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ABSTRACT

In the present paper, the problem of thermal cotiorf avisco-elastic oldroydian fluid in porous medium tezh
from below with variable gravity is analyzed ahdsiestablished by the method of positive operafdaeinberger
and uses the positivitgroperties of Green’s function that principle ofchange of stabilities is valid for this
problem, whery (z) is nonnegative throughout the fluid layer @hne elastic constant of the medium is less than th

. . - =_hR K,
ratio of permeability to porosity, i.6. <— OrA <—
€ ev
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INTRODUCTION

Rayleigh—Bénard convection is a fundamental phemomdound in many atmospheric and industrial apgilons.
The problem has been studied extensively experiigrdand theoretically because of its frequent o@nce in
various fields of science and engineering. Thisdrtgmce leads the authors to explore different pugho study
the flow of these fluids. Many analytical and nuicak methods have been applied to analyze thislgnolin the
domain of Newtonian fluids, including the lineadzperturbation method, the lattice Boltzmann metfic8M),
which has emerged as one of the most powerful ctatipnal fluid dynamics (CFD) methods in recentrgea

A problem in fluid mechanics involving the onset adnvection has been of great interest for some.tifthe

theoretical treatments of convective problems ugualoked the so-called principle of exchange tdbdities

(PES), which is demonstrated physically as coneaaticcurring initially as a stationary convectidiis has been
stated as “all non decaying disturbances are naillaisry in time”. Alternatively, it can be statess “the first
unstable eigenvalues of the linearized systemrhaginary part equal to zero”.

Mathematically, if 0, 20=0, =0(or equivalentlyg, # 0=0, <0), then for neutral stability

(Gr =0),0=0, where 0, and O, are respectively the real and imaginary parts efdbmplex growth ratg .

This is called theprinciple of exchange of stabilitie4PES). The establishment of this principle resirtshe
elimination of unsteady terms in a certain classstability problems from the governing linerizedrtpebation
equations. Further, we know that PES also playismaortant role in the bifurcation theory of instélyi
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First decisive step was taken [11] the in the dioecof the establishment of PES in Rayleigh-Benawdvection
problems in a comprehensive manner. It was prowe@i7pan important theorem concerning this probléfie

proved that the eigen values of the linearizedildialequations will continue to be real when catesied as a
suitably small perturbation of a self-adjoint prel, such as was considered by Pellew and South Wa$ was
one of the first instances in whigDperator Theorywas employed in hydrodynamic stability theory. ése of

several applications of this theorem, he studiegdd®gh-Benard convection with a constant gravityg astablished
PES for the problem. Since then several author® fswdied this problem under the varying assumgtioh
hydromagnetic and hydrodynamics.

Convection in porous medium has been studied wigatginterest for more than a century and has fauady
applications in underground coal gasification, sa@aergy conversion, oil reservoir simulation, grduwater
contaminant transport, geothermal energy extracdod in many other areas. Also, the importance ai-n
Newtonian fluids in modern technology and industigever increasing and currently the stabilityestigations of
such fluids are a subject matter of intense rebeafc non —Newtonian fluid is a fluid in which vissity changes
with the applied strain rate and as a result dttwkhe non-Newtonian fluid may not have a welfitled viscosity.
Viscoelastic fluids are such fluids whose behaabsufficiently small variable shear stresses oarharacterized
by three constantgiz. a co-efficient of viscosity, a relaxation time aadetardation time, and whose invariant
differential equations of state for general motéwa linear in stresses and include terms of nognigegree than the
second in the stresses and velocity gradientsiegethe problem of the onset of thermal instapitita horizontal
layer of viscous fluid heated from below has itgiorin the experimental observation of [3]. Forther reviews of
the fundamental ideas, methods and results comgethie convective problems from the domain of Newao/
non-Newtonian fluids, one may be referred to [3],dnd [8].

