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ABSTRACT

The objective of this paper is to study certain properties of para-Kenmotsu manifolds satisfying the conditions
R(X,Y).R=0, R(X,Y).S=0 and P(X,Y).S =0 where R(X, Y) is the Riemannian curvature tensor, (X,
Y) isthe Ricci curvature tensor and P(X, Y) is the Weyl projective curvature tensor. It is shown that a p -Kenmotsu
manifold satisfying the conditions R(X,Y).R =0 isflat, and R(X,Y).S =0 is an Einstein manifold. Finally,
we also proved that if a | -Kenmotsu manifold satisfies the condition P(X,Y).S =0, then the structure vector &
isnormal to the tangent space of the manifold.
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INTRODUCTION

The notion of almost para contact structure wa®éhtced by Sato [8]. Later, Adati and Matsumofidéfined and
studied P -Sasakian andsp-Sasakian manifolds which are regarded as a spé&uidl of an almost contact

Riemannian manifolds. Before Sato, Kenmotsu [6]rdef a class of almost contact Riemannian maniféid$995,
Sinha and Sai Prasad [9] have defined a classyadsdlpara contact metric manifolds namely para-rk@isu (P -

Kenmotsu) and special para Kenmotsj (Kenmotsu) manifolds as analogues pf-Sasakian andsp -Sasakian
manifolds.

A Riemannian manifold Mis locally symmetric if its curvature tensor Risfi¢és [1R = 0, wherell is Levi-Civita
connection of the Riemannian metric [4]. As a galieation of locally symmetric spaces, many geonseteve

considered semi-symmetric spaces and in turn gegieralizations. A Riemannian manifoM  is said to be semi-

symmetric if its curvature tensdr satisfies R(X,Y).R =0 where R(X,Y) acts onR as a derivation [10].
Locally symmetric and semi-symmetpeSasakian manifolds are widely studied by many gsers [2, 5, 7].

In this paper, we considep -Kenmotsu manifolds satisfying the conditions o@ Riemannian curvature tensh,
the Ricci curvature tensdB and Weyl projective curvature tensBrand studied their properties, for the first time.
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PRELIMINARIES
Let M, be ann-dimensional differentiable manifold equipped wittucture tensor®,<,77) where @ is a

tensor of type (1, 1) is a vector field/7 is a 1-form such that

nE)=1 (2.1)
P2(X) = X =(X)&; X = dX 2.2)
Then M, is called an almost para contact manifold [8].

Let g be the Riemannian metric satisfying, such thatafovector fields X andY on M,,

a(X,¢) =n(X) (2.3)
®¢& =0,7(dX ) =0,rankd =n-1 (2.4)
g(®X, ®Y) = g(X,Y)=n(X)n(Y) (2.5)

Then the manifoldM | [8] is said to admit an almost para contact Rieremstructure(®,&,77,9) .

A manifold of dimensionn with Riemannian metriQy admitting a tensor fieldP of type (1, 1), a vector field
and a 1-formv) satisfying (2.1), (2.3) along with

@xmY-@ymX =0 (2.6)
(Ox By Z =[-9(X,2) +n(X)(2)n(Y) +[-g(X.Y) +n(X)n(Y)n(Z) 2.7)
0,&=®*X =X -n(X)¢& (2.8)
(O, D)Y = g(DX,Y)E-n(Y)DX (2.9)

is called a para Kenmotsu manifold (g)-Kenmotsu manifold [9].

A P -Kenmotsu manifold admitting a 1-form satisfying
(OxmY = 9(X,Y) =n(X)n(Y) (2.10)

9(X,¢) =n(X )and(Uyn)Y = ¢(Y,Y), whereg isanassociatef ® (2.11)
is called as speciap -Kenmotsu manifold (or) ai$p -Kenmotsu manifold [9].

It is known that [9] in ap -Kenmotsu manifold the following relations hold:

S(X,¢)=—(n-1)7(X)whereg(QX,Y) =S(X,Y) (2.12)

o[R(X,Y)Z,&]=nR(X,Y,Z)] = g(X,Z)n(Y) - g(Y,Z)n(X) (2.13)

R($, X)Y =n(Y)X —g(X,Y)¢ (2.14)
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R(X,Y,&)=n(X)Y —=n(Y) X;whenX isorthogomlto ¢ (2.15)

where S is the Ricci tensorf is the scalar curvature af@ is the symmetric endomorphism of the tangent space
at each point corresponding to the Ricci tensor Bnis the Riemannian curvature.

