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ABSTRACT 
 
In the present paper, the problem of thermal convection of a visco-elastic oldroydian fluid in porous medium heated 
from below with variable  gravity is analyzed and it is established by the method of positive operator of Weinberger 
and uses the positivity properties of Green’s function that principle of exchange of stabilities is valid for this 
problem, when g (z) is nonnegative throughout the fluid layer and the elastic constant of the medium is less than the 

ratio of permeability to porosity, i.e.
ευ

<λ
ε

<Γ 1l k
or

P

. 
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INTRODUCTION 
 

Rayleigh–Bénard convection is a fundamental phenomenon found in many atmospheric and industrial applications. 
The problem has been studied extensively experimentally and theoretically because of its frequent occurrence in 
various fields of science and engineering. This importance leads the authors to explore different methods to study 
the flow of these fluids. Many analytical and numerical methods have been applied to analyze this problem in the 
domain of Newtonian fluids, including the linearized perturbation method, the lattice Boltzmann method (LBM), 
which has emerged as one of the most powerful computational fluid dynamics (CFD) methods in recent years. 
 
A problem in fluid mechanics involving the onset of convection has been of great interest for some time. The 
theoretical treatments of convective problems usually invoked the so-called principle of exchange of stabilities 
(PES), which is demonstrated physically as convection occurring initially as a stationary convection. This has been 
stated as “all non decaying disturbances are non oscillatory in time”. Alternatively, it can be stated as “the first 
unstable eigenvalues of the linearized system has imaginary part equal to zero”.  
 

Mathematically, if 00 ir =σ⇒≥σ (or equivalently, 00 ri <σ⇒≠σ ), then for neutral stability 

00),( r =σ=σ , where rσ and iσ are respectively the real and imaginary parts of the complex growth rateσ . 

This is called the ‘principle of exchange of stabilities’ (PES). The establishment of this principle results in the 
elimination of unsteady terms in a certain class of stability problems from the governing linerized perturbation 
equations. Further, we know that PES also plays an important role in the bifurcation theory of instability.  
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First decisive step was taken [11] the in the direction of the establishment of PES in Rayleigh-Benard convection 
problems in a comprehensive manner. It was proved by [7] an important theorem concerning this problem. He 
proved that the eigen values of the linearized stability equations will continue to be real when considered as a 
suitably small perturbation of a self-adjoint problem, such as was considered by Pellew and South well. This was 
one of the first instances in which Operator Theory was employed in hydrodynamic stability theory. As one of 
several applications of this theorem, he studied Rayleigh-Benard convection with a constant gravity and established 
PES for the problem. Since then several authors have studied this problem under the varying assumptions of 
hydromagnetic and hydrodynamics.  
 
Convection in porous medium has been studied with great interest for more than a century and has found many 
applications in underground coal gasification, solar energy conversion, oil reservoir simulation, ground water 
contaminant transport, geothermal energy extraction and in many other areas. Also, the importance of non-
Newtonian fluids in modern technology and industries is ever increasing and currently the stability investigations of 
such fluids are a subject matter of intense research.  A non –Newtonian fluid is a fluid in which viscosity changes 
with the applied strain rate and  as a result of which the  non-Newtonian fluid may not have a well-defined viscosity.  
Viscoelastic fluids are such fluids whose behavior at sufficiently small variable shear stresses can be characterized 
by three constants viz. a co-efficient of viscosity, a relaxation time and a retardation time, and whose invariant 
differential equations of state for general motion are linear in stresses and include terms of no higher degree than the 
second in the stresses and velocity gradients together. The problem of the onset of thermal instability in a horizontal 
layer of viscous fluid heated from below has its origin in the experimental observation of [3]. For further reviews of 
the fundamental ideas, methods and results concerning the convective problems from the domain of Newtonian/ 
non-Newtonian fluids, one may be referred to [3], [7] and [8]. 
 
It is clear from the above discussion that the Pellew and South well method is a useful and simple tool for the 
establishment of PES in convective problems when the resulting eigen value problem, in terms of differential 
equations and boundary conditions, is having constant coefficients.  Thus, the method is not always useful to 
determine the PES for those convective problems, which are either permeated with some external force fields, such 
as variable gravity, magnetic field, rotation etc., are imposed on the basic Thermal Convection problems and 
resulting   the eigen value problems contain variable coefficient/s or an implicit function of growth rate, in case of 
non-Newtonian fluids. 
 
