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ABSTRACT

In this paper, we develop the length-biased fornthef weighted Weibull distribution (WWD)
named as length-biased weighted Weibull distribu(ioBWWD). Well known distributions are
generated by expanding suitable function of theapeaters. Shape of the distribution is studied
in detail. Various properties of length-biased W2 discussed. Newby’s method along with
method of moment has been used to estimate thenptees of the length-biased WWD. To
justify the use of LBWWD; LBWWD is fitted to 30smmmutive year’'s data from 19812010 of
June rainfall (in mm) of Tezpur, Assam, India.

Keywords: Length-biased, Weibull distribution, weighted Waildistribution, moments.

INTRODUCTION

The Weibull distribution is a member of the famity extreme value distributions. These
distributions are the limit distributions of the alfest or the greatest value, respectively, in a
sample with sample size— c. The Weibull distribution includes the exponentald the
Rayleigh distributions as special cases. The usthefdistribution in reliability and quality
control work was advocated by many authors follagaao [12], [13] and Berrettoni [1]. Malik
[18] and Franck [6] have assigned some simple physneanings and interpretations for the
Weibull distribution, thus providing natural apg@itons of this distribution in reliability
problems particularly dealing with wearing styl@shnsoret al, [11] has provided an excellent
review of applications on Weibull distribution. Thisefulness and applications of parametric
distributions including Weibull, Rayleigh are sdarvarious areas including reliability, renewal
theory, and branching processes which can be sepapers by several authors including Patil
and Rao [21], Gupta and Kirmani [10], Gupta and tikeg[9], Oluyede [20] and in references
therein.
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Distribution of the type f%(x) =% whereW = [w(x)f(x), with an arbitrary non-
negative functiorw(x) which may exceed unity was introduced by Rao.[H@ have given
practical examples whergx) = x or X* were appropriate. He called distributions with &esy
weight w(x) weighted distributions. First introdulcby Fisher [5] to model ascertainment bias,
weighted distributions were later formalized in mifying theory by Rao [24]. Weighted
distributions have numerous applications. Weighttistfibution concept of Patil, Rao and Zelen
[22] can be traced to the study of the effect ofthods of ascertainment estimation of
frequencies by Fisher [5]. Van Deusen [27] arrivatl size-biased distribution theory
independently and applied it to fitting distribut of diameter at breast height (DBH) data
arising from horizontal point sampling (HPS) (Gnaisaugh [8]) inventories. Subsequently,
Lappi and Bailey [16] used weighted distributioms analyse HPS diameter increment data.
Weighted distributions were used by Magnusseal, [17] to recover the distribution of canopy
heights from airborne laser scanner measurement®cology, Dennis and Patil [4] used
stochastic differential equations to arrive at aghked gamma distribution as the stationary
probability density function for a stochastic pagidn model with predation effects. In fisheries,
Taillie et al, [26] modeled populations of fish stocks usindghieed distributions.

When the probability of observing a positive-valuaddom variable is proportional to the value
of the variable the resultant is length-biasedrittistion. The length-biased form of the weighted
Weibull distribution is considered because therg tma situations when the lifetimes of a given
sample of objects is weighted Weibull but the otggnay not have the same chance of being
selected but each one is selected according tdeitgth or life length then the resulting
distribution is not weighted Weibull but length-b&al weighted Weibull. A table for some basic
distributions and their length-biased forms is giv®y Patil and Rao [21] such as Lognormal,
Gamma, Pareto, Beta distribution. Khatree [15] @né=d a useful result by giving a relationship
between the original random varial{eand its length-biased versidhwhenX is either Inverse
Gaussian or Gamma distribution. Detsal, [2] developed the length biased distribution (LBD) of
weighted Inverse Gaussian distribution (WIGD). @ad Roy [3]developed the length-biased form
of the Weighted Generalized Rayleigh distributictdGRD) known as length-biased Weighted
Generalized Rayleigh distribution.