It is clear from the above discussion that thed®eland South well method is a useful and simplé foothe

establishment of PES in convective problems when rdsulting eigen value problem, in terms of déferal

equations and boundary conditions, is having conmstaefficients. Thus, the method is not alwaysfuisto

determine the PES for those convective problemg;wdre either permeated with some external foeddd, such
as variable gravity, magnetic field, rotation etate imposed on the basic Thermal Convection prabland
resulting the eigen value problems contain védeigoefficient/s or an implicit function of growttate, in case of
non-Newtonian fluids.

The present work is partly inspired by the aboiscussions and the works of [6] and the strikingtdiees of
convection in non-Newtonian fluids in porous mediamd motivated by the desire to study the aboveudsed
problems. Our objective here is to extend the amslgf [15] based on the method of positive operaicestablish
the PES to these more general convective probleons the domain of non-Newtonian fluid. In the prasgaper,
the problem of Thermal convection of a viscoeladliid in porous medium heated from below with adtie
gravity is analyzed and using the positive operaiethod, it is established that PES is valid fag iroblem, when
g (2) (the gravity field) is nonnegative throughthe fluid layer and the elastic constant of thediam is less than

. " . Ky
the ratio of permeability to porosity, ile.<— OrA <—.
A AV

MATERIALSAND METHODS

(a) Mathematical Formulation of the Physical Problem
Consider an infinite horizontal porous layer ofcdslastic fluid of depth'd’ confined between tworizontal planes

z=0andz = d under the effect of variable gravityy(0,0 — g(z)) . Let AT be the temperature difference

between the lower and upper plates. The fluid BEueed to be viscoelastic and described by the @dikia
constitutive equations. The porous medium is asslta have high porosity and hence the fluid flavgoverned
by Brinkman model with viscoelastic correction. hthe governing equations for the Rayleigh-Bersétidation in
a viscoelastic fluid — saturated porous medium urgtissinesq approximation and under the effectanfable
gravity are;

1(1+}\ija_q:(1+}\ij[—@+ 1+6_p )Z]—(1+}\Oij Y 1)
€ ot ) ot ot P, P, ot )\ k,;
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0§=0 @)
Ea—T +(§0)T =kO°T 3)

ot
p:po[l—G(T—TO)] 4)

In the above equationgy, TK ,d A, )\Oand Ustand for density ,temperature, thermal diffusivitgefficient of
thermal expansion, the relaxation time and therdataon time and the kinematic viscosity, respedtiv Here,

C
E=e+ (1-¢€) P is a constant, wher@ C

pOCv
material andp,, ,C, for fluid ,respectively . Here, the suffix zerefers to the value at the reference level z=0.

. Stand for density and heat capacity of solid gpermaitrix )

This is to mention here that, when the fluid slowlgrcolates through the pores of the rock, thesgedgect is
represented by the usual Darcy's law. As a conseg ¢he usual viscous terms has been replacdtelgsistance

term(— kﬁjﬁ in the above equations of motion. Hgt@nd kl are the viscosity and the permeability of the
1

medium andq is the filter velocity of the fluid.

Following the usual steps of the linearized stabilheory, it is easily seen that the non dimeraiotinearized
perturbation equations governing the physical mwbtescribed by equations (1)-(4) can be put imoféllowing

forms, upon ascribing the dependence of the peatianis of the formex i(kxx +K, y)+ OtJ, (o0 =0, +ig;)
(c.f. Chandrasekhar [1961] and Siddheshwar and Krig20@d]);

o 1(1+lTpo 2 2 2

—+—=—|—— | ID° =k =-g(z2)Rk"06 5
(s R(1+FGJJ( )W 9(2) ©)
(D? -k? -oER )8 =-w ®)

together with following dynamically free and thedipand electrically perfectly conducting boundagnditions

w=0=6=D?w atz=0andz=1 (7

In the forgoing equationsZ is the real independent variablB, = %Z is the differentiation with respect 8,

U K
k? is the square of the wave number=Pr is the thermal Prandtl numberPlzd—; is the dimensionless
K
Av C apd’
medium permeability,[” =Fis elastic constant, E=+ (L—¢) PsCs is constant, R? :&is the
KU
0™v

thermal Rayleigh numbeU(= o, + icri ) is the complex growth rate associated with théupabations andv, 0
are the perturbations in the vertical velocity, pemature, respectively.

