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ABSTRACT 
 

The objective of this paper is to study certain properties of para-Kenmotsu manifolds satisfying the conditions 
0=).,( RYXR , 0=).,( SYXR  and 0=).,( SYXP  where R(X, Y) is the Riemannian curvature tensor, S(X, 

Y) is the Ricci curvature tensor and P(X, Y) is the Weyl projective curvature tensor. It is shown that a p -Kenmotsu 

manifold satisfying the conditions 0=).,( RYXR  is flat, and 0=).,( SYXR  is an Einstein manifold. Finally, 

we also proved that if a p -Kenmotsu manifold satisfies the condition 0=).,( SYXP , then the structure vector ξ  

is normal to the tangent space of the manifold.  
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INTRODUCTION 
 
The notion of almost para contact structure was introduced by Sato [8].  Later, Adati and Matsumoto [1] defined and 
studied p -Sasakian and sp -Sasakian manifolds which are regarded as a special kind of an almost contact 

Riemannian manifolds. Before Sato, Kenmotsu [6] defined a class of almost contact Riemannian manifolds. In 1995, 
Sinha and Sai Prasad [9] have defined a class of almost para contact metric manifolds namely para- Kenmotsu (p -

Kenmotsu) and special para Kenmotsu (sp -Kenmotsu) manifolds as analogues of p -Sasakian and sp -Sasakian 

manifolds.  
 
A Riemannian manifold Mn is locally symmetric if its curvature tensor R satisfies ∇ R = 0, where ∇  is Levi-Civita 
connection of the Riemannian metric [4]. As a generalization of locally symmetric spaces, many geometers have 

considered semi-symmetric spaces and in turn their generalizations. A Riemannian manifold nM  is said to be semi-

symmetric if its curvature tensor R  satisfies 0=).,( RYXR  where ),( YXR  acts on R  as a derivation [10]. 

Locally symmetric and semi-symmetric p-Sasakian manifolds are widely studied by many geometers [2, 5, 7]. 
 
In this paper, we consider p -Kenmotsu manifolds satisfying the conditions on the Riemannian curvature tensor R , 

the Ricci curvature tensor S and Weyl projective curvature tensor P and studied their properties, for the first time.  
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PRELIMINARIES 
Let nM  be an n -dimensional differentiable manifold equipped with structure tensors ),,( ηξΦ  where Φ  is a 

tensor of type (1, 1), ξ  is a vector field, η  is a 1-form such that  

 
1=)(ξη   (2.1) 

  

XXXXX Φ−Φ = ;)(=)(2 ξη   (2.2) 

 

Then nM  is called an almost para contact manifold [8]. 

 
Let g  be the Riemannian metric satisfying, such that, for all vector fields X  and Y  on Mn,  

 
)(=),( XXg ηξ   (2.3) 

  
1= rank 0,=)( 0,= −ΦΦΦ nXηξ   (2.4) 

 
)()(),(=),( YXYXgYXg ηη−ΦΦ   (2.5) 

 

Then the manifold nM [8] is said to admit an almost para contact Riemannian structure ),,,( gηξΦ . 

 
A manifold of dimension n  with Riemannian metric g  admitting a tensor field Φ  of type   (1, 1), a vector field ξ  

and a 1-form η  satisfying (2.1), (2.3) along with  

 

0=)()( XY YX ηη ∇−∇   (2.6) 

  

)()]()(),([)()]()(),([=)( ZYXYXgYZXZXgZYX ηηηηηηη +−++−∇∇  (2.7) 

  

ξηξ )(== 2 XXXX −Φ∇   (2.8) 

  

XYYXgYX Φ−ΦΦ∇ )(),(=)( ηξ   (2.9) 

 
is called a para Kenmotsu manifold (or) p -Kenmotsu manifold [9]. 

 
A p -Kenmotsu manifold admitting a 1-form η  satisfying  

 

)()(),(=)( YXYXgYX ηηη −∇   (2.10) 

  

Φ∇  of associatean  is  where ),,(=)( and )(=),( ϕϕηηξ YXYXXg X  (2.11) 

 
is called as special p -Kenmotsu manifold (or) an sp -Kenmotsu manifold [9]. 

 
It is known that [9] in a p -Kenmotsu manifold the following relations hold:  

 
),(=),(  )(1)(=),( YXSYQXgwhereXnXS ηξ −−  (2.12) 

 
)(),()(),(=)],,([=],),([ XZYgYZXgZYXRZYXRg ηηηξ −  (2.13) 

  
ξηξ ),()(=),( YXgXYYXR −   (2.14) 
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ξηηξ  altoisorthogon  when ;)()(=),,( XXYYXYXR −  (2.15) 

 
where S  is the Ricci tensor, r  is the scalar curvature and Q  is the symmetric endomorphism of the tangent space 

at each point corresponding to the Ricci tensor and R  is the Riemannian curvature. 
 