MATERIALSAND METHODS

30 consecutive years data from 1984010 of June rainfall (in mm) of Tezpur, Assam,i#is
considered for the study. The data has been cetletbm Regional Meteoroligical Centre,
LGBI Airport, Guwabhati [7].

Rao [24] introduced the concept of a weighted itlistion, let x be a nonnegative random
variable (rv) with probability density function ({d(x). Let the weight function be w(x) which
is a non-negative function. Then the weighted dgrisnction f(x) is obtained as

w(x)f (x)
=~ . <. < 1
fx) = wof (1)
assuming thak (X) = f_ozo w(x)f(x) < oo i.e the first moment of w(x) exists.
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By taking weight as w(x) = x we obtain length-bidskstribution.

Derivation of length-Biased weighted Welbull distribution
The probability density function of the Weibull dom variable X is then

f(x):%(x;{oJ ) ex[{_(xzfoj :l X>&,c>0a>0

The two-parameter Weibull pdf is obtained by setfn= 0 and is given by

fx) = %(g)c_l exp [— (g)c] ,x>0c>0a>0 (2)
Let
° w(x) = xP (3)

Substituting equation (2) and (3) in (1) we get

Cc

") = g T

X c
xC+Cﬁ_1exp [— (E) ],x > O,C > 0;“ > O,ﬁ >0 (4)

The density function in (4) is known as weightedib\# distribution (WWD)

Again substituting w(x) = x in (1) and using thendity function of (4) we obtain the density
function of the length-biased weighted Weibull disition (LBWWD) of the form

k(x) = ——————x*Fexp [— G)C] ,x>0,c>0,a>0,8>0 (5)

aC+Cﬁ+1F(/§+%+1)

The cumulative distribution function (cdf) of (5 defined as

r(rert @)
F(ﬁ+%+1)

wherey(a,x) = P(a, x)['(a) = fowe‘tta‘ldt, is the incomplete gamma function.

K(x) =

Some particular cases of LBWWD:
1. Puttingg = —~, c=canda = a in (5), we get Weibull distribution
2.

k(x) = %(g)c_l exp [— (g)c] ,x>0c>0a>0

3. By substitutingp = —% ,c=canda =ain (5), we get weighted Weibull distribution
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c+cf—-1

C X
KO = Emr T @

X c
exp [_(E) ],x >0,c>0a>0>0
4. Incasec=2,4=0,a = Va and multiplying a constakt= 2 in (5) reduces to
5.

3
5 2
k(x) :%xz exp[—;?],x>0,c>0,a>0

this density function is known in the statisticslgoysics literatures as “Maxwell-  Boltzmann
density function.”

6. Substitutingc=1,a=1ands =/ -2 in (5), we obtain the density function of the Gam
distribution
7.
k(x) = Lxﬁ‘le‘x x>0,>0
re) ’ ’
8. Puttingc=2,8 = g— % (5) yields Generalized Rayleigh distribution
9
2 x?
k(x) = xN~lexp (——) , x >0,a >0
(ZaZ)N/ZF(N/z) 2a2

This generalized form of the Rayleigh distributieralso referred in literature as the chi
distribution withN degrees of freedom and scale parameter

Shape of LBWWD
The shape of (5) can be sorted by studying thetimmadefined ovef0, ] and the behavior of
its derivative.

Limits of the function

. c ) x\€
L limok() = e timeeox® e [ ()

X c
w limy,LoxtBexp [— (E) ] =0
s lim,_ok(x) =0

2. lim,sok(X) = ——————lim,_oxtPFexp [— (%)C]

aC+Cl3+1F(/3+%+1)
X Cc
lim,_exp [— (E) ]

s limy_ok(x) =0

0
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Fig 1: Length-biased weighted Weibull densities

The first and second derivatives of (5) with respe are obtained as follows:
Taking logarithm ork(x) in (5) we get

c

In[k(x)] = In(c) — In [F(ﬁ + % + 1)] — (c+ B+ DIn(@ + (e + A - (2)

Differentiating w.r.tx gives

c
d c+cf — ?xc
aln[k(x)] = p

1
Equating the above derivative to 0 leads to, xo = a[f + 1]¢

The derivative equals 0 &0, positive for values of that exceed, and negative otherwise. The
second derivative d(x) w.r.tx yields.
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d? 1 c(c—1)x¢
W: —E C+Cﬁ+—ac
For all values ok the quantity is negative. Figure (1), suggestsditferent values ot and

with a = 1 the shape of equation (5). Here 1 since it is a scale parameter and hence doesn’t
influence the shape of the curve.

