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ABSTRACT

In this article we survey some Polynomial-time Ailfpms for Solving Linear Programming Problems naméhe
ellipsoid method, Karmarkar's algorithm and theiaéf scaling algorithm. Finally, we considered attpsoblem
which we solved with the methods where applicabte@nclusions drawn from the results so obtained.

INTRODUCTION

An algorithm A is said to be a polynomial-time algorithm for alpem P, if the number of steps (i. e., iterations)

required to solveP on applying A is bounded by a polynomial functio@(m,n, L) of dimension and input
length of the problem.

The Ellipsoid method is a specific algorithm deyeld by soviet mathematicians: Shor [5], Yudin arehiNovsKii
[7]. Khachian [4] adapted the ellipsoid method &vide the first polynomial-time algorithm for lineprogramming.
Although the algorithm is theoretically better ththe simplex algorithm, which has an exponentiahinog time in
the worst case, it is very slow practically and oompetitive with the simplex method. Neverthelésss a very
important theoretical tool for developing polynoivtine algorithms for a large class of convex ojtiation
problems.

Narendra K. Karmarkar is an Indian mathematiciamorvned for developing the Karmarkar’'s algorithne id
listed as an ISI highly cited researcher. Karmdskaigorithm [3] solves linear programming problerms
polynomial time. Karmarkar [9] used a potentialdtion in his analyses. Affine scaling algorithm wasposed by
many researchers independently (e. g. Barnes fdiderbei, Meketon and Freedman [6 ]). Later it diasovered
that the same primal affine scaling algorithm wasppsed by Dikin [2] in the 1960s.

This paper is structured as follows:- In Sectioratprief introduction is given, Section 2 we distise ellipsoid
method, in Section 3, we present Karmarkar’s afgorj in Section 4, we present the affine scalirgpathm, in
Section 5, a test problem was solved, while iniBad, we present our concluding remarks.

2. THE ELLIPSOID METHOD

This section describes the ellipsoid method foredeining the feasibility or otherwise of a systerlioear
inequalities; and outline arguments that estabtist the method can be made polynomial. We pretsnt
interpretation by Gacs and Lovasz of the Khachianggiments.

Suppose we wish to finth —vectol X satisfying
A'x<b .. (2.1)
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where AT is anm X N matrix and b is an m — vector. The columns of Aresponding to the outward normals to

the constraints, are denoted By, &, ,... &, and the components of b are denoted®y £, ,... B,,. Thus (2.1)
can be restated as

a'x<fB,i=12...m
we assume throughout that n is greater than one.

The ellipsoid method constructs a sequence ofsaliis EO, El, e e, Ek , - .. each of which contains a point
satisfying (2.1); if one exists. On tl'(da( +1)St iteration, the method checks whether the cexyef the current

ellipsoid E, satisfies the constraints (2.1). If so, the metstmgs. If not, some constraints violated Xy, say

a'x, > [ forsomei =1<i<m . (2.2)
are chosen and the ellipsoid of minimum volume dwaitains the half-ellipsoid
{xD Ek‘aisz aTxk} . (2.3)

is constructed. The new ellipsoid and its centeedemoted byE, ., and X, ,, respectively, and the above iterative
step is repeated.

Ek +1

Xk+l
a'x=a'x,

=

Fig 1(a). The ellipsoid method without deep cuts

B
m a'x= B

Fig 1(b). The ellipsoid method with deep cuts

Except for initialization, this gives a (possiblyfinite) iterative algorithm for determining theafgbility of (2.1).
Khachian [4] showed that one can determine whefBel) is feasible or not within a prespecified nemlof
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iterations by: (i) modifying this algorithm to aagut for finite precision arithmetic (i) applyind to a suitable
perturbation of the system (2.1), and (iii) chogsifr, appropriately. System (2.1) is feasible if andyoiil
termination occurs with a feasible solution of fherturbed system within a prescribed number ofiiens (i.e
6n°L iterations). Algebraically, we can representehipsoid E, as

E, ={XD R"((x-x,)" Bk‘l(x—xk)sl} . (2.4)

where X, is its centre andB, is a positive definite symmetric matrix. In terwisthis representation tr(k +l)St
iterative step of the ellipsoid method is simplyeag by the formulae

— Bka
Xeg =Xy —T| ——— ..(2.5)

Ja'B,a
and
.
B = JI:BK ‘M} .. (2.6)

a'B,a
where

2
T= L O = 2 and o = 2n
n+1 n+1 n“-1

E,., is determined byX,,, and B,,, as in (2.5) — (2.7), it is the ellipsoid of thenmum volume that contains

the half-elipsoid{x ] E, |a"x < a" X, |

. (27)

3 KARMARKAR'S ALGORITHM
Karmarkar’s algorithm [ 9 ] considered a lineargnamming problem in canonical form as follows:
minimizec’ x
subjectto Ax=Db
e'x=1
x=0
where ADZ™ " e=(1,11 ...1) (3.1)

The LP problem (3.1) above in canonical form camlb&ined from a standard form LP problem:

minimizec' x

Subjectto Ax=b ... (3.2
x>0

The algorithm starts on the canonical form (3.1 &om the centre of the simple&, = (%)e, generates a

sequence of iteratex(o),x(l) e ey X(X) ,- .. in the following steps:-

In brief:
Step 1: Initialization

set X% = the centre of the simpled, = (}{Je

Step 2: Compute the next poix{kﬂ) = CD(X(k))
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Step 3: Check for feasibility
Step 4: Check for optimality
GOTO Step 1

In details:

Step 1: The functiord = ®(a), where b =x%" and a=x"“ in step 2 above is defined by the following
sequence of operations:

