
On the Foundation of the Repetitive Cognitive Behaviour in Software
Development and Software Use
Pronab Pal*

Department of Computer Science, The Australian Defence Force Academy (ADFA), UNSW, Australia

This paper proposes "Intention Patterns" as the automatic human base for software development. A
model called Virtual Cognitive Model (VCM) is presented, which repeats but remains transparent in
software making and use. VCM effectively becomes a real-time meta-level control of user interface
and program execution. Patterns play a fundamental role not only in software design but also in
human cognition and system sciences. This paper explores the concept of intention patterns within a
Virtual Cognitive Machine (VCM) framework, highlighting their relevance in software development
and user interaction. Drawing parallels with repetitive learning in physical activities like swimming,
the paper argues that repetition forms cognitive patterns essential for both developers and users in
understanding, constructing, and executing software systems. Intention Patterns, defined as
sequences of scenes resolved through transitions of Focus, provide a structured framework for
understanding how human minds process and manipulate complex information. The VCM acts as a
dynamic mental construct that aids in software design and usage by facilitating the resolution of
intentions across interconnected scenes. By formalizing these cognitive processes through a Met
model, the paper proposes insights into enhancing software development methodologies and user
experience through a deeper understanding of cognitive patterns.

Keywords: Pattern; Software design; Software engineering; Pattern composition; Cognition

INTRODUCTION
Patterns, in general, have received interest in software during
the last ten years, especially as design patterns [1]. However,
patterns play a more vital role in system sciences and
complexity theory [2]. There have been several approaches to
the composition of design patterns in software through
pattern systems or UML [3,4]. However, none of these
approaches takes into consideration the fact that patterns
have got a foundation in our minds and come as a common
cognitive element in the design, development, and use of

computer systems. To see how patterns are closer to human
cognition than just a good design principle, I shall draw an
analogy.

Repetition and Cognition
For a human being, repetition is the key to building complex,
rich, and beautiful things. A good swimmer, for example,
learns more amazing techniques in fast swimming by sheer
practice by repeating the same strokes over and over again
several hundred times. There the repetition holds out a
pattern in the swimmer's mind that makes him/her a better

Clinical Psychiatry
ISSN: 2471-9854

Open Access Review Article

Corresponding author: Pronab Pal, Department of Computer Science, The Australian Defence Force Academy (ADFA),
UNSW, Australia; E-mail: pronob@visualanalytics.com.au
Citation: Pal P (2025) On the Foundation of the Repetitive Cognitive Behaviour in Software Development and Software Use.
Clin Psychiatry. 11:56.
Copyright: © 2025 Pal P. This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

© Under License of Creative Commons Attribution 4.0 License
This article is available in: https://www.primescholars.com/clinical-psychiatry.html

Received:
Editor assigned:
Reviewed:
Revised:
Published:

Manuscript No:
PreQC No:
QC No:
Manuscript No:
DOI:

IPCP-23-17270
IPCP-23-17270 (PQ)
IPCP-23-17270
IPCP-23-17270 (R)
10.36648/2471-9854.11.1.56

10-August-2023
14-August-2023
28-August-2023
15-January-2025
22-January-2025

Abstract

Volume 11 • Issue 01 • 056

swimmer. The exact nature of this pattern is not in the
repetition; repetition provides a frame for the swimmer to
build a way in the mind that fuses with proper motivation
from the swimmer and somehow makes him a better
swimmer both mentally and physically.

We don't know the exact process by which a good swimmer
picks up the skills. The same practice and drill give different
results to different swimmers. However, we know even a good
swimmer has not learned the techniques in a day. The feel for
the water, the whole body synchronization, and a sense of
balance, other motivations everything has probably
contributed to and helped him become a good swimmer.

Repetition and Software
In the software field, the software developer gets the feel
required to develop good software by interacting with items
that are not as concrete as the water in the swimming pool.
Instead, he has to build up most of this world in his mind: A
world where he can develop good software through mental
constructs or through interaction with other existing pieces of
software, which in turn are designed by other software
developers.

