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ABSTRACT

Rough set theory was introduced by Pawlak [ 5] as a model to capture impreciseness in data and
since then it has been established to be a very efficient tool for this purpose. The definition of
basic rough sets depends upon a single equivalence relation defined on the universe or several
equivalence relations taken one each taken at a time. There have been several extensions of the
basic rough sets introduced since then in the literature. Rough set model based on tolerance
relation ([ 1]) one of several such extensions. In the view of granular computing, classical rough
set theory is researched by a single granulation. The basic rough set model has been extended to
rough set model based on multi-granulations (MGRS) in [ 10], where the set approximations are
defined by using multi-equivalences on the universe and their properties were investigated.
Topological properties of rough sets introduced by Pawlak in terms of their types was recently
studied by Tripathy and Mitra [15] to find the types of the union and intersection of such sets
and also complement of one such set. In this paper we extend these results to the multi
granulation context. The rough set model based on tolerance relations was also extended to the
multi granulation context in [10, 11, 12] by introducing incomplete rough set model based on
multi-granulations. Since the basic properties of both types of rough sets based on muilti
granulation are identical, our findings are also true for both complete and incomplete rough set
model s based upon multi granulation.

Keywords: Rough sets, equivalence relations, toleranceioait type of rough sets, multi
granular rough sets

INTRODUCTION

The observation that most of our traditional tdolsformal modeling, reasoning and computing
are crisp, deterministic and precise in charasténch restricts their applicability in real life
situations, led to the extension of the conceptridp sets so as to model imprecise data and
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enhance their modeling power. One such approachpture impreciseness is due to Pawlak [5,
6], who introduced the notion of Rough Sets, whe&chn excellent tool to capture impreciseness
in data. The basic assumption of rough set theorhat human knowledge about a universe
depends upon their capability to classify its otge€lassifications of a universe and equivalence
relations defined on it are known to be interchabie notions. So, for mathematical reasons
equivalence relations were considered by Pawlalefme rough sets. A rough set is represented
by a pair of crisp sets, called the lower approxiomacomprises of elements, which belong to it
definitely and upper approximation, which comprisé®lements, which are possibly in the set
with respect to the available information.

To improve the modeling capability of basic rougitssseveral extensions have been made in
different directions. One such extension is theghosets based upon tolerance relations instead
of equivalence relations. These rough sets are thoe called incomplete rough set models. In
the view of granular computing, classical roughtlebry is researched by a single granulation.
The basic rough set model has been extended td reetgmodel based on multi-granulations
(MGRS) in [10], where the set approximations aréngel by using multi-equivalences on the
universe. Using similar concepts, that is takingtiple tolerance relations instead of multiple
equivalence relations, incomplete rough set modséf on multi-granulations was introduced in
[11]. Several fundamental properties of these tygesugh sets have been studied [10, 11, 12].
Employing the notions of lower and upper approxiored of rough sets, an interesting
characterization of rough sets has been made byaRaw [6], where he introduced the types
(originally called kinds) of rough sets. There ame different ways of characterising rough sets;
the accuracy coefficient and the topological charégation introduced through the notion of
types. As mentioned by Pawlak himself [6],in pre&tiapplications of rough sets we combine
both types of information about the borderline oegithat is, of the accuracy of measure as well
as the information about the topological classiiara of the set under consideration. Keeping
this in mind, Tripathy and Mitra[15] have studida ttypes of rough sets by finding out the types
of union and intersection of rough sets of différgpes. In this paper, we extend these results to
the multi granular context, which remain the saorebbth the basic and incomplete cases.

Definitions and Notations

Let U be a universe of discourse aRdbe an equivalence relation ougr By U/R we denote the
family of all equivalence class dr, referred to as categories or conceptsRoand the
equivalence class of an elementU, is denoted by [)q . By a knowledge base, we understand
a relational systerk = (U, P), whereU is as above and B a family of equivalence relations
overU. For any subset Q#(@) 0P, the intersection of all equivalence relation®irs denoted
by IND(Q) and is called the indiscernibility relati over Q. Given any X U and RIIND (K),
we associate two subset®x = {yOu/R YO X andrx={YOU/R YNX z¢ , called the R-lower
and R-upper approximations of X respectively. ThbdRndary ofX is denoted byNg (X) and

is given by BN (X) =RX -RX. The elements ofR X are those elements of U, which can
certainly be classified as elements of X, and teeents ofR X are those elements of U, which
can possibly be classified as elements of X, eniptpiknowledge oR. We say that Xs rough

with respect to Rf and only if R Xz RX, equivalently BM (X) # ¢. X is said to be R-definable
if and only if RX=R X, or BNg (X) =¢ .
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In the view of granular computing (proposed by L.Zadeh), an equivalence relation on the
universe can be regarded as a granulation, andtiigraon the universe can be regarded as a
granulation space [2, 3]. For an incomplete infdramasystem, similarly, a tolerance relation on
the universe can be regard as a granulation, aodexr induced by the relation can be regarded
as a granulation space. Several measures in kngalbdse closely associated with granular
computing, such as knowledge granulation, graranathieasure, information entropy and rough
entropy, were discussed in [2-4]. On research ohoset method based on multi-granulations,
Y. H. Qian and J. Y. Liang brought forward a rowsgt model based on multi-granulations [10],
which is established by using multi equivalencatiehs. In [11] an extension of MGRS, rough
set model based on multi tolerance relations ionmalete information systems.

