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ABSTRACT 
 
The effects of rotation and the mass flux induced by temperature gradient (Soret effect) on the double diffusion 
convection in a horizontal layer of fluid subjected to thermal and solutal gradients with cross diffusions are 
investigated analytically and shown graphically. Normal mode technique has been used for the linear stability 
analysis of the problem. The eigen value problem and the exact solution are obtained for stability investigations. 
The expression for stationary Rayleigh number is obtained as a function of the governing parameters. The analysis 
reveals that the Soret parameter and the Lewis number both have the destabilizing effect on the onset of stationary 
convection in the system while the stable solute gradient and rotation have stabilizing effect on the onset of 
stationary convection and introduces oscillatory modes in the system, which were non-existent in their absence. In 
the limiting cases some previous published results have been recovered. 
 
Keywords: Rayleigh number, Double diffusive convection, Soret effect, Stationary convection, Cross diffusion, 
Rotation. 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Convection occurs in nature on a large scale in atmospheres, oceans, planetary mantles, and it provides the 
mechanism of heat transfer for a large numbers of processes. The earliest experiments to demonstrate the onset of 
thermal convection in the fluid are attributed to Bénard [3]. Inspired by the experimental works of Bénard, Lord 
Rayleigh [13] showed mathematically that if a quiescent fluid layer is heated uniformly from below, the adverse 
density gradient becomes unstable and the fluid motion ensues when a critical heating rate, measured in terms of 
Rayleigh number is exceeded. As a consequence of the works of Bénard and Rayleigh, the thermal instability or 
thermal convection problem is commonly known as Rayleigh-Bénard convection. Chanderasekhar [5] presented a 
comprehensive view of thermal convection problems under the varying assumptions of hydrodynamics and 
hydromagnetics in a treatise, Hydrodynamic and Hydromagnetic Stability. 
 
Recently, the convection in two component systems (heat and mass diffusion) with different molecular diffusivities 
has received a considerable attention in the field of physical chemistry, oceanography, geophysics and astrophysics. 
A broader range of dynamical behavior is observed in the convective instabilities that may occur in a gravitational 
field containing two components of different diffusivities that effect the density; for example, temperature and 
solute. This phenomenon is known variously as thermohaline convection, double-diffusive convection, or 
thermosolutal convection. The presence of comparable magnitude of temperature and concentration gradients may 
play a significant role in the onset of double diffusive convection. In a binary mixture of fluids of different density 



Joginder Singh Dhiman and Megh Raj Goyal                                Adv. Appl. Sci. Res., 2015, 6(9):27-37        
 _____________________________________________________________________________ 

28 
Pelagia Research Library 

buoyancy may be created either by heat or concentration gradient, both of which are transported adjectively and 
diffusively.  The flux of mass caused by temperature gradient and the flux of heat caused by concentration gradient 
are respectively known as Soret and Dufour effect (De Groot and Mazur [6] and Hurle & Jakeman [10]). Further, the 
Soret effect introduces a coupling between concentration transport and the local temperature gradient in the mixture, 
and this causes a concentration gradient to develop when a temperature gradient is imposed on the fluid layer. 
Therefore one cannot ignore the role of Soret effect chiefly in liquids. 
 
Linear stability and weak nonlinear theories were used to investigate analytically the Coriolis Effect on three-
dimensional gravity-driven convection in a layer rotating fluid with cross diffusion. A layer of such fluid heated 
from below under the action of magnetic field or rotation or both may find applications in geophysics, interior of the 
Earth, Oceanography, and the atmospheric physics.  From a geophysics point of view the effect of rotation acting on 
the convective present problem is of practical interest. Double diffusive convection is of importance in various 
fields; such as high quality crystal production, oceanography, production of pure medication, solidification of 
molten alloys, limnology and engineering. In view of these important applications in various fields, the problem has 
been examined by many researchers both theoretically and experimentally. Tewfik et al[19] were the first to study 
Soret-Dufour driven thermosolutal convection, followed by Sparrow et al[16]. Hurle and Jakeman [10] discuss 
Soret-driven thermosolutal convection and concluded that magnitude & sign of the Soret coefficient were changed 
by varying the composition of the mixture. McDougall[12] observed that the spatiotemporal properties of 
convection in binary mixture show quite different trends from those of the double-diffusive systems without these 
cross diffusions. Schechter et al[14] reported that in the study of two component thermosolutal problem the 

influence of Dufour effect is negligible C)(10
o-3  in liquid mixtures and hence generally neglected. Dhiman and 