The system of equations (5)-(6) together with tharnwlary conditions (7) constitutes an eigenvalwblem foro
for the given values of the parameters of the flaidi a given state of the system is stable, neatrainstable
according to whetheg, is negative, zero or positive.

70
Pelagia Research Library



Pushap Lata Adv. Appl. Sci. Res., 2013, 4(6):68-74

It is remarkable to note here that equations (»)e(tain a variable coefficient and an implicinétion ofJ ,
hence as discussed earlier the usual method céviPelhd South well is not useful here to establiEl$ For this
general problem. Thus, we shall use the methoasitige operator to establish PES.

(b). Abstract Formulation

The method of positive operator

We seek conditions under which solutions of equatifb)-(6) together with the boundary conditionsdibw. The
idea of the method of the solution is based onrtbigion of a ‘positive operator’, a generalizatiohaopositive
matrix, that is, one with all its entries positiguch matrices have the property that they posseaasgle greatest
positive eigen value, identical to the spectraiusdThe natural generalization of a matrix operéaoan integral
operator with non-negative kernel. To apply thehmdi the resolvent of the linearized stability @er is analyzed.
This resolvent is in the form of certain integrakoators. When the Green’s function Kernels fos¢heperators are
all nonnegative, the resulting operator is termeditive. The abstract theory is based on the KrdRutman
theorem, which states that;

“If a linear, compact operator A, leaving invariantone/: , has a point of the spectrum different from zéhnen it
has a positive eigen valuk, not less in modulus than every other eigen vaind, this number corresponds at least
one eigen vectoxf [J7 of the operator A, and at least one eigen vedidr] 1" of the operatorAD". For the
present problem the cone consists of the set afegative functions.

To apply the method of positive operator, formul#te above equations (5) and (6) together with Haon
conditions (7) in terms of certain operators as;

o 1(1+lTpo 2
—+—| ——— | [IMw = g(z2)RBk 8
[s p|(1+roﬂ 9(e) ®
(M +oEPr)e = Rw )
where,

Mw =mw, wOdomM, M2?w=m?w, wOdomMM)and MB=m6,  wIdomM
The domains are containedBnwhere

o= (09 =[] [tz

1
with scalar product (@,@) = I¢(Z) #(2dz, ¢ d0OB; andnorm ||(|1| =(o, (p>}/2
: .
We know thatL * (0,1) is a Hilbert space, so, the domain of M is
domM = {@0B/ De,meB, ¢0)=l1)=0}.

We can formulate the homogeneous problem correspgnd equations (5)-(6) by eliminating from (8) and (9)
as;

-1
) 1(1+Tpo 4
w = k?’R*M ™ g+—(—j z)IM + EPro)~w 10
[8 pl1+ro g( )( ) (10)
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or w = K(o)w (11)

K (o) = szZT(O)(% + %(%D o(z)T(EPro)w (12)

L2
Defining, T(EPro) = (M + EPro) "exists forc OT |, = {0 ac |Re(0) > K
JPE EPr

,Im(o) = O} and for

k2
EPr

Re(o) > -
Now, T(EPrO) is an integral operator such that for B,
1
T(cEPI)f = _[ o(z. & 0EPN)f(£)dE,
0
where, dZ,E ,EPrG) is Green’s function kernel for the operfﬁM + OEPI’), and is given as

d 2% Pro) = cosi{r(l— |z- Z|2]S—incr:)rsl{r(—1+ z+&)

2

Wherel =,/0 + .
EPr

In particular, takingg =0, we haveM ™ = T(0) is an integral operator.

K(G) defined in (12), which is a composition of certaitiegral operators, is termed #rearized stability

operator K (O) depends analytically o@ in a certain right half of the complex planeidtclear from the
composition of K O ) that it contain an implicit function oy .