 The present work is partly inspired by the above discussions and the works of [6] and the striking features of 
convection in non-Newtonian fluids in porous medium and motivated by the desire to study the above discussed 
problems. Our objective here is to extend the analysis of [15] based on the method of positive operator to establish 
the PES to these more general convective problems from the domain of non-Newtonian fluid. In the present paper, 
the problem of Thermal convection of a viscoelastic fluid in porous medium heated from below with variable 
gravity is analyzed and using the positive operator method, it is established that PES is valid for this problem, when 
g (z) ( the gravity field) is nonnegative throughout the fluid layer and the elastic constant of the medium is less than 

the ratio of permeability to porosity, i.e.
ευ

<λ
ε

<Γ 1l k
or

P
.  

 
MATERIALS AND METHODS 

 
(a) Mathematical Formulation of the Physical Problem 
Consider an infinite horizontal porous layer of viscoelastic fluid of depth‘d’ confined between two horizontal planes 

 and  under the effect of variable gravity, ))z(g0,0(g −r
. Let  be the temperature difference 

between the lower and upper plates. The fluid is assumed to be viscoelastic and described by the Oldroydian  
constitutive equations.  The porous medium is assumed to have high porosity and hence the fluid flow is governed 
by Brinkman model with viscoelastic correction. Thus, the governing equations for the Rayleigh-Benard situation in 
a viscoelastic fluid – saturated porous medium under Boussinesq approximation and under the effect of variable 
gravity are; 
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0q. =∇ r
                                                                                                 (2) 

 

 +
∂
∂

t

T
E ( T).q∇r   =K T2∇                                                          (3)    

  

( )[ ]00 TT1 −α−ρ=ρ                                (4)          

 

In the above equations, ρ , T,K ,α  0, λλ and υstand for density ,temperature, thermal diffusivity, coefficient of 

thermal expansion, the relaxation time and the retardation time and the kinematic viscosity, respectively.   Here, 

E= )1( ε−+ε
v0

ss

c

c

ρ
ρ

 is a constant, where s,scρ   stand for density and heat capacity of solid (porous matrix ) 

material and v,0 c,ρ  for  fluid ,respectively  .  Here, the suffix zero refers to the value at the reference level z=0. 

This is to mention here that, when the fluid slowly percolates through the pores of the rock, the gross effect is 
represented by the usual Darcy`s law. As a consequence, the usual viscous terms has been replaced by the resistance 

term q
k1

r








 µ−   in the above equations of motion. Here,µ and 1k  are the viscosity and the permeability of the 

medium and q
r

is the filter velocity of the fluid.    

 
Following the usual steps of the linearized stability theory, it is easily seen that the non dimensional  linearized  
perturbation equations governing the physical problem described by equations (1)-(4) can be put into the following 

forms, upon ascribing the dependence of the perturbations of the form  ( )[ ]tykxkiexp yx σ++ ,  

(c.f.  Chandrasekhar [1961] and Siddheshwar and Krishna [2001]); 
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( ) wEPkD r
22 −=θσ−−                                 (6) 

 
together with following dynamically free and thermally and electrically perfectly conducting boundary conditions 
 

wD0w 2=θ==       at  10 == zandz                  (7) 

 

In the forgoing equations, z  is the real independent variable, dz
dD ≡  is the differentiation with respect to z , 

2k  is the square of the wave number, Pr
κ
υ=    is the thermal Prandtl  number,  lP =

2
1

d

k
 is the dimensionless 

medium permeability, 
2d

λυ=Γ is elastic constant, E= )1( ε−+ε
v0

ss

c

c

ρ
ρ

 is constant, 
 κυ

αβ
=

4
02 dg

R is the 

thermal Rayleigh number, ( )ir iσ+σ=σ  is the complex growth rate associated with the perturabations and θ,w  

are the perturbations in the vertical velocity, temperature, respectively.  
 
The system of equations (5)-(6) together with the boundary conditions (7) constitutes an eigenvalue problem for  

for the given values of the parameters of the fluid and a given state of the system is stable, neutral or unstable 

according to whether rσ  is negative, zero or positive. 
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It is remarkable to note here that equations (5)-(6) contain a variable coefficient and an implicit function ofσ , 
hence as discussed earlier the usual method of Pellew and South well is not useful here to establish PES for this 
general problem. Thus, we shall use the method of positive operator to establish PES. 
 
(b). Abstract Formulation 
The method of positive operator 
We seek conditions under which solutions of equations (5)-(6) together with the boundary conditions (7) grow. The 
idea of the method of the solution is based on the notion of a ‘positive operator’, a generalization of a positive 
matrix, that is, one with all its entries positive. Such matrices have the property that they possess a single greatest 
positive eigen value, identical to the spectral radius. The natural generalization of a matrix operator is an integral 
operator with non-negative kernel. To apply the method, the resolvent of the linearized stability operator is analyzed. 
This resolvent is in the form of certain integral operators. When the Green’s function Kernels for these operators are 
all nonnegative, the resulting operator is termed positive. The abstract theory is based on the Krein –Rutman 
theorem, which states that;  
 
“If a linear, compact operator A, leaving invariant a cone h , has a point of the spectrum different from zero, then it 

has a positive eigen value λ , not less in modulus than every other eigen value, and this number corresponds at least 

one eigen vector h∈φ  of the operator A, and at least one eigen vector ∗∈ϕ h  of the operator ∗A ” . For the 
present problem the cone consists of the set of nonnegative functions. 
 