Like the swimmer, the software developer too has to repeat
certain drills about good programming and design practices.
However, for the software developer, repetition is not only in
how he develops it but also in what he develops. Firstly, how
software of a certain kind is made is learned by the developer
by trying to develop the same kind of software several times.
He learns how certain situations can be best resolved by sheer
experience in solving certain kinds of problems. Secondly, any
software is supposed to be run an infinite number of times
under certain conditions. Thus the software is supposed to
repeat a set of behavior when it goes out in the real world.
Good software is supposed to do that without any conflict in
the real world where it executes in terms of what it does
internally. It has to maintain and honor the memory boundary
designed for it and not create any conflict in terms of
interaction with any kind of user-the operator or the end user.
In this paper, I use the terms 'developer' and 'user' in a
generic sense anyone who contributes something towards the
development of the software piece is a developer, and
whoever interacts with the finished software piece to achieve
a goal is a user. This user may be another programmer or a
business person.

In many instances, a software user goes through a mental
model-building phase where he can learn most of the
necessary details about what the software is designed to do
repeatedly. In doing so, the user of the software goes through
repeating a part of the model building and mental interaction
that the builders of the software went through.

Proposition
This paper, firstly, proposes a theory that states that human
beings do share a common mental model to develop, use and
execute software. This model brings about the repetition that
is necessary both at the design stage and also at the

execution phase. The model thus acts as the water where the
developer and the user act as the swimmers-giving a
framework for repetition in a way that holds out some
patterns to the software user and the developer. The
recognition of these patterns, being a cognitive affair, remains
independent of the hardware or even the application.

This paper also proposes that such a model, which remains
hidden and transparent within human behavior during
software making and use, can be made explicit in a Met
model in the software development and use phase. Such
exposure to this model will bring benefits in software design,
making, and usage of the software.

My main objective is to reveal this common cognitive model
in all software activities.

Organization
I shall first define a few terms and concepts about how we
analyze the real world. Based on this analysis, I shall build up
a structure called an "Intention Pattern”. Then I shall
introduce virtual cognitive machine to bring out the
dynamism inherent in such structures. The structure and the
dynamism are proposed repetitions in our regular software
activity.

LITERATURE REVIEW

Analysis of Reality
Attributes and relations: Attributes are generally ascribed to
entities, e.g., my car can have an attribute like color, type, etc.
However, it is also possible to see such attributes as some
attributes of our own mind. The fact that every time I see my
car, I find it red is a fact, and if I find it different someday, I
would want to find a reason for the change of color: Either I
have gone color blind, or someone has changed the color of
my car, or there should be some explanation to it. The fact
that every time I find it red is a brilliant joint act of my mind as
well as the car.

The same aspect can be discerned in any relationships we
establish between items. E.g., if I say my piece of my cake is
larger than yours, that relation between your piece of cake
and mine is a characteristic of the pieces of cake as well as my
power of observation, a characteristic of my mind.

Intentions: From this perspective, I define the term Intention
as an attribute of the mind we have. It is not necessary to
define here ‘what the mind is.' I shall use it as the common
English word we know: That part of us that listens,
understands, and acts coherently in reality. Intention is
defined as an attribute of our mind which brings the
attributes and relation between items in the world. Intention
can bring about attributes and relations through the following
five types of actions in mind:

• Observation: When we make a statement like the sky is
blue.

Pal PPage 2

Volume 11 • Issue 01 • 056

• Question/answer: When we agree or not agree to a fact
through question and answer. For example," Is Mt Everest
the highest mountain peak?” and answer “Yes”; here, the
person who raised the question intended to relate all the
mountain peaks in the world in a generic way to Mt
Everest, and the answer has resolved that intention one
way or the other.

• Abstraction: When we establish some relationship
between things we can see or feel immediately and those
that we cannot see or feel in the same way: e.g., "the egg
in my hand is oval like a balloon."

• Rationalization: When we say certain things are related in
a certain way because some other things are related in a
certain way, e.g., "the winter is coming, so the tree leaves
are falling."

• Command: When we wish some relationship to come
about: e.g., "Put the cup on the table".

An intention can be one of the above types.

Focus
There is a limit on how many items a mind can focus on at any
moment. Of course, it might vary from person to person, and
also, with time, how many things a person can focus on at one
point in time. I shall define a Focus as a collection of items
with the intention that somehow binds those items together.
For example, when I am watching the night sky, I am focusing
on small parts of the sky and trying to make a shape out of
the placement of the stars in the night sky. The intention is to
make some abstract shapes like a rider on a horse. This can be
broken up into several related intentions, like making the tail
of the horse, making the head, and so on.

