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ABSTRACT 
 
In this article we survey some Polynomial-time Algorithms for Solving Linear Programming Problems namely: the 
ellipsoid method, Karmarkar’s algorithm and the affine scaling algorithm. Finally, we considered a test problem 
which we solved with the methods where applicable and conclusions drawn from the results so obtained. 
__________________________________________________________________________________________ 

 
INTRODUCTION 

 
An algorithm A  is said to be a polynomial-time algorithm for a problem ,P  if the number of steps (i. e., iterations) 

required to solve P  on applying A  is bounded by a polynomial function ( )LnmO ,,   of dimension and input 

length of the problem. 
 
The Ellipsoid method is a specific algorithm developed by soviet mathematicians: Shor [5], Yudin and Nemirovskii 
[7]. Khachian [4] adapted the ellipsoid method to derive the first polynomial-time algorithm for linear programming. 
Although the algorithm is theoretically better than the simplex algorithm, which has an exponential running time in 
the worst case, it is very slow practically and not competitive with the simplex method. Nevertheless, it is a very 
important theoretical tool for developing polynomial-time algorithms for a large class of convex optimization 
problems. 
 
Narendra K. Karmarkar is an Indian mathematician; renowned for developing the Karmarkar’s algorithm. He is 
listed as an ISI highly cited researcher. Karmarkar’s algorithm [3] solves linear programming problems in 
polynomial time. Karmarkar [9] used a potential function in his analyses. Affine scaling algorithm was proposed by 
many researchers independently (e. g. Barnes [1], Vanderbei, Meketon and Freedman [6 ]). Later it was discovered 
that the same primal affine scaling algorithm was proposed by Dikin [2] in the 1960s. 
 
This paper is structured as follows:- In Section 1, a brief introduction is given, Section 2 we discuss the ellipsoid 
method, in Section 3, we present Karmarkar’s algorithm, in Section 4, we present the affine scaling algorithm, in 
Section 5, a test problem was solved, while in Section 6, we present our concluding remarks.  
 
2. THE ELLIPSOID METHOD 
This section describes the ellipsoid method for determining the feasibility or otherwise of a system of linear 
inequalities; and outline arguments that establish that the method can be made polynomial. We present the 
interpretation by Gacs and Lovasz of the Khachian’s arguments. 
 
Suppose we wish to find xvectorn −   satisfying  

bxAT ≤                                                                                 ... (2.1) 
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where TA is an nxm  matrix and b is an m – vector. The columns of A corresponding to the outward normals to 

the constraints, are denoted by naaa ...,, 21  and the components of b are denoted by ....,, 21 mβββ  Thus (2.1) 

can be restated as  

mixa i
T

i ...,2,1, =≤ β  

we assume throughout that n is greater than one. 
 

The ellipsoid method constructs a sequence of ellipsoids ...,,...,, 10 kEEE each of which contains a point 

satisfying (2.1); if one exists. On the ( )stk 1+  iteration, the method checks whether the centre kx of the current 

ellipsoid kE satisfies the constraints (2.1). If so, the method stops. If not, some constraints violated by ,kx  say 

ik
T

i xa β>  for some mii ≤≤= 1                                                                              ... (2.2) 

are chosen and the ellipsoid of minimum volume that contains the half-ellipsoid 

{ }k
TT

ik xaxaEx ≤∈                                                                                ... (2.3) 

is constructed. The new ellipsoid and its centre are denoted by 11 ++ kk xandE  respectively, and the above iterative 

step is repeated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Except for initialization, this gives a (possibly infinite) iterative algorithm for determining the feasibility of (2.1). 
Khachian [4] showed that one can determine whether (2.1) is feasible or not within a prespecified number of 

β=xaT  

k
TT xaxa =  

1. +kx  

kx.  

1+kE  

Fig 1(b). The ellipsoid method with deep cuts 

 

Fig 1(a). The ellipsoid method without deep cuts 

 

β=xaT  1+Kx  

1+kE  

kx.  

kE  

kE  
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iterations by: (i) modifying this algorithm to account for finite precision arithmetic (ii) applying it to a suitable 

perturbation of the system (2.1), and (iii) choosing 0E  appropriately. System (2.1) is feasible if and only if 

termination occurs with a feasible solution of the perturbed system within a prescribed number of iterations (i.e 

Ln26   iterations). Algebraically, we can represent the ellipsoid kE as 

   