Definition 2.1: Let K= (U, R) be a knowledge bas®& be a family of equivalence relations,
X OU and P,@JR. We define the lower approximation and upper apjpnakon of X in U as

(2.1) P+QX =UX[A,0Xor %, 0¥
and
(2.2) P+QX = (P+Q(X))°

Property 2.1: Let K= (U, R) be a knowledge bas®& be a family of equivalence relations,
X OU and P,@1R. The following properties hold true.

(2.3) P+QXOXDOP+QX
(24) Prar=P+p=o
(2.5) P+rQu=P+QU=U
(2.6) P+Q(X)=(P+QX)°
(2.7) P+Qx=PXUQX
(2.8) P+QX=PXNQX

Property 2.2: Let K= (U, R) be a knowledge bas®& be a family of equivalence relations,
X,Y OU and P,@1R. The following properties hold true.

(2.9) P+Q(XNY)OP+Q(X)NP+Q(Y)
(2.10) P+Q(XUY)OP+Q(X)UP+Q(Y)
(2.11) P+Q(XNY)OP+Q(X)NP+Q(Y)
(2.12) P+Q(XUY)OP+Q(X)UP+Q(Y)
Next, we define MGRS in incomplete informationtgyss.

Definition 2.2: An information system is a pair S = (U, A), wherasth non-empty finite set of
objects, A is a non-empty finite set of attributéer everyoa, there is a mappingu - v,,

whereyv, is called the value set of a.

If v, contains a null value for at least one attrilaute, then S is called an incomplete
information system. Otherwise, it is complete.
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Definition 2.3: Let S = (U, A) be an incomplete information system| FA an attribute set. We
define a binary relation on U as follows

(2.23) SIM(P) ={(u,v)dU X U | OalO P, a(u) =a(v) or a(u) = *or a(v) = *}.

In fact, SIM(P) is a tolerance relation on U, tlemcept of a tolerance relation has a wide variety
of applications in classifications [2-4].

It can be shown that SIM(P) F)_, SIM({A}).

Let S, (u) denote the set {¥ U| (u,v) OSIM(P)}. S, (u) is the maximal set of objects which
are possibly indistinguishable by P with u.

Let U/SIM(P) denote the family sets {$u)| ulU}, the classification or the knowledge induced
by P. A member $(u) from U/SIM(P) will be called a tolerance classan information granule.

It should be noticed that the tolerance classdd/8IM(P) do not constitute a partition of U in
general. They constitute a cover of U, i.e, (&) # ¢ for every ull U, andUuEU S, (u)=U.

Definition 2.4: Let S = (U,A) be an incomplete information systemQ [ A two
attribute subsets, X1U, we define a lower approximation of x and a upggproximation of x
in U by the following

(2.14)mX: U{Xx|SIM ,(x) O Xor SIM,(x) O X
and -
(2.15)P+Q(X)=(P+Q (X*)°

Definition 2.5: A Multi-granulation Rough Set can be classifiedifdllowing four types
(216) IfP+Q(X) # ¢ and P+Q # [, then we say that X is roughly P+Q-definable.

2ANIfP+Q(X)=¢ andP+Q # L1, then we say that X is internally P+Q-undefinable.
(2.18). IfP+Q(X) # ¢ and P+Q =0, then we say that X is externally P+Q -undefinable
(2.19) IfP+Q (X) = ¢ and P+Q =0, then we say that X is totally P+Q —undefinable.

RESULT

In this section we shall find out the types of ngrtinular rough sets. There are four sets of
results accumulated in four tables. The first piesithe type of a P+Q rough set from the types
of its P and Q rough set types. The second taloeiges the types of the complement of a multi
granular rough set. In the third table we obtaie types for the union of two multi granular
rough sets of all possible types. Similarly we kksa the types of the intersection of two multi
granular rough sets of all possible types. Thesalte will be useful for further studies in
approximation of classifications and rule generatio
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3.1 Tablefor typeof X with respect to P+Q

Type of X with respect to Q
Type T-1| T-2 T-3 T-4
of X T-1 | T-1] T-1 T-1 T-1
With T-2 | T-1] T-2 T-1 T-2

Respect | T-3 | T-1| T-1 T-3 T-3
ToP T-4 | T-1| T-2 T-3 T-4

3.2 Tablefor typeof X© with respect to P+Q

X N
T-1 T-1
T-2 T-3
T-3 T-2
T-4 T-4

3.3 Tablefor typeof XUY with respect to P+Q

Typeof Y with respect to
P+Q
T-1 | T2 [T-3]| T-4
1| DTV ) 1
Type of X - -

with respect T-U
to T-2 T-1 | T-2 T3 T-3/
T-3 | T-3/ T-4

P+Q

T-4
T-3 T-3 T-3 | T-3| T-3
T-3/ T-3/
T4 | T3 | LT3 14

We shall provide an example to show that for twdtigwanular rough sets of type 1, the union
can be of type 1 or type 3. The other cases cansiiéed in a similar manner.