Key Points and their Types
The definition of focus implies some definition of items that
the focus consists of. These items have been chosen by the
person who is creating the focus, and I shall call them the key
points. The key points have a type that gives some
characteristics to intentions which we shall see next. The type
of the key points gives us a way to categorize the key points.
E.g., an apple in the real world will be of a different type to
the apple represented in the computer even though they both
are called apples. For us human beings, they feel different.
The type of an item is, however, closely related to the focus
and intentions in the focus. E.g., if I am going to pick up an
apple lying next to some oranges to offer it to my son who has
asked for an apple, in the focus of the action of picking up the
apple, I shall consider an apple is a different type than the
oranges; however, if my intention is to offer some fruit, I
would consider apple and orange are of the same type in that
focus.

Binding of Key-Points
When we focus on something, there is always one or more
intention which is part of that focus. These intentions will
have some key points associated with it. E.g., 'I want to
withdraw some money' being the intention, the key points in

focus may be 'ATM', 'amount,' and 'my account'; I shall call
such an association a binding of key points by the intention.
The binding also establishes a relationship between the type
of intention it refers to and the type of the key point (s) in the
binding. Thus if some of the types of key points bound by an
intention are of different types, the Intention doing the
binding is of type abstract.

Scenes
The above notions of intentions and focuses are more related
to a person engaged in some skillful activity. However, no
human being is isolated from the rest of the world during
such an engagement. This brings us to the notion of scene-a
rough boundary of things the person is aware of at a point in
time or over an extended time while he or she is engaged in
some skillful activity.

The above definition of scene also distinguishes between
what we build in computers and what is out there in the real
world. The distinction is that what we see in our computers
are segments of the real world. The reality in computers is
already bounded or limited to the action of some skillful
activity by one or more persons. The real world is a
continuous phenomenon, whereas the moment we visualize
and represent the world through our computers, we lose the
continuity of the real world.

They become isolated segments of the real world; even
though we are watching a continuous video, the whole video
will be an isolated segment of the real world. In the software
world, reality thus comes as a set of scenes, each scene
having any number of abstract or physical items put together,
all in the same league. For example, a scene can have an ATM
physical machine and the account number, which is abstract.

Similarly, a scene can have items created by other software
already running in the real world.

Also, a scene should have one main focus reflecting what the
person is focusing on for a specific skillful engagement. It may
have several other focuses reflecting what other focus the
person might get attracted to, and that is somehow related to
the main focus through sharing of some key-points. The main
focus gives a characteristic and name to the scene. The other
focus brings in the other possible focus. The person engaged
in the skillful activity, as indicated by the main focus, might
focus on relating the items in the main focus to the reality of
the computer world.

Hence my definition of scene: They are segments of the real
world that one is aware of while one is engaged in a skillful
activity having one main focus reflecting the skillful activity
and several associated focus to help the main focus.

There is a particular vagueness in the definition of a scene,
which is deliberate. It will not interfere with the formality I am
presenting here. The vagueness is a reflection of reality where
the scene belongs. That is, the scene is a dynamic construct
from reality to suit the person engaged in some skillful
activity. A diagrammatic representation of the scene follows
(Figure 1):

Pal PPage 3

Volume 11 • Issue 01 • 056

Figure 1: A diagrammatic representation of the scene.

A typical example of a scene will be a few related pages in a
book, a limited sequence of consecutive dialogues, events,
and screenshots in a movie, or particular user computer
interaction when the user is trying to do a task the user has in
mind. A main focus, "Transfer of money to and from ATM,"
can have other focus in the scene like "Location of the ATM'
which will be influenced by the policy of the Council, type of
residence around, etc.

Connecting the focuses: Next thing I shall introduce
something that connects several focuses in our minds. This is
some kind of pattern that makes way for the relation between
several isolated scenes and provides dynamism in the mind.
This dynamism is part of the nature of patterns [5]. Because of
the special nature of my construct, I shall call my patterns
"Intention Patterns". The concept of resolution of Intention
and transition of Focus is part of the dynamism that intention
patterns bring in. It is necessary to define these terms before I
define intention pattern.

Resolving an intention: An intention is resolved when the
intention relates to the key points, all of which belong to the
current focus. When this is not the case, we say the Intention
causes the transition.

Transition of focus: A transition of focus occurs when the
intention that relates some key points in the focus also
includes some key points not included in that focus. Such a
transition thus involves a group of key points in the two
focuses, which are related through the intention.