( ) ( ){ }11 ≤−−∈= −
kk

T
k

n
k xxBxxRxE                                                                             ... (2.4) 

where kx  is its centre and kB  is a positive definite symmetric matrix. In terms of this representation the( )stk 1+  

iterative step of the ellipsoid method is simply given by the formulae 
 














−=+

aBa

aB
xx

k
T

k
kk τ1                                                                                ...(2.5) 

and  

( )( )











−=+

aBa

aBaB
BB

k
T

T
kk

kk

σδ1                                                                              ... (2.6) 

where  

11

2
,

1

1
2

2

−
=

+
=

+
=

n

n
and

nn
δστ                                                                                            ... (2.7) 

1+kE  is determined by 11 ++ kk Bandx  as in (2.5) – (2.7), it is the ellipsoid of the minimum volume that contains 

the half-ellipsoid { }.k
TT

k xaxaEx ≤∈  

 
3 KARMARKAR’S ALGORITHM 
Karmarkar’s algorithm [ 9 ] considered a linear programming problem in canonical form as follows: 
 

0

1

min

≥
=

=

x

xe

bAxtosubject

xcimize

T

T

 

where ( )Tnxm eZA 1...,1,1,1, =∈                                                  … (3.1) 

 
The LP problem (3.1) above in canonical form can be obtained from a standard form LP problem: 
 

0

min

≥
=

x

bAxtoSubject

xcimize T

                                                                … (3.2) 

The algorithm starts on the canonical form (3.1) and from the centre of the simplex ( ) ,1
0 ena = generates a 

sequence of iterates ( ) ( ) ( ) ...,,...,, 10 xxxx  in the following steps:- 

 
In brief: 
Step 1: Initialization 

Set ( ) =0x  the centre of the simplex ( )ena 1
0 =  

 

Step 2: Compute the next point ( ) ( )( )kk xx Φ=+1  
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Step 3: Check for feasibility 
 
Step 4: Check for optimality  
 
GOTO Step 1 
 
In details: 

Step 1: The function ),(ab Φ=  where )1( += kxb  and )(kxa =  in step 2 above is defined by the following 

sequence of operations: 

(i) let )...,,,( 21 naaadiagD =   where ia  is the thi   entry, ni ...,2,1=  

(ii) let 









=

Te

AD
B  i.e augment the matrix AD with a row of all 1’s. This is to guarantee that 

{ }0,1ker ≥=∑=∑⊆ xxxB i  

(iii) Compute the orthogonal projection of DC into the null space of B: 

[ ]DCBBBBIC TT
p

1)( −−=  

(iv) Normalize :pC   

p

p

C

C
C =ˆ  

i.e, ,Ĉ  is the unit vector in the direction of pC  

 

(v) Let Crab ˆ
0 α−=′  

i.e, take a step of length rα  in the direction of Ĉ , where r  is the radius of the largest inscribed sphere. 

)1(

1

−
=

nn
r  

where );1,0(∈α settable 4
1=α  

(vi) Apply inverse projective transformation to b′  

i. e, 
bDe

bD
b

T ′
′

=  

Step 2: check for feasibility 

Karmarkar [3] defined the ‘potential function’ by ∑
=

=
n

i i

T

x

xc
xf

1

ln)(  

At each iteration, a certain improvement δ  in )(xf  is expected. The value of the expected improvement 

δ depends on the choice of parameter α  (e.g Karmarkar [9] choice of ,4
1=α  gave 8

1=δ ). If the expected 

improvement is not observed i. e, if ( ) ( ) ,)()1( δ−>+ kk xfxf  then we stop and conclude that the minimum value 

of the objective function must be strictly positive (as the canonical form of the problem is obtained by 
transformation on the standard LP problem), then the original problem does not have a finite optimal (i. e: it is either 
infeasible or unbounded). 
 
Step 3: Check for optimality: 
The check for optimality is carried out periodically. It involves going from the current point to an extreme point 
(without increasing the value of the objective function and then testing the extreme point for optimality. This is done 
if the time spent since the last check is greater than the time required for checking. 

The current iterate )(kx  will be the optimal solution if 
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q
T

kT

xc

xc −≤ 2
)0(

)(

 

where q  is an arbitrary positive integer. 

 
4. AFFINE SCALING ALGORITHM : 
The affine-scaling algorithm is a variant of Karmarkar’s projective interior point algorithm. It was first introduced 
by Dikin [2], and later rediscovered by Barnes [1], Vanderbei, Meketon and Freedman [6] after the publication of 
Karmarkar’s algorithm. 
 