Goyal [8] recently studied the stability of Soret driven double-diffusive convection problem for the case of rigid, 
impervious and thermally perfectly conducting boundary conditions using Variational principle. Stommel and 
Fedorov [17] have observed that the length scales characteristic of double diffusing convecting layers in the ocean 
may be sufficiently large and hence the Earth rotation might be important in their formation. Veronis [21,22,23] 
studied the Bénard convection and the Bénard convection with rotating fluid with large amplitude disturbances. 
Sengupta and Gupta [15] extended the analysis of Veronis on thermohaline convection by including the effect of 
uniform rotation and found that for infinitesimal disturbances in the form of rolls, the marginal state is oscillatory 
and rotation parameter tends to stabilize the double-diffusive convection. They also studied thermohaline convection 
in a rotating fluid using finite amplitude disturbances. Antorang and Velarde [1] have analyzed the Soret driven 
convective instability with rotation. Further, the general theorems of Helmholtz and Kelvin relating to vorticity 
clearly established that a rotation introduces a number of new elements into hydrodynamical problem. 
 
There are only few studies available on the effect of cross diffusion on double diffusion convection with rotation or 
magnetic fields because of the complexity in determining these coefficientsand the problem under investigation has 
not given much attention. Motivated by the above discussions and keeping in mind the importance of the Soret 
effect and Coroilis force (which arises due to rotation) in convective instability, we in the present paper have  
studied the problem of Soret driven double-diffusion convection in a horizontal layerof a fluid in the presence of a 
uniform rotation subjected to thermal and solutal gradients with cross diffusion. The hydrodynamical stability of the 
configuration is investigated theoretically by means of a linear stability analysis for the case of dynamically free 
boundaries. The effects of, rotation, solute gradient, Soret parameter and that of Lewis number on the onset of 
double diffusive convection are investigated both analytically and numerically.  
 

1. Physical Configuration And Basic Equations 
Consider an infinite horizontal layer of two component viscous quasi-incompressible (Boussinesq) fluid is statically 
confined between two horizontal boundaries z = 0 and z =d which are respectively maintained at uniform 
temperature T0and T1 (T0> T1) and at uniform concentrations C0 and C1 (C0> C1) .This layer is acted upon by a 
uniform vertical rotationΩ (0, 0, Ω) and gravity field g(0,0,−g). Both the boundaries are assumed to be dynamically 
free, pervious and perfectly heat conducting while the adjoining medium is assumed to be electrically non-

conducting. The phenomenological equations relating the heat flux QJ  and the solute flux cJ to the thermal and 

solute gradients present in binary fluid mixture are given by(see for instance, De Groot and Mazur[6] as; 

jj
Q x
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∂−= µρκ  (1) 
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where,T is the temperature, C is the concentration, ρ  is the density, κ  is the thermal conductivity, ( )κ′=′ TSD  is 

the Dufour coefficient and µ  is the chemical potential of the solute, κ ′  is the solutal diffusivity, ST is  the  Soret  

coefficient.  In the product )1( NN − ; N and 1-N are respectively the mass fractions of two components. Bergeron 

et al[2]discussed that in general the Soret effect is small and it is assumed that the product )1( NN − may be taken 

as constant and equal to its initial value )1( 00 NN −  in the second term of the thermal diffusion flux given by 

equation [2]. La-Porta and Surko [11] found that the strength of the Soret forcing in mixtures is parameterized by the 

stability ratio α
αγ

′
−= )1( 00 NNST

,(or Soret parameter) where α  and  α′  are respectively thermal and 
concentration expansion coefficient, depending on the mixture, the Soret coefficient can be positive or negative, 
meaning thereby that solute can be driven toward the hotter, or the colder region. Henceγ can be taken positive or 

negative. The use of the Boussinesq approximation has been made throughout, which states that the variations of 
density in the equations of motion can safely be ignored everywhere except in its association with the external force. 
The approximation is well justified in the case of incompressible fluids. 
 
Under these assumptions, the basic equations (i.e. the equations of continuity, motion, heat conduction, mass 
diffusion and the equation of state) in the presence of uniform rotation under Boussinesq [4] approximation that 
govern the present physical configuration are given by (cf. Chandrasekhar [5]); 
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( ) ( )[ ]000 1 CCTT −′+−−= ααρρ         (7) 

 

In the above equations, ( )Ω=Ω ,0,0k  is the uniform angular velocity of fluid; r
r

is the position vector, ijk∈  is the 

permutation tensor; 	�� = (0,0, −	) is the external force; 	 is gravity;      
� 	= 	 (
, �, �
 are the components of 

velocity; p is the pressure, µ  is the coefficient of viscosity and 
0ρ

µν =  is the coefficient of kinematic viscosity. 

