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ABSTRACT

The effects of rotation and the mass flux inducgdemperature gradient (Soret effect) on the doutilfision
convection in a horizontal layer of fluid subjectéa thermal and solutal gradients with cross diffus are
investigated analyticallyand shown graphically. Normal mode technique heasnbused for théinear stability
analysis of the problenThe eigen value problem and the exact solutioncdntained for stability investigations.
The expression for stationary Rayleigh number imioled as a function of the governing parametelse &nalysis
reveals that the Soret parameter and ttewis numbeboth have the destabilizing effect on the onsstaifonary
convection in the system whitke stable solute gradient and rotation have stainiy effect on the onset of
stationary convection and introduces oscillatorydes in the system, which were non-existent in igsence. In
the limiting cases some previous published residte been recovered.

Keywords. Rayleigh number, Double diffusive convecti@®gret effect, ttionary convection, Cross diffusion,
Rotation.

INTRODUCTION

Convection occurs in nature on a large scale inogpieres, oceans, planetary mantles, and it provide
mechanism of heat transfer for a large numbers@égsses. The earliest experiments to demonstratertset of
thermal convection in the fluid are attributed ténard [3]. Inspired by the experimental works oh&dl, Lord
Rayleigh [13] showed mathematically that if a querg fluid layer is heated uniformly from belowgethdverse
density gradient becomes unstable and the fluidaoma@nsues when a critical heating rate, measurd¢drims of
Rayleigh number is exceeded. As a consequenceeofvtitks of Bénard and Rayleigh, the thermal insitgbor
thermal convection problem is commonly known as|&gi-Bénard convection. Chanderasekhar [5] preskat
comprehensive view of thermal convection problenmslen the varying assumptions of hydrodynamics and
hydromagnetics in a treatise, Hydrodynamic and Hiydignetic Stability.

Recently, the convection in two component systemeat(and mass diffusion) with different moleculéfudivities
has received a considerable attention in the fiélohysical chemistry, oceanography, geophysicsastiebphysics.
A broader range of dynamical behavior is observethé convective instabilities that may occur igravitational
field containing two components of different diffuies that effect the density; for example, temgtere and
solute. This phenomenon is known variously as tlatine convection, double-diffusive convectioor
thermosolutal convectiomhe presence of comparable magnitude of temperagd concentration gradients may
play a significant role in the onset of double wiifse convection. In a binary mixture of fluids different density
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buoyancy may be created either by heat or condenirgradient, both of which are transported adyety and
diffusively. The flux of mass caused by tempematgradient and the flux of heat caused by conceotrgradient
are respectively known as Soret and Dufour effeet Groot and Mazur [6] and Hurle & Jakeman [10]rtRer, the
Soret effect introduces a coupling between conaéatr transport and the local temperature gradretite mixture,
and this causes a concentration gradient to dewelogn a temperature gradient is imposed on the flayer.
Therefore one cannot ignore the role of Soret effbiefly in liquids.

Linear stability and weak nonlinear theories wesedito investigate analytically the Coriolis Effemt three-
dimensional gravity-driven convection in a layetatong fluid with cross diffusion. A layer of sudhiid heated
from below under the action of magnetic field aatmn or both may find applications in geophysiogerior of the
Earth, Oceanography, and the atmospheric phy$icean a geophysics point of view the effect of rotatacting on
the convective present problem is of practical rege Double diffusive convection is of importaricevarious
fields; such as high quality crystal productioneacography, production of pure medication, sobidiiion of
molten alloys, limnology and engineering. In viefttteese important applications in various fieldg problem has
been examined by many researchers both theorgtaatl experimentally. Tewfik et al[19] were thesfito study
Soret-Dufour driven thermosolutal convection, faled by Sparrow et al[16]. Hurle and Jakeman [1@cdlss
Soret-driven thermosolutal convection and concluttied magnitude & sign of the Soret coefficient egehanged
by varying the composition of the mixture. McDouff#] observed that the spatiotemporal propertiés o
convection in binary mixture show quite differergrids from those of the double-diffusive systemtheuit these
cross diffusions. Schechter et al[14] reported timathe study of two component thermosolutal probléhe

influence of Dufour effect is negligiblélO'30 C) in liquid mixtures and hence generally neglec@timan and