If the Ricci curvature tensor S  is of the form  
 

)()(),(=),( YXbYXagYXS ηη+   (2.16) 

 

where a  and b  are functions on nM , then nM  is called as an Einstein−η  manifold and if 0=b  then it is an 

Einstein manifold. 
 
Moreover, it is also known that if a p -Kenmotsu manifold is projectively flat then it is an Einstein manifold and the 

scalar curvature has a negative constant value 1)( −− nn [9]. 

 
In this case,  
 

),(1)(=),( ZYgnZYS −−   (2.17) 

 
and hence  
 

)()(1)(),(=),( ZYnZYSZYS ηη−+ΦΦ   (2.18) 

 
Also if a p -Kenmotsu manifold is of constant curvature, we have 

 

)],(),(),(),([
1)(

1
=),,,(' PYgZXSPXgZYS

n
PZYXR −

−
 (2.19) 

 
The above results will be used further in the next sections.  

 
RESULTS 

 
3.1 p -Kenmotsu Manifolds satisfying 0=).,( RYXR   
In this section, we consider semisymmetric p -Kenmotsu manifolds, i.e., p -Kenmotsu manifolds satisfying the 

conditions 0=).,( RYXR , 0=).,( SYXR  and 0=).,( SYXP  where ),( YXR  is considered as a derivation 

of tensor algebra at each point of the manifold for tangent vectors X  and Y . Now  
 

.),(),()),(,(  

),),((),(),(=  ),)(),((

WYXRVURWVYXRUR

WVUYXRRWVURYXRWVURYXR

−−
−⋅

 (3.1) 

 
Then using 0=).,( RYXR , the eqn (3.1) can be written as 

 

0.=),),(),((),)),(,((      

),),),(((),),(),((

ξξ
ξξ

WYXRVURgWVYXRURg

WVUYXRRgWVURYXRg

−−
−

 (3.2) 

 
Using (2.13), eqn (3.2) can be written as 
 

0.=)(),(),()(),(),()(),(),(    

)(),(),()(),,,()(),,,('

XVYgWUgXUYgWVgYVXgWUg

YUXgWVgXYWVURYXWVUR

ηηη
ηηη

+−−
+−′

 (3.3) 

 
Putting ξ=Y  in (3.3) and on using (2.13), we have 
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0.=)()(),()()(),(),(),(    

),(),()()(),()()(),(),,,('

XVWUgXUWVgVXgWUg

UXgWVgXUWVgXVWUgXWVUR

ηηηη
ηηηη

+−−
++−

 (3.4) 

 
For ξ=X , the above equation becomes 

 

0.=)(),()(),()(),(    

)(),()(),()(),(

VWUgUWVgUWVg

VWUgUWVgVWUg

ηηη
ηηη

+−+
−−

 (3.5) 

 
or, 
 

0.=)(),()(),( UWVgVWUg ηη −   (3.6) 

 
which is nothing but 0=)),,(( WVURη  in view of (2.13). This shows that either 0=),,( WVUR , i.e., either 

the manifold is flat or ξ  is normal to the curvature tensor. Hence we have the following. 

 
Theorem 3.1: A semisymmetric p -Kenmotsu manifold is either flat or the structure vector ξ  is normal. 

 
Proof: The proof follows, immediately, from (3.6). 
 
3.2 p -Kenmotsu Manifolds satisfying 0=).,( SYXR  

Now, we suppose that p -Kenmotsu manifold is Ricci-symmetric, i.e., 0=).,( SYXR . Then we have 

 

0.=)),,(,()),,,(( WYXRUSWUYXRS +   (3.7) 

 
Putting ξ=U  in the above expression and using (2.15), we get 

 

0.=)),,(,()],)()([ WYXRSWXYYXS ξηη +−  (3.8) 

 
Again on using (2.12), we get 
 

0.=)),,((1)(),()(),()( WYXRnWXSYWYSX ηηη −−−  (3.9) 

 
Using eqn (2.13), we get 
 

0.=)(),(1)()(),(1)(),()(),()( XWYgnYWXgnWXSYWYSX ηηηη −+−−−  (3.10) 

 
Now, putting X = ξ  in the above equation and on using (2.17), we get 

 

0.=),(1)()()(1)()()(1)(),( WYgnYWnWYnWYS −+−−−+ ηηηη  (3.11) 

 
or, 
 
(a) S(Y, W) = - (n-1)g(Y, W),  which on contraction gives the scalar curvature constant as 
 
(b) r = - n (n-1). 
 