 

2. Characteristic Value Problem 
Following the usual steps of the linear stability analysis [1,7,10], we obtain the following system of non-dimensional 
linearized perturbation equations; 
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together with the following dynamically free, pervious and perfectly heat conducting boundary conditions,  

1,00 2 ======= zandzatDwDw ζφθ  (12) 

 
In the above equations; � ≡ �/�� represents the derivative with respect to the vertical co-ordinate � (0 ≤ � ≤ 1); 

�, θ and φ respectively denote the perturbed velocity, temperature and concentration and are complex valued 

function of � only, and � =
�����

��
 is the thermal Rayleigh number; � =

��!�!��

��
is the solutal Rayleigh number;

2

424

ν
d

T
Ω=  is the Taylor number;ζ  is �-component of vorticity; ( )00 1 NNSS T −

′
=

β
β

is the Soret number 

associated with Soret effect, where ( )00 1 NNST −−=′ ββ
 

 

The above definitions yield that " = 	−1 and RR ′−=γ (Takashima Masaki[18]) The system of equations (8)-(11) 

together with boundary conditions (12) constitutes an characteristic value problem for  p for the prescribed values of 

other parameters namely; SaRR ,,,,, 2 τσ′  and T. 

 
Remarks:   
(i) A given state of the system is stable, neutral or unstable according as; #$ < 	0,#$ = 	0	or #$ > 	0.Further, if 

00 =⇒= ir pp for all wave numbers
2a (where rp sand ip are the real and imaginary parts of p) then we have 

# = 0. This situation in hydrodynamic stability is termed as the validity of principle of exchange of stabilities (PES), 
otherwise we have over stability at least when instability sets in as certain modes. 
 
(ii) The system of equations (8)-(11) together with the boundary conditions (12) when " = 0 yields the non 
dimensional linear perturbation equations governing Veronis Type rotary thermohaline convection (Gupta et al[9]) 

(iii) Further, when " = −1 and RR ′−=γ the system of equations (8)-(11) together with the boundary conditions 

(12) yields the non-dimensional linearized perturbation equations governing rotatry double diffusive convection 
with Soret effect in terms of stability ratioγ . 

3. Mathematical Analysis 
a.  An exact solution of the problem 
We shall now obtain an exact solution of the characteristic value problem described by equations (8)–(11) together 
with the boundary conditions (12). We proceed as follows; 
 
Upon utilizing boundary conditions (12) in equations (8)-(11),we have 

100422 ===== zandzatwDDD φθ  (13) 
 
Differentiating equation (11) once and (8)-(10) twice with respect to	z, we have 
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φθζ 4463 0 DDwDD ==== 10 == zandzat      (14) 

 
Proceeding likewise, it follows that 

),3,2,1(02
L== mwD m , 10 == zandzat      (15) 

 
Hence, the solution that satisfies conditions (15) can be considered of the form; 

znAw πsin=            (16) 
 
where,A is constant. 
 
Substituting this value of � in equations (9) and (11), solving the resulting differential equations analytically, we 
obtain the following solutions 

pan

znA

++
=

222

sin

π
πθ           (17) 

 
and 

σ
π

ππζ
p

an

znAn

++
=

222

cos
 (18) 

 
Substituting the values of � and θ  from solutions (16) and (17) in equation (10) and solving the resulting equation 

forφ , we get 
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Now, to obtain the characteristic equation, operating on equation (8) on both sides by an operator 
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Equation (20) together with equations (9)-(11) yields, after a little simplification, the following equation 
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Substituting the value of w from equation (16) in equation (21), we have 



Joginder Singh Dhiman and Megh Raj Goyal                                Adv. Appl. Sci. Res., 2015, 6(9):27-37        
 _____________________________________________________________________________ 

32 
Pelagia Research Library 

( ) ( )[ ] ( ) −











+







 +++++++ 2
2

22222222 π
σ

πππτπ T
p

aapapa

( ){ } ( ) ( ){ }[ ] 02222222222 =+−++′−++






 ++ aSpaaRpaRa
p

a πτππτ
σ

π
   

 (22) 

 

Equation (22) is required characteristic equation belonging to the lowest mode )1( =n  studying the effect of Soret, 

rotation and other parameters on the system. 
 
In view of Remarks (ii) and (iii) above, substituting" = 0 in equation (22), we obtain the characteristic equation for 

Veronis Type rotatry thermohaline convection, and for	" = −1, RR ′−=γ .equation (22) yields the characteristic 

equation for rotatry double diffusive convection with Soret effect in terms of stability ratioγ . 

 
b. Mode of Instability 
The system of equations (8)-(12) upon using the linear transformations  
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and dropping the caps for convenience in writing are transformed into equations 
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together with the boundary conditions  