Intention patterns: Intention patterns are a sequence of
focuses through sequences of Scenes such that there is a
continuous resolution of intentions through that sequence
with the transition of focus. In other words, intention patterns
weave through consecutive scenes, creating one or more
focus in each scene. For example, I may walk out of my house
with the intention pattern "to draw some money" This
pattern may consist of scene sequences as follows: "My house
front," "the street to the highway, the petrol station at the
corner” and “the ATM." There are no hard and fast rules
about how the scenes are formed. They are just a sequence of
familiar segments of the real world, each having a main focus.
The main focus may or may not belong to the
Intention pattern. This is illustrated in the diagram below
(Figure 2):

Figure 2: An intention pattern.

Also, an intention pattern may have a type that shall provide
the role of the intention pattern.

Modelling the Dynamism in Intention Pattern
So far, I have introduced the terms and concepts that are
needed to analyze the real world. Intention pattern holds
dynamism in our mind through a change of focus. How can
we model dynamism? This I propose to do in my model virtual
cognitive machine. Our mind seems to have a Virtual
Cognitive Machine (VCM) that keeps on working while we
busily go about our daily activities. “Intention patterns” are
the repeating structures that our VCM manipulates and does
a virtual execution of software in our mind holds. Intention
Patterns are also the common currency of interchange
between software developers and users.

DISCUSSION

Virtual Cognitive Machine
The virtual cognitive machine being part of the human way of
doing computation can be found as a common frame of
repetitive action that the software developer and user engage
in. In other words, our mind holds this virtual cognitive
machine while we engage ourselves in daily activity, build and
use software in the real world. The reason I have used those
three words is: It is virtual in the sense there is no real
hardware in the sense of electronic hardware in our mind; it is
definitively cognitive one shall recognize it by observing one's
own mind; and thirdly, it is a machine because, if we follow
our instincts about facts, rationality, our sense of
abstractness, along with our human faculty of working in
small context while aware of larger issues, the switch or
transition between the contexts or between focuses in the
pattern or across pattern do occur almost involuntarily as if
we ourselves not responsible for the switch. Most
importantly, VCM allows us to do our regular day-to-day work
while it busily builds up the world for us. VCM brings us some
form of continuity. The continuity has a structure and
dynamics that repeats with any software activity. VCM
provides the framework for this repetition. Crucial to the
operation of VCM is the concept of resolution of intention in a
focus. We shall see, through intention resolution, the
intentions in a scene are the main drivers in the transition of
scenes.

Pal PPage 4

Volume 11 • Issue 01 • 056

The Flow in VCM
Whenever an intention is not resolved in a focus, the VCM
carries it along until it is resolved in a scene in the intention
pattern. VCM also collects the unresolved intentions and the
key points associated with an unresolved intention. An
intention can thus originate in one scene and get resolved in
another focus in another scene in the pattern.

Our memories do play a vital role in the modeling of the VCM.

VCM operates by going from one focus to another along an
intention pattern, which I defined as a sequence of scenes.
The consecutive focuses that VCM goes through may be
within the same scene or in the next scene in the sequence.
At each focus, it goes through the intentions and may collect
the key points that the intention bounds. The key points
within a scene correspond to our short-term memory. When
VCM goes from one scene in the intention pattern to the next,
it adds the key points that it already collected in the first
scene to its collection "Contextual Collection," which VCM
creates on its own. This contextual collection corresponds to
our longer-term memory, and any unresolved intention
carried in contextual collection will get resolved in some
scene in the sequence in the current pattern or in a pattern
that is pointed to by an intention in a scene in the current
pattern. This sort of resolution through patterns may bring in
some nesting of patterns.

Nesting of Intention Patterns
Nesting of patterns can arise in two situations. Firstly, an
intention in a scene in a pattern possibly bound to certain key
points in the scene points to another pattern for its
resolution. E.g., a cooking recipe may point to a pattern of
making the vegetable stock while outlining the steps to
prepare fried rice.

The second way nesting may arise is by "shelling" a pattern
with another pattern. This means whenever VCM starts to
traverse the shelled pattern, it first traverses the shelling
pattern first. E.g., whenever I go to pick up my daughter from
her school, I want to check the day’s timetable on the fridge
first. Here the pattern "picking up my daughter" will be
shelled by the pattern "look up the day’s timetable."

Resolution and Continuity
We have seen the intentions bring about the dynamism
needed for switching from one focus to another. However, the
important aspect of this switching within an intention pattern
is that the switching should provide a certain kind of
continuity in meaning between scenes. The act of resolution
of intentions provides this continuity. An intention pattern
ensures an Intention is resolved in one of the Scenes in the
pattern or is being directed to another pattern for resolution.