Goyal [8] recently studied the stability of Soretvén double-diffusive convection problem for thase of rigid,
impervious and thermally perfectly conducting boanyd conditions using Variational principle. Stomneaid

Fedorov [17] have observed that the length scdlesacteristic of double diffusing convecting layarshe ocean
may be sufficiently large and hence the Earth imtamight be important in their formation. Verofisl,22,23]

studied the Bénard convection and the Bénard cdiovewith rotating fluid with large amplitude dishances.
Sengupta and Gupta [15] extended the analysis odnée on thermohaline convection by including tlikea of

uniform rotation and found that for infinitesimaktlirbances in the form of rolls, the marginal estist oscillatory
and rotation parameter tends to stabilize the aodbfusive convection. They also studied thermirteatonvection
in a rotating fluid using finite amplitude disturiz@es. Antorang and Velarde [1] have analyzed thetSiriven
convective instability with rotation. Further, tlgeneral theorems of Helmholtz and Kelvin relatiogvorticity

clearly established that a rotation introducesmalmer of new elements into hydrodynamical problem.

There are only few studies available on the eftéatross diffusion on double diffusion convectioithmotation or

magnetic fields because of the complexity in deteimy these coefficientsand the problem under itigadon has
not given much attention. Motivated by the abovecdssions and keeping in mind the importance of3beet

effect and Coroilis force (which arises due to tiotg in convective instability, we in the presqaper have
studied the problem of Soret driven double-diffasamnvection in a horizontal layerof a fluid in theesence of a
uniform rotation subjected to thermal and solutaldients with cross diffusion. The hydrodynamidabdity of the

configuration is investigated theoretically by meaf a linear stability analysis for the case ofawyically free

boundaries. The effects of, rotation, solute gmatli&oret parameter and that of Lewis number onotheet of

double diffusive convection are investigated bothlgtically and numerically.

1. Physical Configuration And Basic Equations

Consider an infinite horizontal layer of two compah viscous quasi-incompressible (Boussinesq) fhiitatically
confined between two horizontal boundaries= 0 and z =d which are respectively maintained at uniform
temperaturelpand T, (To> T,) and at uniform concentratiorg and C; (Co> C,) .This layer is acted upon by a
uniform vertical rotatiof (0, 0,Q) and gravity fieldg(0,0,-g). Both the boundaries are assumed to be dynamicall
free, pervious and perfectly heat conducting white adjoining medium is assumed to be electricaly-

conducting. The phenomenological equations reldfiregheat quxJQ and the solute fluxJ,to the thermal and
solute gradients present in binary fluid mixture given by(see for instance, De Groot and Mazwa§]

J =—K§—T— TCa—’u D'a—C @

Q X, ac  ox
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whereT is the temperatur€; is the concentrationg is the density K is the thermal conductivityD'(: SFK') is
the Dufour coefficient angi/ is the chemical potential of the solute, is the solutal diffusivitySr is the Soret

coefficient. In the produdN (1— N) ; N and1-N are respectively the mass fractions of two comptme3ergeron
et al[2]discussed that in general the Soret efesmall and it is assumed that the prodN:(l— N) may be taken

as constant and equal to its initial vaN@(l— NO) in the second term of the thermal diffusion fluxemn by
equation [2]. La-Porta and Surko [11] found that $itrength of the Soret forcing in mixtures is pagterized by the

a

y:Sr No(l_ No)_
stability ratio @ (or Soret parameter) where and a' are respectively thermal and
concentration expansion coefficient, depending len mixture, the Soret coefficient can be positivenegative,
meaning thereby that solute can be driven towaechttter, or the colder region. Herj¢ean be taken positive or
negative. The use of the Boussinesq approximataanbeen made throughout, which states that thatiars of
density in the equations of motion can safely mmigd everywhere except in its association withetkternal force.
The approximation is well justified in the casarafompressible fluids.

Under these assumptions, the basic equationstkiee.equations of continuity, motion, heat conduttinass
diffusion and the equation of state) in the preseottuniform rotation under Boussinesq [4] appraadion that
govern the present physical configuration are give(cf. Chandrasekhar [5]);

o _

% ©
%+uj%:—i|:_p—1|ﬁxf|2i|+|:1+%+%i|xi +V|:|2Ui +2|:|ijk uij

ot 0X; x| p 2 Lo P 4)
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—+u —=k'0°C+S.N, (1- N, )« O°T 6
pzpo[l_a(T_To)"'a'(C_Co)] (M

In the above equatior®, = (0,0, Q) is the uniformangular velocityof fluid; Fis the position vector(] x isthe
permutation tensqrX; = (0,0, —g) is the external forceg is gravity; u; = (u,v,w) are the components of

velocity; p is the pressurey is the coefficient of viscosity anld = H is the coefficient of kinematic viscosity.