Properties of LBWWD
Reliability function of LBWWD:
The reliability function of the LBWWD also known #se survivor function is defined as

1 x\¢
r(+z+1 (3)
LB +=+1)
Table (1) contains the values of survival funct{6i Looking at this table we can see that the

survival probability of the distribution increasegth increase in the value affor a holdingx

ando andp at a fixed level. Further, from the table we caa H&t; for fixedc, a andp; the
survival probability decreases with increase.in

R(x)=1- (6)

Table 1: Survival function of LBWWD

a=1, p=1

c

X 1.0 1.2 14 1.6 1.8 2.0 2.5

0.1  0.9999227 0.9999549 0.9999768 0.9999889 0.98D99 0.9999978 0.9999997
0.2  0.9994258 0.9995518 0.9996914 0.9998030 0.9¥988 0.9999296 0.9999829
0.3  0.9982003 0.9983352 0.9986408 0.9989713 0.9EB25 0.9994841 0.9998099
0.4 0.9960368 0.9958748 0.9962044 0.9967599 0.9¥736 0.9979312 0.9989699
0.5 0.9928062 0.9918189 0.9917607 0.9922917 0.988B12 0.9940747 0.9962728
0.6 0.9884424 0.9859138 0.9847696 0.9846815 0.98530 0.9863489 0.9896329
0.7  0.9829292 0.9780076 0.9748269 0.9731616 0.81267 0.9730413 0.9761167
0.8 0.9762887 0.9680439 0.9616906 0.9571781 0.98424 0.9525901 0.9523640
0.9 0.9685715 0.9560503 0.9452893 0.9364523 0.%39 0.9238872 0.9153569
1.0 0.9598493 0.9421251 0.9257130 0.9110040 0.88¥99 0.8865189 0.8633480

Hazard function of LBWWD:
The hazard function of LBWWD is given by

excrbexp - (3) ]

qCHeB+1 [r‘ (,3 + % + 1) 4 (,3 + % +1 (g)c)]

h(x) =
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Moments of LBWWD:
If X follows LBWWD with parameters, 8 anda, then the'f moment ofX, sayu’., is given as

r 1
aT(p+c+s+1) _ @Tanp

F(ﬁ+%+1) lip

Hy =

where I(41y5 = F(,B +£+%+ 1) andl,z = 1“(,6’ +-+ 1), r=1,2,3,...

For the case, r=1, 2, 3, 4 we have

2 3
r_ (xrzﬁ r_ (04 F3ﬁ T o F4,B
Hl 1—113 4 MZ Flﬁ ’“3 Flﬁ

()(3F5B

I
) H4’ Flﬁ

The first four central moments of LBWWD are given b

p =0
r 2
_o2 |l o
HZ 1" 2
P18 T
T.p 3T=pT,p 2I°
118 15 [P1p

! 2 4
[Fsg _ 4Tagla_ 6Tsgl"25 3T zﬁ]
l'ig Fzm F31ﬁ F41ﬁ

Coefficient of variation of LBWWD is of the form

3 Ty

cov =Tyl 55V Fip 1%,
1

cov_, coefficient of variation of LBWWD

Measure of skewness of LBWWD is given by

Fap 3r33r2ﬁ 2T zz%]
Ty 12 18 F 18

T35 1“2,;
Tig 12,

Y1 =
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Measure of skewness of LBWWD is given by