Example 3.3
LetU={e,,e,, e, €,,e,e,e,, e} We assume that

U'P ={e,e }{e,.e;e,.e.elieg}}
UQ={{e,e,}{ese,el{eqe; el

Suppose, X = {ge,.e;,e;tand Y ={e,,e, e, ,e}. Then X and Y are both of type 1 as
P+Q(X)={e,e,.6} Z¢, P+Q(YV)={e.} #¢, P+Q(X)={e,, &,, &, €, .6} #U and
P+Q(Y)={e,. e,, &, €,,6} #U. Nowwe haveP+Q(XUY) ={e,, e,, &, €, .8} # ¢
and P+Q(XUY) = {e,, e,, &, €,,e,} #U. So, XUY is of type 1.

Next, we take X = {g,e;} and Y = { e,,e,}. So, X and Y are both of Type 1 as
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P+Q(X)={eg} #¢, P+Q(Y)={e;} # ¢, P+Q(X) = {e..e;.e5.8,.85.85.8,,8} = U
and

PTQ(Y) = {e,.e,.6;,€,,65,65.6;,8} = U.

Now, P+Q(XUY)={e,} # ¢ and P+Q(XUY) = {e,.e,.6,.,,65.€5€;,8;} = U. S0
XUY is of type 3.

Hence both the cases in the table position (1relpassibilities.

Proof of entry (1, 3)
Let both X and Y be of Type 1 and Type 3. Then fitben properties of type 1 and type 3

P+Q(X) #¢, P+Q(Y) #¢,P+Q(X) ZUandP+Q(Y) = U. So, using (2.10) 1nd (2.12)
we get
P+Q(XUY) # ¢ and P +Q (XUY) = U. Hence XUY is of type 3 only.

3.4 Tablefor typeof XNY with respect to P+Q

Type of Y with respect to P+Q

T-1 T-2| T-3 T-4
T-U

T-1| T-UT-2 | T-2 T T-2

Typeof X | T-2 T-2 T-2| T-2 T-2
with T-U

respect to T-2/ | T-2/

P+Q T-3| T-UT-2 | T-2 T-3/ T4
T-4

T-2/ | T-2/

T-4 T-2 T-2 T-4 T-4

We shall provide an example to show that for twdtigmanular rough sets such that one is of
type 1 and the other one is of type 3.The inteisedan be of type 1 or type 2. The other cases
can be justified in a similar manner.

Example 3.4
Let U = {e,.e, .e;.e,.e,,6,€,,6}. Sothat U P ={{¢g, e }{e,.e;e,.e.el{e;}}and

U Q = { e.e,}{ ese,el{ eqe, &l Let us take X = {g,e,,6,,6} and Y =
{e,.e, e, ,e;}. Then

X and Y are of Type 3 and Type 1 respectively. Nowy Q(X) = {e,.e,.e;} # ¢ and
P+Q(Y)={eg} # ¢.Also, P+Q(X) = {e,, &,, &, &} ZUandP+Q(Y) ={e,, &,, &,
e,.6,} #U. So that we get P+Q(X NY) = {e,e,.6} #¢ and P+Q( X NY) =
{e, e, eq.e, e} ZU.

Hence xny is of type-1.

541
Pelagia Research Library



R. Raghavan et al Adv. Appl. ci. Res., 2011, 2 (3):536-543

Again taking X = { e,,e,} and Y = { e,,e.}, we find that X and Y are of Type 3 and Type 1
respectively asP+Q(X) =¢, P+Q(Y) = ¢, P+Q(X) = {e,.e,.6;} #U and P+Q(Y) =
{e,e,.e) ZU. Now, P+Q(X NY)=¢ andP+Q(X NY)= {e,.e,.e;} #U. So, xnvis

of type 2. Hence both the cases for intersectparation in position (3,1) can occur.

Proof of entry (2, 1)
Let X and Y be of Type 2 and Type 1 respectivelyei from the properties of type 2 and type 1

multi granular rough sets we get+Q (X) =¢, P+Q(Y) = ¢, P+Q(X) #U and P+Q(Y)
% U.

So using properties (2.9) and (2.11) we BetQ(X NY) =¢ andP+Q( X NY) #U. So,
XNy is of type 2. This completes the proof. The ottees can be established similarly.

CONCLUSION

In this paper we studied the topological propemiesiulti granular rough sets with respect to the
three set theoretic operations of union, intersecind complementation. The tables show that
there are multiple answers to some of the casékeaas the case of basic rough sets. Also, we
provided examples in some cases to illustrate #oe that the multiple answers can actually
occur. These results can be used in approximafictassifications and rule induction
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