Po

2. Characteristic Value Problem
Following the usual steps of the linear stabilitybysis [1,7,10], we obtain the following systemnain-dimensional

linearized perturbation equations;
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(D2 —az)(D2 -a? __p) w= Ra’d - Ra’p+TD{ (8)
o
(D2 -a%-p)o=-w ©)
(Dz—az—ﬂj(p:—v—v—S(Dz—az)H (10)
T T
(Dz—az——ij:—Dw (11)
o

together with the following dynamically free, pesus and perfectly heat conducting boundary conitio
w=0=0=¢=D?w=D¢ atz=0, andz=1 (12)

In the above equation®, = d/dz representshe derivative with respect to the vertical co-omdez (0 < z < 1);
w, B and ¢ respectively denote the perturbed velocity, tempeeaand concentration and are complex valued

function ofz only, andR = %‘iﬁ is the thermal Rayleigh numbek; = %is the solutal Rayleigh number;
4Q°%d* _ - B :
T= >— Is the Taylor numbef is z-component of vorticity;S = E SrNO(l— NO)IS the Soret number
14

associated with Soret effect, whg#e= — S, N, (1- N,)

The above definitions yield that= —1 and }R: -R (Takashima Masaki[18]) The system of equationg(18)-
together with boundary conditions (12) constitidascharacteristic value problem forfor the prescribed values of

other parameters namelR, R,a*,0,7,S andT.

Remarks:
(i) A given state of the system is stable, neutnraunstable according ag; < 0,p, = 0or p, > 0.Further, if
P, = 0= p, = Ofor all wave numberaz(where P, sand p, are the real and imaginary parts of p) then we have

p = 0. This situation in hydrodynamic stability is terdnas the validity of principle of exchange of slities (PES),
otherwise we have over stability at least whenraipidity sets in as certain modes.

(i) The system of equations (8)-(11) together witle boundary conditions (12) wheh= 0 yields the non
dimensional linear perturbation equations governiegonis Type rotary thermohaline convection (Gugittal[9])

(iii) Further, whenS = —1 and }R: -R the system of equations (8)-(11) together with ibandary conditions
(12) yields the non-dimensional linearized perttidra equations governing rotatry double diffusiveneection
with Soret effect in terms of stability rao

3. Mathematical Analysis

a. An exact solution of the problem

We shall now obtain an exact solution of the charistic value problem described by equations @®)}-fogether
with the boundary conditions (12). We proceed #svis;

Upon utilizing boundary conditions (12) in equasd)-(11),we have
D?6=D*p=D*w=0 at z=0and z=1 (13)

Differentiating equation (11) once and (8)-(10)d&viwith respect te, we have
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D) =0=D°w=D"9=D* at z=0 and z=1 (14)

Proceeding likewise, it follows that
D*"w=0 (m=123-), at z=0 and z=1 (15)

Hence, the solution that satisfies conditions (5) be considered of the form;
w = Asinn7z (16)

where,A is constant.

Substituting this value of in equations (9) and (11), solving the resultirffedential equations analytically, we
obtain the following solutions

Asinnrz
= 17
7 n“r+a’+p an
and
_ nrAcosnrz
J=—rr=" (18)
n’r +a2+ P
g

Substituting the values of and & from solutions (16) and (17) in equation (10) aotling the resulting equation
for ¢, we get

-A

¢=
r(nznz +a’ +pj
T

__Sp
nr+a’+p

[—1+ S—- }sinniz. (19)

Now, to obtain the characteristic equation, opagatin equation (8) on both sides by an operator

(b?-a?- p)[r(D2 ~a?)- p] {Dz -a’ _Ep}’we have

(-t - lllo-a)- o~ - -2 w

:Raz(Dz_az_p)[r(Dz_az)_p][Dz_az_g}e

_Raz(Dz_az_p)[r(Dz_az)_p][Dz_az _5} o +TO[D? @~ ) [T(Dz_az)_p](az_az _gjg 20)
Equation (20) together vith equations (9)-(L1) dielafer a e simplification, the following sgtion