The pattern through the VCM is represented in the following
diagram (Figure 3):

Figure 3: Virtual Cognitive Machine’s context (VCM).

Summary
Next, I shall go through, in summary, an example of how VCM
is working while I go on about building a small piece of
software. This is a simulation of VCM while I developed the
working program in Java language. I have chosen a small and
simple sample that will allow us to focus on the process of
software making rather than the application. At the same
time, it has got a hint of the complexities of a real-world
application. I start with a requirement that may come from a
business analyst and go through the analysis and design phase
to code the software. In the following, the word pattern is
used to imply an "intention pattern."

The requirement is to make a visible dial called “Moody Dial,"
which shows a white arc on a yellow dial. The dial is
manipulated using a slide bar.

The angle the arc makes is variable with the slide. The angle
reflects the mood or amount of interest of the customer in
the item that is being discussed during an interview.

I shall ignore, for this exercise, the business justification,
ethical fitness, and appropriateness of usage of the software.

The case study follows some conventions in regard to the
resolution of intentions in every Focus in a Scene and a few
other little details, which I explain below:

Patterns are represented as Pn, where n is an integer, and
each Pn has a name and a type. The type indicates the role of
the person who sets up this pattern.

Scenes are represented as Sn, where n is an integer, each Sn
has a name. Also, each Scene carries a note which describes
the focus in plain English. For each pattern, there is a Scene,
with the same name, as the starting scene.

An intention in focus is represented as follows:

Name (Type).

The type can be one of the following

O: Observation

A: Abstraction

R: Rationalisation

C: Command

Pal PPage 5

Volume 11 • Issue 01 • 056

Q: Question/Answer

I have represented the following patterns:

P1: Customer brief (business analyst)

P2: Making of the dial (Analyst)

P3: Objects in the customer dial (Analyst)

P4: MVC-model view controller in customer dial (Analyst)

P5: Flow of events (Programmer)

P6: Test script (Tester).

The scenes involved are:

S0: Customer brief

S1: Moody dial

S2: Dial operation

S3: Change flexibility

S4: Making of a dial

S5: Objects in moody dial

S6: MVC in moody dial

S7: Dial frame

S8: Arc panel

S9: Angle adjustment listener

S10. Flow of events

S11 observable angle

S12: Constructor

S13: Test script

With the above numbering, the patterns come out as follows:

P1: [S0,S1,S3]

P2: [S4,S1,S2,S3]

P3: [S5,S8,S9,S11]

P4: [S6]

P5: [S10,S12,S8,S11,S9]

P6: [S13,S0,S1,S2,S3]

Some of the intentions in the scenes are:

What is required (Q) What is going to change (A) Improve
interview effectiveness (C).

How do you represent customer mood? (A), Who Controls the
Slide? (Q)

The customer behavior package interface provides the angle
of mood. (O) What links the slide-bar movement with the
change in the angle(R)

In summary, “customer brief” goes through how a
requirement might be specified by a requirement analyst,
starting with a summary of the business objective. It gives a
rough specification of the functions required with some

reference to operational deployment issues and finally talks
about the future goal and changes.

The pattern "Making of the dial" comes from the analyst who
goes to the specifics of individual function but still does not
go through the show of things, nor does it go into details of
how components coordinate. It shares some of the scenes
from the "Customer brief" pattern. It brings a new operational
issue scene but does not elaborate too much on it. It outlines
how coding should coordinate with future changes. In the
pattern “Objects in customer dial," the analyst goes into much
detail into technical details. However, those details are still at
the individual component level. Analyst “shells” the pattern
"Objects in customer dial" by the shell "MVC-model view
controller in customer dial". This pattern gives a brief
overview of MVC and raises intentions which are all resolved
in the pattern "Objects in customer dial." Finally, the
programmer sets up the pattern "Flow of events," which goes
into detail about the programmer's vision of how mouse-click
is transferred to the change in the dial using the classes as
vision by the analyst. “Test script” is for testing the program.

Implications
The study of VCM reveals that the pattern acts as the
attraction or grouping agent of the two components: the
intentions and the key points, while it makes its way through
the scenes. This collection is referred to as the focus of each
scene. I intend to do some empirical study on the following
possibilities:

• The intentions and resolutions have some correlation with
the pattern type.

• The type of key-points and their distribution through the
intention pattern has some relationship to the role of the
Pattern.

• The pattern should bring some characteristics to the
nature of communication between project participants.

• Nesting of patterns is more common at the analysis level
than at the programming level.

