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ABSTRACT

In this article, we compare three previous termiomtrules for primal-dual short step path-

following algorithm for semi-definite programmingoposed earlier by Monteiro, Adejo and

Adejo and Singh independently, which were basedraiyses carried out independently by
Franklin and Singh et al for Karmarkar’s algorithfar linear programming, Here, we develop a
more efficient termination rule which on implemeiata saves at least 95% iterations over that
of Monteiro and at least 8% iterations over thatafejo and Singh.
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INTRODUCTION

Not long after Karmarkar [ 5] in 1984 developed fiist ever projective interior point algorithm
that guaranteed iterates that lie in the interiothe feasible set, it was recognized that interior
point methods (IPMS) for LPs can be used the sarag for a matrix version of linear
programming problems (LPs) as well. this matrixsian is Known as semi-definite programs
(SDPs). SDPs arise quite often in engineering plis@s, statistics, systems and control, signal
processing etc. Roughly speaking, an SDP is thee sasnLP, except that the constraints are
matrix inequalities instead of a set of scalar usijes. Thus, SDP is an extension of linear
programming (LP), where the component wise inetjgalibetween vectors are replaced by
matrix inequalities, or, equivalently the first loaint is replaced by the cone of positive semi-
definite matrices. Semi-definite programming ursfeeveral standard problems (e.g linear and
guadratic programming) and finds many applicatians engineering and combinatorial
optimization. Although semi-definite programs areiam more general than linear programs,
they are not much harder to solve. Most interiainpmethods for linear programming have
been generalized to semi-definite programs. Asinear programming, these methods have
polynomial worst-case complexity and perform vemilvin practice. In control theory, they are
very popular these days and for many NP-hard pnal&DPs can be used to obtain meaningful
lower or upper bounds.
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In a semi-definite program (SDP), we minimize @&énfunction of a variable 0 R™ subject to
a matrix inequality:

minimize c" x

subject toF (x) =0 ... (1.2)
where F(x) OF, + ixi f;

i=1
The problem data are the vectof]R™ and m + 1 symmetric matrices, ,...,F,, OR™". The
inequality sign inF(x) > Omeans thafF (x )s positive semi-definite. i. ez’ F(x)z> €or all
2[OR". We call the inequality=(x) = @ linear matrix inequality (LMI).

Now, we let R"denote n-dimensional Euclidean space, while*" denote the set of all m x n
matrices with real entries, B" denote the set of all n x n real symmetric matritiesn c.xs" ,
with the Frobenius matrices inner productcaind x defined as

c.x =Trace(c' x)

If we define a functior].|, :S" -~ R as|Q|, = (Q.Q)%, then (S”, M f) is a normed linear
space and the norr.||, that defines the space is called the Frobeniusnndf for any

QOs", Q=0 implies thatQ is positive semi-definite, whil& > ifhplies thatQ is positive
definite, then S :{Q Os" Q= 0}, while S, :{Q Os" |Q> 0}. Now, for
¢, A0SandbOR", a SDP can be stated as

(P) minimize c¢.x
subjectto A, x=b, i=12---m ... (1.2)
S>0

The dual (D) of the SDP (1.2) can be stated as

(D) maximizeb'y
subjecttd Ay, +S=C ... (1.3)

i=1

wherey O R™ and SOIS]

Alizadeh (3) extended potential reduction methodettgped byYe (8) for LP to SDP. This has
led to the extension of many interior point (IP)thals to semi-definite programming.

[2] Primal-Dual Algorithm for SDP
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Let F°(P) :{xD S’ /A.x=Db,x2 O} be the interior of the feasible set for the primpabblem
(1.4) andF°(D)) = {(s, y) 0 S°xR° /i Ay +S=C,S> O} be the interior of the feasible set for
the dual problem (1.4), then, we a;slume the foligwi

(i) FO(P)xF°(D) # 0 and

(i) the matricesA, A, ..., A, that defines the SDP (1.2) are linearly indepehden

The set of primal-dual optimal solutions consisttlod solutions(x, S, Y)D S! x S, X R" to
the following system:

) () Ax-b=0i=12...m
(i) YAy +S-C=0

(i) x.S=0
where the last equation | (iii) is the complemeityagquation.
To symmetrize (I), Zhang (7) introduced a geneyairmetrization mapping:
(1 H,:R™ - S defined as

H,(m) =%[PMP‘1 +(PMPY)T]

O mOR™",where POR™ is some non-singular matrix .
Based on symmetric mapping (1), the system of &qgna (I) can be written as
a (@) Ax-b=0i=12...,n

(i) Zn:Ayi +S-C=0

(iii) ip(x. S)=0

Consequently, the search directi(mx, AS, Ay)DSL1 x S], x R" at a point(x, S, y )is the
solution of the following system:

(V) (i) A.Ax=b - A X, i=1 2...,m
(i) iAAyi+AS=C—S—iAyi
(iii) I_—Ip(AxS+A)=5,uI = Hp_(x.s)
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where 0 = [0,1] is the centering parameter apd= 1(x. S)
n

5505

i=1 j=1

and | is the identity matrix. Ifd(x.s )denote the measure of centrality at a point
(x.9)0S! xS},, then

d(x.s) = H X255 72 -l

:(i; (A[x S]_'u)zj%

where A 0 [x. s] denote the eigen value of the mat(ix.s Bpsed on this centrality condition,
we define a Frobenius neighbourholid(y) of the central path as follows:

N, () ={(x s, Y)OF°(P) x F (D)/d(x. 5)< 114
where yis a real constant in the interval (0, 1).