(0% —a - p)e(D* - a7)- p]{(Dz_az)(Dz_az_gleDz}w

(ng [Re#{r(0? - 2?)- p}- Ra?{(D? -~ a? - p)-15(0” ~a?Jjw=0

(21)
Substituting the value af from equation (16) in equation (21), we have
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g

(772 +a’+ p)[r(n2 + a2)+ p]l:(ﬂz +az)(n2 +a’ +£jz +Tn2:| -
(772 +a’ +§j [Ra%{r(ﬂ2 +a2)+ p}— Raz{(nz +a’ + p)—zs(zf +a2)}] =0 (22)

Equation (22) is required characteristic equatieloiging to the lowest modgn =1) studying the effect of Soret,
rotation and other parameters on the system.

In view of Remarks (ii) and (iii) above, substigb = 0 in equation (22), we obtain the characteristicatign for

Veronis Type rotatry thermohaline convectiamd forS = —1, }R:—R' .equation (22) yields the characteristic
equation for rotatry double diffusive convectiortiwBoret effect in terms of stability ragio

b.Mode of I nstability
The system of equations (8)-(12) upon using thegliriransformations

W=w
=6
c=@A-7)p+16
¢=q
and dropping the caps for convenience in writirgtasinsformed into equations
(Dz—az)(Dz—az ——pjw: Ra%0 - Ra’p+TD{ (23)
g
(D2-a%- plo=-w (24)
(DZ—aZ—qua:-ﬂ (25)
T T
(Dz—az—BJZ:—DW, (26)
g
together with the boundary conditions
w=0=D’w=8=¢=D{ at z=0andz=1 27)
R R

where R- = R+——andR, =——

R 1-71 R 1-71
To examine the existence of oscillatory or nond&atary, multiplying equation (23) byw* and integrating the
resulting equation over the vertical range of z,gset

. P _ o . :
J-W(DZ az)(D2 a’ Jjwdz RTazjwédz &azjwquz+TIWDZdz (28)

Using equations (24), (25) in equation (28), weehav
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_[W* (D2 - a2)2 Wdz——p.jw* (D2 - az)wdz: —Rraz.[e(D2 -a’- p*)é?*dz
+Ra TI{DZ ]qo dZ+TIW D¢ dz. (29)

Integrating the last term on the right hand sideaiation (29) by parts once over the vertical eaofgz and using
boundary conditions (27), we have

[w (D2 —az)zwdz——p.jw* (D? - a*)wdz= —Rraz.[é?(D2 —a’-p')gdz

+Ra TI{DZ Jq) dz+TJZ(D2 %*]Z*dz. (30)

Integrating by parts equation (30) for an apprdpriaumber of times by using the boundary conditi(#i®, we
have

J[Ioof sl + 2w+ 2 low + 2]
-Ra[[Dg +allg’ + plef iz
+Ra’7| @qu +alyf +p7l¢ﬂ +T] DDZZ [ralel + 2 IZ} =0, @

Putting p = ipi in equation (31) whergp, is real and then equating the imaginary parts, ete g

o[ 21l « &t oz rat [ aze ret - L ] -

(32)

Equation (32) clearly implies that for given positivalues of R Ry, g and T, we have eithep, =0 or p, # 0
.These situations in the terms of hydrodynamic iktabmeans that either the instability occurs dhgh non
oscillatory modes or through oscillations. In edquat(32), the bracket is positive definite Rg =0 and T= 0,

which implies that rotation and solutal gradientaduce oscillatory modes in the system which were-existent
in their absence.

c. Stationary Convection
For the case of stationary convection, putging= 0 in the characteristic equation (22) we get

R= (7 +a%° T, R(1-1S)

2

a’ a r
or equivalently fols = —1, we have
3
(772 + az) T R(1+7)
R = 2 + 2 +
a a 4

And in terms of stability ratio it can be writtes a
3

(772 + az) +Tir r
2 T+ y(1+7)

a

R= (33)
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a’ R T R
Let, X=—, =—, T =—, =

P R e R
Equation (33) can be written as

_(xP+T,  R@+T)
=" T

(34)
Further, equation (34) in terms of stability ratéoluces to

[+ x)p+T, 7
R= X r+y(1+7) (35)

5. Numerical Results and Discussion
We shall now investigate analytically the effecfsratation, stability ratio and solute gradient tre onset of
stationary convection. From equation (34), we caveh

oR _ 1+7
oR T

which is positive for wave numben(X¢ 0) and given positive value df (the Lewis number). This implies that
the solute gradient has stabilizing effect on theed of stationary convection in the system.