Top _ 4TapTop | 6T3p a5 3r42,;]

[ip I'21p I35 [p
Y2 = .2 -3
Tap T
lip T2,

The moment generating function of LBWWD is given by

[ee]

t" a Tpyq
My (t) = ZF—I('I[; "

r=0

The cumulant generating function of LBWWD is given

¢ a'T
o =Y 5]
r=0 T'. FIB

Hence the first four cumulants are

al’
Kl - 2‘8
Fip
K, = a’ _Fsﬁ Fzzﬁ
,=a?|E 2
Fp 1%
| B
: 3
o _ oo [Fa 3Tyl 2T 2,1
LRV o 15
[ 2 4 2 \2
Tsp aTuglap  6T5pT%5p 3T (Tsp Ty
e =a T2 T3 7 3 T2
T Ty Ty Fip 12y,

Estimation of LBWWD

Newby’s methods along with method of moments haenlconsidered to estimate the values of
the parameters. Newby [19] took the coefficientvafiation which is independent of to
estimatec by solving, either a graph, or a table or by apmyihe Newton Raphson algorithm.
Here table have been used to estincate

It follows that the modified moment equations fbe tweighted Weibull distribution of ordgr
are
cov’ =cov (a)
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where cov is the coefficient of variation of length-biase@ighted Weibull distribution and
cov, coefficient of variation of Weibull distribatn. Hence

xr(p+3+1)

* = (s

(b)

where equation (a) is solved by using table tabletiie shape parametey which is then
substituted into equation (b) providing the scaleametew. Equation (b) derives from equating
the sample mearxj to the first raw moment; .

Application of LBWWD
To justify the suitability of (5) in a practical plication, 30 consecutive years data from 1981
2010 of June rainfall (in mm) of Tezpur, Assam,iéid considered for the study.

For the problem choseN, = 30,X = 278 anccov’ = 0.285988. The parametgris of order 2¢

is solved using Newby’s method, which is tabulatedable (3), value oé is calculated from
(b). Estimated value af is @ = 147.7456. From Table (3) estimated value of ¢ is 1B&ected
frequencies for each age group were computed withabove estimates substituted into (5).
These results are displayed in Table (2).

As seen from Table (2), tabulations of expectedjdemcies provide an excellent fit of the
observed data.

Table 2: Rainfall (mm) in Tezpur of Junefor 30 years

Rainfall (mm)| Observed Frequency Expected Frequency
<110 1 0.900
110-180 3 2.778
180-250 6 6.819
250-320 8 7.959
>320 12 11.544
Total 30 30
x? 0.145442

Table 3: Coefficient of variation of LBWWD

c cov** c cov**
0.50 0.930949336 1.30 0.397440519
0.60 0.786586676 1.40 0.372422994
0.70 0.684668197 1.50 0.350502158
0.80 0.608202058 1.60 0.331118781
0.90 0.548343928 1.7¢ 0.313842219
1.00 0.500000000 1.80 0.298338545
1.10 0.460009728 1.89 0.285680404
1.20 0.426299365 1.90 0.28434241j7
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CONCLUSION

Length-biased weighted Weibull distribution has roetudied. At first, the pdf of the WWD
have been obtained considering weighwva§ = x* by the idea proposed by Rao [24]. From the
pdf of WWD, LBWWD have been obtained consideringighe as w(x) = X. Next, to
characterize the distribution of a random variaklef the LBWWD three functions have been
introduced; namely the survival function, the proibty density or mass function and the failure
rate function or hazard function. The moments, dbefficient of variation, the coefficient of
skewness and the coefficient of Kurtosis of the L\BYY have been derived. For estimating the
parameters of the LBWWD, Newby’s [19] method alomith method of moments have been
used. The LBWWD have been fitted to 30 consecuywars data from 1982010 of June
rainfall (in mm of Tezpur, Assam, India. LBWWD suggested a gobdff the data. In the
environmental and atmospheric sciences LBWWD isiflow be suitable use for the practitioner.
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