ζφθ DwDw ===== 20  at  z = 0 and z=1                                                                 (27) 
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To examine the existence of oscillatory or non-oscillatory, multiplying equation (23) by w* and integrating the 
resulting equation over the vertical range of z, we get 
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Using equations (24), (25) in equation (28), we have 
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Integrating the last term on the right hand side of equation (29) by parts once over the vertical range of z and using 
boundary conditions (27), we have 
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Integrating by parts equation (30) for an appropriate number of times by using the boundary conditions (27), we 
have 
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Putting iipp =  in equation (31) where ip is real and then equating the imaginary parts, we get 
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Equation (32) clearly implies that for given positive values of Rs, RT, σ and T, we have either 0=ip  or 0≠ip
.These situations in the terms of hydrodynamic stability means that either the instability occurs  through non 

oscillatory modes or through oscillations. In equation (32), the bracket is positive definite if 0=SR  and T= 0, 

which implies that rotation and solutal gradient introduce oscillatory modes in the system which were non-existent 
in their absence. 
 
c. Stationary Convection 
For the case of stationary convection, putting #	 = 	0 in the characteristic equation (22) we get 
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And in terms of stability ratio it can be written as 
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( )
τ

τ )1(1 11
3

1

+′
+++= R

x

Tx
R  

       (34) 
Further, equation (34) in terms of stability ratio reduces to 
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5.  Numerical Results and Discussion 
We shall now investigate analytically the effects of rotation, stability ratio and solute gradient on the onset of 
stationary convection. From equation (34), we can have 
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which is positive for wave number x )0( ≠x  and given positive value of τ (the Lewis number). This implies that 

the solute gradient has stabilizing effect on the onset of stationary convection in the system. 
 
Further the equation (34) yields that 

xT

R 1

1

1 =
∂
∂
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which is positive for all wave number x )0( ≠x . This yields that the value of the Rayleigh number increases for 

increasing values of Taylor number which implies that the rotation has stabilizing effect on the system. 
 
Also, from equation (35), we have 
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which is negative  for wave number x )0( ≠x . and given positive values of  ,τ 1T . This yields that the value of the 

Rayleigh number decreases for increasing values of γ  which implies that the stability ratio (the Soret parameter) 

has destabilizing effect on the onset of stationary convection. 
 
 Further, we can have from equation (34) that 

2
11

ττ
RR ′

−=
∂
∂

                                                                                                                              (38) 

which yields that for all wave number x )0( ≠x and given positive values of  1R′ . This means that the value of the 

Rayleigh number decreases for increasing τ  which implies that the Lewis number has destabilizing effect on the 
onset of stationary convection in the system. It is found that the stationary convection in double diffusive convection 
with a rotating fluid depends on the Soret parameter. In the absence of Soret effect, the results thus obtained for 
stationary convection are in good agreement with the results which were obtained by Sengupta and Gupta[18].  
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To have a better insight of the physical problem, we have presented the variations of Rayleigh number with wave 

numbers x )0( ≠x ; representing the effects of solute gradient, Taylor number (rotation), Soret parameter and that of 
Lewis number on the stationary convection in the double diffusive system. The values of Rayleigh number are 
calculated numerically from the expression (34) for fixed values of the governing parameters except the one varying 
parameter. These numerical values are shown graphically to assess the effect of each varying parameter on the onset 
of convection in double diffusive system. The convection curves (stability curves) for these parameters in (R1-x) 
plane for different values of one of the parameter are shown in the following figures (1)-(4). 
 

 
 

Figure 1. Variation of Rayleigh number 1R with wave numberxfor fixed values of τ =0.01, T=10and for different values of Solutal 

Number 1R′  

 

 

Figure 2. Variation of Rayleigh number 1R with wave number x for fixed values of τ =0.01, 1R′=50 and for different values of Taylor 

Number T 
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Figure 3. Variation of Rayleigh number 1R with wave number x for fixed values of 1R′=50, T=10and for different values of Stability 

Ratioγ  

 

 
 

Figure 4. Variation of Rayleigh number 1R with wave number x for fixed values of 1R′=50, T=10 and for different values of Lewis 

Number τ  

 
CONCLUSION 

 
In the present paper, the effects of rotation and the mass flux induced by temperature gradient (Soret effect) on the 
double diffusion convection in a horizontal layer of flu id subjected to thermal and solutal gradients with cross 
diffusions has been investigated analytically using linear stability analysis. The eigenvalue problem and the exact 
solution are obtained for stability investigations. The expressions  for stationary  Rayleigh number is obtained as a 
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function of the governing parameters, which characterize the stability of the system. The effects of various physical 
parameters on the onset of stationary convection in the system are studied both analytically and graphically. Our 
investigation leads to the following conclusions: 
 
(1) From the analysis, we found that that solute gradient and rotation has stabilizing effect on the onset of stationary 
convection in the system. Figures (1)-(2) support the analytical results graphically. 
(2) It is found that the Soret parameter and the Lewis number both has destabilizing effect on the onset of stationary 
convection in the system. Figures (3)-(4) depict these effects graphically. 
(3) It is shown the onset of instability may either be through non oscillatory or oscillatory modes depending upon the 
values of the parameters. From equation (32), it is found that rotation and stable solutal gradient introduce 
oscillatory modes in the systems which were non-existent in their absence. 
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