If the Ricci curvature tenso® is of the form

S(X,Y) =ag(X,Y)+bn(X)n(Y) (2.16)

where@ andb are functions orM ,, then M, is called as am) — Einstein manifold and ifb =0 then it is an
Einstein manifold.

Moreover, it is also known that if § -Kenmotsu manifold is projectively flat then itas Einstein manifold and the
scalar curvature has a negative constant valtg¢n —1)[9].

In this case,

S(Y,Z) =—=(n-1)g(Y,2) (2.17)
and hence

S(PY,PZ) = S(Y,Z2)+(n-L)n(Y)n(2) (2.18)

Also if a p -Kenmotsu manifold is of constant curvature, weehav

R(X,Y.Z,P)= (—11)[S(Y, 2)9(X,P) - S(X, Z)g(Y,P)] (219)
n —

The above results will be used further in the rsexitions.

RESULTS

3.1 p-Kenmotsu Manifolds satisfying R(X,Y).R=0

In this section, we consider semisymmetiic-Kenmotsu manifolds, i.e.]0 -Kenmotsu manifolds satisfying the
conditions R(X,Y).R=0,R(X,Y).S=0 and P(X,Y).S =0 where R(X,Y) is considered as a derivation
of tensor algebra at each point of the manifoldémgent vectorsX andY . Now

(ROX,IRU VW =R(X,Y)RU V)W - R(R(X,Y)U,V)W

-RU,R(X,Y)V)W -RU,V)R(X,Y)W. G-

Then usingR(X,Y).R =0, the eqn (3.1) can be written as

9(R(X,Y)RU V)W, ) - g(R(R(X,Y)U V)W, {) 3.2)

-g(RU, R(X,Y)V)W, &) - g(RU,V)R(X,Y)W,&) =0.

Using (2.13), eqn (3.2) can be written as

"RU.V,W, X)n(Y) =" RU.V,W,Y)n(X) +g(V,W)g(X,U)n(Y) (3.3)

—gU.W)g(X,V)n(Y)-g(v,W)g(Y,U)r(X) +g(U,W)g(Y,V)n(X) =0.
PuttingY = ¢ in (3.3) and on using (2.13), we have
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'‘RU,V, W, X)=gU,W)n(V)n(X)+gV,W)nU)n(X)+gV,W)g(X,U)

— U W)g(X, V)~ gV, W)r(U)n(X) + gU ,W)z(v )7(X ) =O. e
For X = £, the above equation becomes
gU,W)nVv)-g(vV.W)nU)-glU,wW)n(V) 35)
+g(V,W)n(U)-g(vV,W)nU) +gU,W)n(V)=0. '
gU,.W)n(V)-g(vV,W)pU)=0. (3.6)

which is nothing bu??(RU ,V,W)) =0 in view of (2.13). This shows that eith&U ,V,W) =0, i.e., either
the manifold is flat orf is normal to the curvature tensor. Hence we hagddllowing.

Theorem 3.1: A semisymmetricp -Kenmotsu manifold is either flat or the structueztor ¢ is normal.
Proof: The proof follows, immediately, from (3.6).

3.2 p-Kenmotsu Manifolds satisfying R(X,Y).S=0
Now, we suppose thap -Kenmotsu manifold is Ricci-symmetric, i.6R(X,Y).S =0. Then we have

S(R(X,Y,U),W) +S(U,R(X,Y,W)) =0. (3.7)
PuttingU = & in the above expression and using (2.15), we get

Jr(X)Y =n(Y)X,W)]+S(¢,R(X,Y,W)) =0. (3.8)

Again on using (2.12), we get

n(X)S(Y,W) -n(Y)S(X,W) - (n-1)7(R(X,Y,W)) =0. (3.9)
Using eqgn (2.13), we get

n(X)SY,W) =n(Y)S(X,W) = (n-1)g(X,W)7;7(Y) +(n-1)g(Y,W)n(X) =0. (3.10)
Now, putting X =¢ in the above equation and on using (2.17), we get

S(Y,W) +(n=1)7(Y)n(W) - (n-1)p(W)77(Y) +(n-1)g(Y,W) =0. (3.11)
or,

(a) S(Y, W) =- (n-1)g(Y, W), which on contractigives the scalar curvature constant as

(b) r =-n(n-1).