We shall examine the resolvent of the &) defined as{l - K(CI)]_l

[ =K@ ={i [ - K (o) ![K(0) - K (o)} [ - K (oo)]* (13

If for all O, greater than some a,
@) [I - K(GO )]_l is positive,

d n
2 K(G) has a power series abody, in (00 —0) with positive coefficients; i.e(— d_j K(GO) is positive
(o)
for all n, then the right side of (13) has an exgiam in(OO - 0) with positive coefficients. Hence, we may apply

the methods of Weinberger [10] and Rabinowitz show that there exists a real eigenvallig such that the
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spectrum ofK(O) lies in the se{to :Re(o) < 01} . This is result is equivalent to PES, which wasest earlier as
“the first unstable eigenvalue of the linearizedteyn has imaginary part equal to zero.”

RESULTSAND DISCUSSION

(a). The principle of exchange of stabilities (PES)
It is clear thatK(O)is a product of certain operators. Condition (1) ba easily verified by following the analysis

of Herron [2000] for the present operaiél(o), i.e. K(G) is a linear, compact integral operator, and hpsveer

series abouO ,in (00 — 0) with positive coefficients. ThusK(G) is a positive operator leaving invariant a cone
(set of non negative functions). Moreover, f& real and sufficiently large, the norms of the rapers

T(0) andT(Pro) become arbitrarily small. S(HK(O)"<1. Hence,[l - K(O)]_l has a convergent Neumann

series, which implies the[tl - K(U)]_l is a positive operator. This is the content ofdition (P1).

To verify condition (2), we note thatT( EPrG) =(M+ EPro)™ is an integral operator whose kernel
Q(Z,E,E Pr 0) is the Laplace transform of the Green'’s functﬁﬁz,f; t)for the initial-boundary value problem

2 0
-—+k?+EPr— |G=03(z-¢&,t), 14
( 0z° at) (=21 -

where,8(z - €,t) is Dirac —delta function in two-dimension,

With boundary condition@(O,E; t) = G(].,E; t) = G(Z,E;O) =0, (15)
Using the similar result proved in Herron [2000]diyect calculation of the inverse Laplace transfowe can have

2

T(G EPr) = (M + OEPr)_lis positive operator for all reay, > — Ek , and thatT(O EPr) has a power

Pr
seriesabout0, in (O, —0) with positive coefficients,

2

i.e., forall realo, > — , we see that

Pr
(—;} @zﬁ gEPb:If‘ gt CGZ,E,t) dt >Qis positive.

In particular, , from the above result, we dedllnmﬂ'(O) = (M )_lis positive operator for all rea, > -k?,
takingg =0.

-1
+ +
Also, o +i(l+ﬁj >0 for all Oreal ando, > PirHeT_ & P THEL andl < Ll or
e p\ll+t0 21p, P, 21p, €

k

A<—L.
ev
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Therefore, for all reab, > max(—

2
K k?, \/p' tuel e _p +u£r),g(z)20f0rall zJ[o4],

EP’ 2rp,  p, 2,

by the product rule for differentiation one corugs thatK(G), composition oﬁ'(OEPr) , T(O) satisfies
condition (2).

Hence, we have the following theorem;

Theorem. PES holds for (5) - (6) together with boundary dbads (7)when g (z) is nonnegative throughout the

2
layer, I <P or<Xiang G, > max(- K™ gz [Pithel e _p +U€r)_
¢ & EP1 2rp,  p, 2rp,

CONCLUSION

It is concluded from above discussion that when)@the gravity field) is nonnegative throughout ftuid layer

k
and the elastic constant of the medium is less tiramatio of permeability to porosity, i.&. < ﬂ orA< 1 ,
€ AV

PES is valid.

In particular, lettingl” =0 for Benard Problem, when g (z) (the gravity figkiponnegative throughout the fluid
layer PES is valid.
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