep, which becomes clearly visible for 7-mG concentrations 
higher than 100 µM. An additional contribution at about 0.4 V in 
the positive going sweep is also visible for 7-mG concentrations 
higher than 100 µM. However, this latter contribution seems to 
be insensitive to changes in the 7-mG concentration contrarily to 
the other three contributions.

Interestingly, all these sharp contributions are stable with 

Figure 1 Voltammetric response for the adsorption-desorption 
of G (55 µM) on a polyoriented gold, Au(100), Au(111) 
and Au(110) electrodes in 0.1 M phosphate buffer pH=7 
solution. Scan rate: 50 mV s-1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-20

-15

-10

-5

0

5

10

15

20

j / 
A 

cm
-2

E vs RHE / V

 Au(111)
 Au(110)
 Au(100)
 Au poly

 

µ

Figure 2 Voltammetric response for the adsorption-desorption of 
7 mG (55 µM) on a polyoriented gold, Au(100), Au(111) 
and Au(110) electrodes in 0.1 M phosphate buffer pH=7 
solution. Scan rate: 50 mV s-1.
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the number of cycles within this particular potential window. 
However, if the upper potential limit is shifted to more positive 
values, where surface oxidation takes place, the voltammetric 
profile is clearly modified as a consequence of the Au (111) 
surface disordering. On the other hand, it is also worth noting 
that these voltammetric responses are perfectly reproducible.

From a more analytical point of view, we have observed that 
the plot of the peak potential of these three contributions as a 
function of the 7-mG concentration gives rise to a reasonably 
good linear regression (R ~ 0.99) is all three contributions. The 
results obtained are displayed in Figure 5 and point out the 
possibility of determining the 7-mG concentration, within the 
linear range evaluated, by simply measuring the peak potential 
of one of the three voltammetric features under study.

One of the key issues in the development of an electrochemical 
sensor for the detection of methylated guanine in a pool of 
nucleobases residues is the effect of the possible interferents. 
Even assuming that the samples for analysis can be obtained 

Figure 3 Voltammetric responses of A) Au(111), B) Au(110) and C) 
Au(100) single crystal electrodes in absence (black line) and 
presence of 55 µM of G (red line) and 55 µM mG (blue line) in 
0.1 M phosphate buffer pH=7 solution. Scan rate: 50 mV s-1.
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Figure 4 Voltammetric profiles of a Au(111) electrode for increasing 
concentrations of 7 mG in 0.1 M phosphate buffer pH=7 
solution. Scan rate: 50 mV s-1. 
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Figure 5 Voltammetric responses of the selected peaks obtained 
on a Au(111) electrode for increasing concentrations of 
7mG in 0.1 M phosphate buffer pH=7 solution. Scan rate: 
50 mV s-1. Peak potential versus 7mG concentration plots 
obtained from the selected peaks.
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from biological samples after optimised extraction, purification 
and hydrolysis of the DNA samples, the resulting sample will 
contain different nucleobases which can strongly modify the 
electrochemical response obtained when 7-mG is solely present. 
Among the different nucleobases, the presence of G may result 
particularly harmful and, consequently, we have explored the 
possible detection of 7-mG in the presence of G. In this regard, 
Figure 6 shows the results obtained for increasing concentrations 
of 7-mG in the presence of a fixed concentration of G (~ 44 µM). 
The results obtained indicate the increasing presence of 7-mG 
has two main effects which are only noted in the negative-going 
sweep. Specifically, the contributions observed in the absence of 
7-mG (only G is present) and centered at about 0.65 and 0.45 
V clearly evolve with the increasing concentration of 7-mG; the 
first one showing an increasing current and shifting to more 
negative potentials while the second one decreasing significantly 
but remaining at almost the same potential. Additionally, and 
only for 7-mG concentrations higher than 50 µM, the previously 
discussed contribution at 0.29 V is again observed.

In an attempt to establish a correlation between the 7-mG 
concentration and any of the voltammetric features observed 
in Figure 6, we have found a reasonably good linear regression 
(R ~ 0.99) by using the contribution placed at about 0.65 V. As 
shown in Figure 7, the peak potential varies linearly with the 
7-mG concentration. In addition, in this case, it is also possible to 

obtain a good linear correlation (R ~ 0.99) between the current 
density of the peak and the 7-mG concentration. This correlation 
is presented in Figure 8.

These results indicate that the adsorption-desorption properties 
of 7-mG on a Au (111) electrode displays some singular 
voltammetric features that show a linear dependence with 
the concentration of 7-mG. This dependence could allow its 
quantification which may contribute to the future development 
of an electrochemical sensor. In this sense, it is also worth 
noticing that, from an analytical point of view, the results here 
reported are still very preliminary. Thus, for instance, the results 
obtained using SPGE platforms gave a sensitivity of 0.046 µA µM-1 
and a limit of detection of 1.63 µM in a concentration range of 
1-35 µM of 7-mG, while in this manuscript we have obtained, 
in the best case, a limit of detection of about 8.5 µM and a 
sensitivity of about 0.00035 V µM-1. However, it is also important 
to keep in mind that this analysis is based on only adsorption 
desorption process instead of oxidation processes. This implies 
that the electroanalytical methodology is not destructive and 
the samples could be reused. In addition, it is also interesting to 
mention that the Au (111) electrode, although expensive, can 
be reusable many times giving rise to highly reproducible and 
accurate electrochemical measurements (assuming a controlled 
manipulation of the electrode, i.e., its flame annealing and 
quenching).

Conclusions
In this article, the adsorption-desorption properties of G and 7-mG 
on different Au surfaces and particularly on Au (111) electrodes 
have been studied. The results clearly indicate that the adsorption-
desorption properties of both nucleobases are sensitive to the 
surface structure of gold. Interestingly, the electrochemical 

Figure 6 Voltammetric responses of a Au(111) electrode for 
increasing concentrations of 7mG in the presence of G (~ 
44 µM) and in 0.1 M phosphate buffer pH=7 solution. Scan 
rate: 50 mV s-1. 
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Figure 7 Voltammetric responses of the selected peak obtained on a 
Au(111) electrode for increasing concentrations of 7mG in 
the presence of G (~ 44 µM) and in 0.1 M phosphate buffer 
pH=7 solution. Scan rate: 50 mV s-1. Peak potential versus 
7mG concentration plots obtained from the selected peaks.
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Figure 8 Current density versus 7mG concentration plot. Data taken 
from figure 6.

0 20 40 60 80 100
-8.0

-7.8

-7.6

-7.4

-7.2

-7.0

-6.8

-6.6

-6.4
j = -6.472 - 0.014 [7mG]

[7mG] / M

j /
 

A
 c

m
-2
 

µ

µ

response of a Au (111) electrode towards the adsorption-
desorption of 7-mG displays some specific contributions that 
have been found to be highly sensitive to the 7-mG concentration. 
This 7-mG concentration sensitivity has allowed obtaining some 
calibration plots that could be employed for the electroanalytical 
determination of 7-mG. Unfortunately, in the presence of Gas 
potential interferents, the electrochemical response becomes 
much more complicated. Nonetheless it is still possible to find 
some voltammetric features, but different to those employed 
when 7-mG is solely analyzed, that present a reasonably good 
linear dependency with the 7-mG concentration. More work is 
in progress to improve the electrochemical sensitivity towards 
7-mG detection as well as to analyse the effect of the presence of 
other nucleobases. 
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