On using (3.6) in (3.9), we get

(c) SCY, W) = - (r/n) g(Y, W).

Thus, we have
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Theorem 3.2: A p-Kenmotsu manifold, being Ricci symmetric, is amdfein manifold and hence it is &p -
Kenmotsu manifold.

Proof: The proof of the theorem is an immediate consecei®f the equations (3.11) (a), (3.11) (b) and1(B(c),
because g2 -Kenmotsu manifold of constant scalar curvaturanisp -Kenmotsu manifold.

3.3 p -Kenmotsu Manifold satisfying P(X,Y).S=0
Now, we considerp -Kenmotsu manifolds satisfying the the conditie{ X,Y).S =0, where P(X, Y) denotes
the Weyl projective curvature tensor [11] defingd b

P(X,Y)Z = R(X,Y)Z—ni_l[g(Y,Z)QX—g(X,Z)QY]. (3.12)
Now, we have
(PTE)(Z,U,X,Y) =-S(P(X,Y,Z),U)-S(Z,P(X,Y,U) =0 (3.13)
Using (3.13)and (2.12), we get
'P(X.,Y,Z,KU)+ P(X,Y,U,KZ)=0 (3.14)
where'R(X,Y,Z,U) = g(R(X,Y)Z,U).
Then, in view of (3.12), we have

@ ‘'R(X.Y,Z,KU)+ R(x,Y,u,Kz)+ni_1[g(x,Z)S(Y,QU)

= g(Y,Z)S(X,QU) + g(X,U)S(Y,QZ) - g(Y,U)S(X,QZ)] =0.
(or) (3.15)

b) 'R(Z,KU,X,Y)+ RU,KZ, X,Y) +ﬁ[g(X,Z)S(Y,QU)
—g(Y,2)S(X,QU) + g(X,U)S(Y,QZ) - g(Y,U)S(X,QZ)] =0.
Now putting Y =¢& and using (2.13),(2.12) and (2.3), we get
9(Z, X)n(QU) - g(QU, X)n(Z) + 9, X)n(QZ)

—g(Qz,xm(m+ni_1[—(n—1)g(x,zm(QU) (3.16)
~1(Z)S(X,QU) - (n=1)g(X.U)7(QZ) -7(U)S(X,QZ)] =O.

On putting X =¢ in (3.16) and on using (2.12), we have

n(2)nQU)+(n-1W)n(2)-(n-1)(2)nV)

+(n=-1(Z)nV) +n(Z)n(QU) -nU)N(QZ) +n(QZ)nU) =0 (3.17)

which on simplication implieg7(U ) 77(Z) =0 for n >1, shows thai¢ is normal to the tangent space ..

Also, for Y = ¢ in (3.15) (b), we have
SU. X)7(2) +S(Z, X)r/(U)+ni_1[S(x,Qu )7(2) +S(X,QZ)(U)] =0. (3.18)

For Z =&, we have
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S(U, X) = (n=1)(X)n(U) +ni_1[S(X,QU ) +9(QX,Q4)n(U)] =0. (3.19)

which on using eqn (2.12), reduces to

S(X,QU) = -(n-1)SU, X)
(or) Q*°X =—(n-1)QX

Hence we have the following result.

(3.20)

Theorem 3.3: In a p -Kenmotsu manifold if the conditiofP [S)(Z,U, X ,Y) =0 is satisfied then we have,

(i) either the structure tens@r is normal to TM n) or

(i) Q(QX) =Q*X =—(n-1)QX , for n >1.
Proof: The proof of the theorem is obvious in view of tlesults obtained in (3.17) and (3.20).
CONCLUSION

In this paper, we had studied three new propentiegara-Kenmotsu manifolds, satisfying the condisio
R(X,Y).R=0, R(X,Y).S=0 and P(X,Y).S=0. The results obtained here are similar to theifigs
reported earlier for para-Sasakian manifolds.
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