The affine-scaling algorithm has the following advantages over the original Karmarkar’s algorithm. 

(i) It starts on the LP problem in standard form and assumes that a point 0x  is known such that 

.0, 00 ≥= xbAx  

(ii)  It generates a monotonic decreasing sequence of the objective function values and the minimum of the objective 
function need not to be known in advance 
 
Affine scaling is obtained by the direct application of the sleepest scaling descent (SSD) algorithm to the LP 
problem in standard form (3.2). It is very attractive due to its simplicity and its excellent performance in practice. Its 
performance is noted to be quiet sensitive to the starting points and like in any interior point algorithm, the 
computation work of the algorithm is concentrated on the projection operation needed in each of the iterations. Now, 
we let  

{ }0. ≥=∈= xbAxRxf n                                                                                            … (4.1) 

be the feasible region for the primal LP problem (3.2). Given a strictly interior point 0x  in .f  The affine scaling 

algorithm creates an ellipsoid with the centre at 0x  in f  and optimizes the objective function xcT  over it. If 

fx ∈0  is a strictly interior point, then, the Dikin ellipsoid 

( ) ( ){ }1, 0
1

00
1

0 ≤−−=∈= −− xxxxxbAxRxEx Tn  

where 







=−

nxxx
x

1
....,

1
,

1

21

1
0  and 2

0
−x  is the diagonal matrix whose entries are 22

1

1...,1
nxx

The 

ellipsoid 0Ex  is contained in .f  In the affine-scaling algorithm we obtain the affine-scaling direction at 0x  as the 

solution of the following direction finding problem: 

1

0

min

2
0

2 ≤
=

dxd

Adtosubject

dcimize T

                                                                                             ... (4.2) 

The problem (4.2) is a convex programming problem with one convex quadratic constraint and it is solved by 
obtaining the Karush-Kuhn-Tucker conditions and then solving the associated linear system of equations. Let *d  

be the solution to the direction-finding problem (4.2), then,  *,* dxx α+=  where α  is chosen so that the 

new iterate *x  remains inside the feasible region f  and ensures some improvement in the objective function 

.xcT  
 
The algorithm can be stated formally as follows: 

00 >xLet  that satisfies bAx =0 given: 

In general, if kx  is known, define 

( ).,...,, 21
k

n
kk

k xxxdiagD =  and compute 01 >+kX  by the formula 

( )
( )K

T
k

kkkk

ACD

ACRD
xx

λ
λ

−
−

−=+
2

1                                                                                … (4.3) 

where ( ) 122 −= T
kkk AADCADλ  



B. O. Adejo et al                                                Adv. Appl. Sci. Res., 2012, 3(5):3367-3373      
 _____________________________________________________________________________ 

3372 
Pelagia Research Library 

5. Numerical Example: 
We solve the following LP problem by both Karmarkar and Affine scaling methods: 

0,

77

42

min

21

21

21

21

≥
≥+
≥+
+=

xx

xx

xxtosubject

xxzimize

                                                     … (5.1) 

Applying surplus variables to the LP problem (5.1), the LP problem becomes 
  

0,,,

77

42

min

4321

421

321

21

≥
=−+

=−+
+=

xxxx

xxx

xxxtosubject

xxzimize

 

i.e 

≥









=






























−
−

+=

4321

4

3

2

21

,,,

7

4

1071

0112

min

1

xxxx

x

x

x

x

tosubject

xxzimize

                                                 … (5.2) 

where 








−
−

=
1071

0112
A  

 
6. Concluding Remarks 

Using the following starting point ( )9,2,2,20 =x  that satisfies the constraints bAx =0  for both the affine 

scaling and Karmarkar’s methods, for the affine scaling method, the objective function was obtained as follows: 
 

Iteration Values of the objective function 
1 3.7 
2 3.4 
3 3.3 
4 3.1 

 
but up to the 4th iteration, convergence was yet to be achieved. However, the values of the objective function kept 
decreasing (i.e improving). For the same problem, Karmarkar at two iterations gave the following values for the 
objective function 

Iteration Values of the objective function 
1 1.00 
2 0.45 

 
calculation of iterations in the above two methods were very tedious and cumbersome. However, the simplex 

method gave the most exact value of the objective function .38.2
13

32 ≈=z  

 
The above thus confirms the simplex method as the best solution method so far followed by the affine scaling 
method and the Karmarkar’s method in that order, for the calculation of LP problems of smaller sizes. 
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