On using (3.6) in (3.9), we get 
 
(c) S(Y, W) = - (r/n) g(Y, W). 
 
Thus, we have 
 



K. L. Sai Prasad and T. Satyanarayana                       Adv. Appl. Sci. Res., 2015, 6(4):108-113        
 _____________________________________________________________________________ 

112 
Pelagia Research Library 

Theorem 3.2: A p -Kenmotsu manifold, being Ricci symmetric, is an Einstein manifold and hence it is an sp -

Kenmotsu manifold. 
 
Proof: The proof of the theorem is an immediate consequence of the equations (3.11) (a), (3.11) (b) and (3.11) (c), 
because a p -Kenmotsu manifold of constant scalar curvature is an sp -Kenmotsu manifold. 

 
3.3 p -Kenmotsu Manifold satisfying 0=).,( SYXP  

Now, we consider p -Kenmotsu manifolds satisfying the the condition 0=).,( SYXP , where P(X, Y) denotes 

the Weyl projective curvature tensor [11] defined by 

].),(),([
1

1
),(=),( QYZXgQXZYg

n
ZYXRZYXP −

−
−  (3.12) 

Now, we have 
 

0=),,(,()),,,((=  ),,,)(( UYXPZSUZYXPSYXUZSP −−⋅  (3.13) 

 
Using (3.13)and (2.12), we get 
 

0=),,,(),,,(' KZUYXPKUZYXP +′   (3.14) 

 
where ),),((=),,,(' UZYXRgUZYXR . 

 
Then, in view of (3.12), we have 

(or)

0.=)],(),(),(),(),(),(          

),(),([
1

1
),,,(),,,('  )(

0.=)],(),(),(),(),(),(          

),(),([
1

1
),,,(),,,('  )(

QZXSUYgQZYSUXgQUXSZYg

QUYSZXg
n

YXKZURYXKUZRb

QZXSUYgQZYSUXgQUXSZYg

QUYSZXg
n

KZUYXRKUZYXRa

−+−
−

++′

−+−
−

++′

 (3.15) 

 
Now putting Y = ξ  and using (2.13),(2.12) and (2.3), we get 

 

0.=)],()()(),(1)(),()(       

)(),(1)([
1

1
)(),(       

)(),()(),()(),(

QZXSUQZUXgnQUXSZ

QUZXgn
n

UXQZg

QZXUgZXQUgQUXZg

ηηη
ηη

ηηη

−−−−

−−
−

+−

+−

 (3.16) 

 
On putting X = ξ  in (3.16) and on using (2.12), we have 

 

0=)()()()()()()()(1)(  

)()(1)()()(1)()()(

UQZQZUQUZUZn

UZnZUnQUZ

ηηηηηηηη
ηηηηηη

+−+−+
−−−+

 (3.17) 

 

which on simplication implies 0=)( )( ZU ηη  for 1>n , shows that ξ  is normal to the tangent space of nM . 

 
Also, for ξ=Y  in (3.15) (b), we have 

0.=)](),()(),([
1

1
)(),()(),( UQZXSZQUXS

n
UXZSZXUS ηηηη +

−
++  (3.18) 

For ξ=Z , we have 
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0.=)](),(),([
1

1
)()(1)(),( UQQXgQUXS

n
UXnXUS ηξηη +

−
+−−  (3.19) 

 
which on using eqn (2.12), reduces to 
 

QXnXQor

XUSnQUXS

1)(=  )(

),(1)(=),(
2 −−

−−
  (3.20) 

 
Hence we have the following result. 
 
Theorem 3.3: In a p -Kenmotsu manifold if the condition 0=),,,)(( YXUZSP ⋅  is satisfied then we have, 

(i) either the structure tensor ξ  is normal to T( nM ), or 

 

(ii) QXnXQQXQ 1)(==)( 2 −− , for 1>n . 

 
Proof: The proof of the theorem is obvious in view of the results obtained in (3.17) and (3.20). 
 

CONCLUSION 
 

In this paper, we had studied three new properties of para-Kenmotsu manifolds, satisfying the conditions 
0=).,( RYXR , 0=).,( SYXR  and 0=).,( SYXP . The results obtained here are   similar to the findings 

reported earlier for para-Sasakian manifolds.  
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