() let D =diag(a,, a,,...,a,) wherea isthei™ entry,i =12, ..n
AD

(i) let B= T i.e augment the matrix AD with a row of all 1's.hi$ is to guarantee that
e

ker BO X ={XTx =1x>0}
(iii) Compute the orthogonal projection of DC iritee null space of B:
c, =[I -B"(BB")*B|DC

(iv) Normalize C ; :

(v) Letb' =a, - arC

i.e, take a step of lengt@r in the direction oié , wherer is the radius of the largest inscribed sphere.
1

Jn(n-1)

where a1 (0,2); settableq = %

r =

(vi) Apply inverse projective transformation o
Db’
e, b=——
e Db
Step 2: check for feasibility

n¢'x
Karmarkar [3] defined the ‘potential function’ b/ (X) = z In—
i=1 i

At each iteration, a certain improvemedt in f(X) is expected. The value of the expected improvement

O depends on the choice of parameter(e.g Karmarkar [9] choice off = %, gave O = }é ). If the expected

improvement is not observed i. e, ff(X(k+1) ) > f(X(k))— 0, then we stop and conclude that the minimum value

of the objective function must be strictly positifas the canonical form of the problem is obtaired
transformation on the standard LP problem), themnotfiginal problem does not have a finite optina¢(it is either
infeasible or unbounded).

Step 3: Check for optimality:

The check for optimality is carried out periodigallt involves going from the current point to axtreme point
(without increasing the value of the objective fime and then testing the extreme point for optitpal his is done
if the time spent since the last check is gredian the time required for checking.

The current iteratex™ will be the optimal solution if
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c'x®

where ( is an arbitrary positive integer.

<2

4. AFFINE SCALING ALGORITHM

The affine-scaling algorithm is a variant of Karikea's projective interior point algorithm. It wasst introduced
by Dikin [2], and later rediscovered by Barnes [\thnderbei, Meketon and Freedman [6] after the ipatibn of
Karmarkar’s algorithm.

The affine-scaling algorithm has the following adizges over the original Karmarkar's algorithm.
(i) It starts on the LP problem in standard form anduags that a pointXO is known such that
AX =b, x° > 0.

(i) It generates a monotonic decreasing sequence objbetive function values and the minimum of tihgeative
function need not to be known in advance

Affine scaling is obtained by the direct applicatiof the sleepest scaling descent (SSD) algorithntheé LP

problem in standard form (3.2). It is very attraetdue to its simplicity and its excellent perforroa in practice. Its
performance is noted to be quiet sensitive to tiagtisg points and like in any interior point algbhm, the

computation work of the algorithm is concentratedite projection operation needed in each of #mafions. Now,
we let

f ={xOR"|Ax=b. x>0} (4
be the feasible region for the primal LP problen2(3Given a strictly interior poini, in f. The affine scaling
algorithm creates an ellipsoid with the centreXgtin f and optimizes the objective functiodl X over it. If

%, U f is a strictly interior point, then, the Dikin gifoid

Ex;t ={XD R"(Ax=b, (x—x, )" x3*(x- xo)sl}
v 1 1 1 o . ) . .
where X, =| —,—,....— | and X,” is the diagonal matrix whose entries ar}/2 o }/2 The
Xl X2 Xn Xl Xn

ellipsoid EX, is contained inf. In the affine-scaling algorithm we obtain the aéfiscaling direction aK, as the
solution of the following direction finding problem

minimizec'd
subjecttoAd =0 .. (4.2)
d’x? d<1

The problem (4.2) is a convex programming probleith wne convex quadratic constraint and it is sty
obtaining the Karush-Kuhn-Tucker conditions andhtselving the associated linear system of equatibesd *
be the solution to the direction-finding problen2)then, X* = Xx+a d*, where @ is chosen so that the

new iterate X* remains inside the feasible regioh and ensures some improvement in the objectivetifumc
c'x.

The algorithm can be stated formally as follows:

Let X° >0 that satisfiesAx° = bgiven:

In general itX* is known, define

=diag (X1 , k Ve X, ) and computeX “** > 0 by the formula
2
X<t = yk RD (C AA, .. (4.3)
HDC AT ) \
me4=AQCQQAﬂ
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5. Numerical Example:
We solve the following LP problem by both Karmarkad Affine scaling methods:

minimize z=Xx, +X,
subjecto2x, +x, =4
X+ 717X, 27

X, X, 20
Applying surplus variables to the LP problem (5thg LP problem becomes

.. (5.1)

minimize z=x, +X,
subjecto2x, + X, =X, =4
X +IX, =X, =7
X1y X5, %5, X, 20
ie
minimize z=x, +X,
X,

, 21-1 0})x, 4
subjecto = (5.2)
17 0-1)x, 7

X4
Xy Xy, Xgy X4 2
21 -1 oj

where A=
(1 7 0-1

6. Concluding Remarks
Using the following starting poink® = ( 2,2, 2, 9) that satisfies the constraintdx’ = b for both the affine
scaling and Karmarkar’s methods, for the affindisganethod, the objective function was obtainedodisws:

Iteration | Values of the objective function

1 3.7
2 3.4
3 3.3
4 3.1

but up to the % iteration, convergence was yet to be achieved. @¥ew the values of the objective function kept
decreasing (i.e improving). For the same problemunkarkar at two iterations gave the following valder the

objective function
Iteration | Values of the objective function
1 1.00
2 0.45

calculationof iterations in the above two methods were vedidigs and cumbersome. However, the simplex
- 32
method gave the most exact value of the objectinetfon z = 1 = 238
The above thus confirms the simplex method as #w bolution method so far followed by the affiralig
method and the Karmarkar’s method in that ordertHe calculation of LP problems of smaller sizes.
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