To apply the method of positive operator, formulate the above equations (5) and (6) together with boundary 
conditions (7) in terms of certain operators as;  
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where, 
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We know that  is a Hilbert space, so, the domain of M is  
 

domM  = ( ) ( ){ }010,Bm,D/B =φ=φ∈φφ∈φ . 

 

We can formulate the homogeneous problem corresponding to equations (5)-(6) by eliminating θ from (8) and (9) 
as;  
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or ( )wKw σ=                  (11) 
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Defining, ( ) ( ) 1PrEMPrET −σ+=σ exists for ( ) ( )
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Now, ( )σPrET is an integral operator such that for , 

 

( ) ( ) ( )∫ ξξσξ=σ
1

0

dfPrE;,zgfPrET , 

 

where, ( )σξ PrE,,zg is Green’s function kernel for the operator( )PrEM σ+ , and is given as 
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PrE

k
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2
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In particular, taking 0=σ , we have )0(TM 1 =− is an integral operator. 

 

( )σK defined in (12), which is a composition of certain integral operators, is termed as linearized stability 

operator.  K (σ ) depends analytically on σ   in a certain right half of the complex plane. It is clear from the 
composition of K (σ ) that it contain an implicit function of σ  .  
 

We shall examine the resolvent of the K (σ )  defined as ( )[ ] 1KI −σ−  
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If for all 0σ  greater than some a, 
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(2)   ( )σK  has a power series about 0σ  in ( )σ−σ0  with positive coefficients; i.e., ( )o
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for all n, then the right side of (13) has an expansion in( )σ−σ0  with positive coefficients. Hence, we may apply 

the methods of Weinberger [10] and Rabinowitz , to show that there exists a real eigenvalue 1σ  such that the 
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spectrum of ( )σK  lies in the set ( ){ }1Re: σ≤σσ . This is result is equivalent to PES, which was stated earlier as 

“the first unstable eigenvalue of the linearized system has imaginary part equal to zero.”  
 

RESULTS AND DISCUSSION 
 

(a). The principle of exchange of stabilities (PES) 

It is clear that ( )σK is a product of certain operators. Condition (1) can be easily verified by following the analysis 

of Herron [2000] for the present operator( )σK , i.e. ( )σK  is a linear, compact integral operator, and has a power 

series about 0σ in )( 0 σ−σ with positive coefficients. Thus, ( )σK  is a positive operator leaving invariant a cone 

(set of non negative functions). Moreover, for σ   real and sufficiently large, the norms of the operators 

( ) ( )σPrTand0T  become arbitrarily small. So, ( ) 1K <σ . Hence, ( )[ ] 1KI −σ−  has a convergent Neumann 

series, which implies that ( )[ ] 1−− σKI  is a positive operator. This is the content of condition (P1). 

 

To verify condition (2), we note that ( ) 1)PrEM(PrET −σ+=σ  is an integral operator whose kernel 

( )σξ PrE,,zg is the Laplace transform of the Green’s function ( )t;,zG ξ for the initial-boundary value problem   
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where, ( )t,z ξ−δ  is Dirac –delta function in two-dimension,            

 

With boundary conditions ( ) ( ) ( ) 00;,zGt;,1Gt;,0G =ξ=ξ=ξ ,                          (15) 

 
Using the similar result proved in Herron [2000] by direct calculation of the inverse Laplace transform, we  can have                        
 

( ) ( ) 1PrEMPrET −σ+=σ is positive operator for all real 
PrE

k 2
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 Therefore, for all real max(0 >σ 2
2
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by the product rule  for differentiation one concludes that ( )σK , composition of ( )PrET σ , ( )0T  satisfies 

condition (2). 
 
Hence, we have the following theorem; 
 
 Theorem.   PES holds for (5) - (6) together with boundary conditions (7)when g (z) is nonnegative throughout the 

layer, 
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CONCLUSION 

 

It is concluded from above discussion that when g (z)( the gravity field) is nonnegative throughout the fluid layer 

and the elastic constant of the medium is less than the ratio of permeability to porosity, i.e. 
ευ

<λ
ε

<Γ 1k
orlP

, 

PES is valid.
   

In particular, letting 0=Γ for Benard Problem, when g (z) (the gravity field) is nonnegative throughout the fluid 

layer PES is valid.
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