It is interesting to observe because the programmer is dealing
with a pre-structured view of objects; the programmer's
pattern includes more "R" type intentions. These intentions
are trying to rationalize the process flow.

CONCLUSION
This model VCM is the model that repeats by design or by
implication whenever good working programs are
constructed. Yet, today's computer, which should have all the
necessary ability to repeat this model, does not represent it
anywhere in the system cycle. A model like VCM can be the
common model above the machine language, roughly at the
same level as the byte code in the Java engine. That way, any
programming language or business description language can
describe its own domain in terms of the operation of the
VCM. The benefit of doing this is the business user and
developer use the same reference model to exchange
requirements and to work for a requirement. The lack of this

Pal PPage 6

Volume 11 • Issue 01 • 056

sort of common model, which is a common way of thinking
among humans, is the main reason computers today are not
suitable for cooperative development, and they are
challenging to program. The proposed VCM model is not a
framework because a framework would have some
executables as part of the framework and could generate
codes. Any code for any machine can be put in this model for
both human reading and machine processing. Because
patterns express the overall plan, this model can coexist with
real readable material (e.g., specification of any standard) and
the corresponding code (in any standard programming
language). Unlike byte-code for Java, VCM, however, can work
within its model while the program is executing, and there
can be interplay between the control of VCM and the control
of the program. This is possible by tracking scene flow at the
program level as it would be done by VCM and then
transferring the control to VCM when the program finishes its
task. VCM effectively then becomes a real-time meta-level
control on both user interface and program execution.

In the immediate future, my plan is to study the behavior of
the distribution of intentions, by their types, across different
roles in the project of software development and how such a
distribution possibly reflects the overall quality of the project.

In the long run, a closer study of VCM will provide a more
objective and generic view of patterns as repeating structures
and how they can be related to the workings of our minds.

REFERENCES
1. Shalloway A, Trott JR (2004) Design patterns explained: A

new perspective on object-oriented design. Addison-
Wesley Professional.

2. Fritjof Capra (1997) The Web of Life: A New Synthesis of
Mind and Matter. Flamingo, 1997.

3. Schmidt DC, Stal M, Rohnert H, Buschmann F (2013)
Pattern-oriented software architecture, patterns for
concurrent and networked objects. John Wiley & Sons.

4. Yacoub SM, Ammar HH (2001) UML support for designing
software systems as a composition of design patterns.
Springer Berlin Heidelberg.

5. Alexander C (1979) The timeless way of building. New
york: Oxford university press.

Pal PPage 7

Volume 11 • Issue 01 • 056(MRPFT)

https://www.oreilly.com/library/view/design-patterns-explained/0201715945/
https://www.oreilly.com/library/view/design-patterns-explained/0201715945/
https://books.google.co.in/books/about/The_Web_of_Life.html?id=8JltQgAACAAJ&redir_esc=y
https://books.google.co.in/books/about/The_Web_of_Life.html?id=8JltQgAACAAJ&redir_esc=y
https://books.google.co.in/books?hl=en&lr=&id=rYiKY3mrrswC&oi=fnd&pg=PT8&ots=V8ypfsFWJ0&sig=uG891QqlUGMsLoXFsDJ04oT2jQA&redir_esc=y
https://books.google.co.in/books?hl=en&lr=&id=rYiKY3mrrswC&oi=fnd&pg=PT8&ots=V8ypfsFWJ0&sig=uG891QqlUGMsLoXFsDJ04oT2jQA&redir_esc=y
https://link.springer.com/chapter/10.1007/3-540-45441-1_12
https://link.springer.com/chapter/10.1007/3-540-45441-1_12
https://books.google.co.in/books?hl=en&lr=&id=H6CE9hlbO8sC&oi=fnd&pg=PA1&ots=4zVIajjdjH&sig=ABzsgwfpE5d0Zxw06jrHcsHOdBo&redir_esc=y

	Contents
	On the Foundation of the Repetitive Cognitive Behaviour in Software Development and Software Use
	ABSTRACT
	INTRODUCTION
	Repetition and Cognition
	Repetition and Software
	Proposition
	Organization

	LITERATURE REVIEW
	Analysis of Reality
	Focus
	Key Points and their Types
	Binding of Key-Points
	Scenes
	Modelling the Dynamism in Intention Pattern

	DISCUSSION
	Virtual Cognitive Machine
	The Flow in VCM
	Nesting of Intention Patterns
	Resolution and Continuity
	Summary
	Implications

	CONCLUSION
	REFERENCES