The algorithm that follows is a short-step pathefeing algorithm based on Monteiro — Zhang
unified search direction obtained using equatidh@)l IV (ii) and IV (iii)

Algorithm:
Choose real constangsand d in (0, 1) such that
7(y? +5?) { 5 }
— 1 <11-— ..(14
1=y N y (1.4)
y_\/§<1
1-y
1)
and let o =|1-—
]

Let g be any positive integer ar(oko, s, yO)D F°(p) x F °(D) be an initial starting point
satisfying the conditior{x’,s’) < yu, ,

x°.s

where y, =

Repeat until convergence, <277, is reached.

0) Choose a non-singular matri* OR™"

(ii) Compute search directio(ﬂx",As",Ay") as the solution of system IV with
p=p,.4 and(x s, y)=(x*,s*, y*)
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(iii) Obtain the next pom&xk+l ket y"”) in the solution sequence as
(iv) (Xk+l’sk+l’yk+l) (X Sk Y )+(Axk’ASk’Ayk)

k+lSk+l
(V) Set y, :( j and increase k by 1

Theorem 1
If y andd are some fixed real constants suchtbat 0 <1 and0 < y < % satisfy the

following inequalities:

(y*+o%) 1 _(,_ 9
1=y .ys(l «/Fj ... (1.5

then, the sequence of iteral%(xk ,s%, yk )} generated by the algorithm in the neighbourhood

N, (y)=1(x, s, y)OF °(p)xF °(D):d(x.s) <y u}

k k
satisfies e X o
(X J (e x p(- ))J—
Proof
From Monteiro[ 6 ]
2J551
1-vy
yh+zﬁﬂsl
=0.261
e 2\/_

Now (i) any value ofy in the interval (O, %.) will satisfy the condition of the theorem in

Monteiro [ 6 ], since the mterva(D %‘) lies in the mtervaﬁ

e

(i) the inequality (1.5) is equivalent to the ingdjty (1.6) in Monteiro [ 6 ]. Hence, all the
results that are valid for the theorem in Mont¢i6o] will also be valid for our own analysis.

XK. sk o
Hence| —— | =|1-—
(x‘) s°j ( ﬁ]

k <k
|nXS ~KIn (5]

X< s K
< (exp(-9))—
(Xo_soj (exp(-0) -
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Theorem 2

qIn2\/ﬁ
o

In at mostk :{

k ~k
xX. i
s]<2q

} iterations, the algorithm finds a solution to 8ieP (1.2) with

x°.s°

From Karmarkar [ 5],
x¥ s
x°%,s°
Xk s

Ir{x"s"] < —-gIln2

In(xk.sk)—ln(xo.s°)< -qin2 ... (1.6)

j <27, q is a positive integer

From the inequality in theorem 1
X< s k
(Xolsoj (exp(-0) =

ln(xzsﬁj <infexp(-9)]" [7]
X°.S

(

(

k _
x".s")—ln(xo.so) <—Ine”’

Jn
X s¢)-In(x°.s°) < & .. (17)

Jn

Now, inequality (1.6) is true if k satisfies

(_k5j<—qln2
7 )s
ko > qln2

Jn
K> {qlnzﬁw

In

In

o

Now, as in Franklin [ 4 ] and Singh et al [ 7 ], waay define the number of iterations to find
optimal solution as

K gin 2/n
max 5
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CONCLUSION

The algorithm will stop if the number of iteratiokseachesk,,, .If the k reachesk,,, before
k ok

the convergence che{kﬁj < 2™ is reached, we stop and conclude that the SDP lfa2no

x°.s°

solution. The larger the value @fin (0, 1) satisfying (1.5), the faster the convewge of the
algorithm. Monteiro [ 6 ] proposedy =9 = %O and with this choice, he obtained
kmaxz‘ 20gIn 2Jn ‘ Adejo [1] proposedy = 5:%2 and obtainedk,, = ‘12q|n 2\/5‘ with a
termination rule which reduced at least 40% iteratiin comparison to Monteiro’s choice.
Adejo and Singh [ 2] chosé:l—% and y:l—l2 as obtained<maxz‘ 11qIn2v/n ‘ which further

reduces by 94.5% the number of iterations in comparto that of Monteiro [ 6 ]. Adejo and
Singh [ 2 ] termination rule was better than thatiaved in Adejo [ 1 ] by90.8%= 91%. Here,

our current termination rule on implementation s&9é.95% iterations over Monteiro [ 6 ] and
with 8.18%. Slight improvement on the iterationgoidejo and Singh [ 3 ].

Justification
The larger the value od in (0,1) that satisfies (1.4), the faster the mfteonvergence. Now,

Monteiro [ 6 ] chose5=%o Adejo [ 1] chosea‘:}{2 Adejo and Singh choseé = 910

while here we choosé = Q%OC'

. _ 99 _ 9 _ _ . . . . _ 99 .
Since 0 = 4OC> 5—40 > _%2 > 5—%0, it implies that our choice ob = 40(. will
ensure faster convergence than thosé Gf%c, 5%2, 0= %O'

Hence, for Monteiro [ 6 ]9 = %O with K. :‘ 20qgIn Zﬁ‘
For Adejo [ 1],0= ¥, with K, =|12qIn2/n |

while, Adejo and Singh [ 215= 9, with K., =| 11gin2y/n |

Now, percentage (%) improvement of Adejo [ 1 ] oManteiro [ 6 ]

_ (20—12) %100

=40%

% improvement of Adejo and singh [ 2 ] over Adejb |
20-11
= ( j x 100

=94.5%
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% improvement of Adejo and Singh [ 2 ] over Adejb ]
12-11
= ( j x100

=90.83%

% improvement of Adejo and Ogala over Monteiro][ 6
_ (20— 1.01} %100
20
=94.95%

% improvement of Adejo and Ogala over Adejo andyBip2 ]
_ (1.1— 1.01} % 100
11

=8.18%
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