Further the equation (34) yields that
a_Rl = 1 , (36)
oT, X

which is positive for all wave numbexr(X?fO). This yields that the value of the Rayleigh numinereases for
increasing values of Taylor number which impliestttihe rotation has stabilizing effect on the syste

Also, from equation (35), we have
R, _ [+ xP+T | r@+7)
(r+AL+7)f

oy X
which is negative for wave numb)e(X;'f 0). and given positive values of, T1 This yields that the value of the
Rayleigh number decreases for increasing valuep @fhich implies that the stability ratio (the Sopatrameter)
has destabilizing effect on the onset of statioramnwection.

37)

Further, we can have from equation (34) that
R__R
or 1’

which yields that for all wave numbm(X?f 0) and given positive values oF{. This means that the value of the

Rayleigh number decreases for increasingvhich implies thathe Lewis numbehas destabilizing effect on the
onset of stationary convection in the systéns found that the stationary convection in deutliffusive convection
with a rotating fluid depends on the Soret parametethe absence of Soret effect, the results thiained for
stationary convection are in good agreement wighrésults which were obtained by Sengupta and Gigjta

(38)
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To have a better insight of the physical problera, have presented the variations of Rayleigh numiiter wave

numbers >(X * 0) ; representing the effects of solute gradient, daglmber (rotation), Soret parameter and that of

Lewis number on the stationary convection in thehde diffusive system. The values of Rayleigh numée

calculated numerically from the expression (34)fixed values of the governing parameters excepotie varying
parameter. These numerical values are shown gi@phio assess the effect of each varying paranotéhe onset
of convection in double diffusive system. The catian curves (stability curves) for these paranmseiar(R1-x)

plane for different values of one of the paramatershown in the following figures (1)-(4).

EDD ?, ' ' v i f i ' v ' i ' ' ' ' i . i f ' |__

000 :

0 5 10 15 20

Figure 1. Variation of Rayleigh number leith wave number xfor fixed valuesof 7 =0.01, T=10and for different values of Solutal

Number F{

000 :
950 :
900 -
850 :
800 :
750 ©

0 2 4 o 8 10 12 14

Figure 2. Variation of Rayleigh number leith wave number x for fixed valuesof 7 =0.01, R:SO and for different values of Taylor
Number T
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Figure 3. Variation of Rayleigh number leith wave number x for fixed values of F{ =50, T=10and for different values of Stability
Ratio )/

5800 -

5700 -

2 & E a o iz

Figure 4. Variation of Rayleigh number leith wave number x for fixed values of F{ =50, T=10 and for different valuesof Lewis
Number T

CONCLUSION

In the present paper, the effects of rotation dwednbass flux induced by temperature gradient (Seffett) on the
double diffusion convection in a horizontal laydrflu id subjected to thermal and solutal gradiewith cross
diffusions has been investigated analytically udingar stability analysis. The eigenvalue problentd the exact
solution are obtained for stability investigatiofifie expressions for stationary Rayleigh numbethitained as a
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function of the governing parameters, which chanamt the stability of the system. The effects afious physical
parameters on the onset of stationary convectiaiménsystem are studied both analytically and gcatily. Our
investigation leads to the following conclusions:

(1)From the analysis, we found that that solute gradi@d rotation has stabilizing effect on the omgeatationary
convection in the systerfrigures (1)-(2) support the analytical results bieglly.

(2)1tis found that e Soret parameter ancethewis numbeboth has destabilizing effect on the onset of cieaitiy
convection in the systerfiiigures (3)-(4) depict these effects graphically.

(3)1tis shown the onset of instability may eithertbeough non oscillatory or oscillatory modes depegdipon the
values of the parameters. From equation (32), ifoisnd that rotation and stable solutal gradiertonfuce
oscillatory modes in the systems which were nostert in their absence.
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