
Available online at www.pelagiaresearchlibrary.com 
 

 
 

   
Pelagia Research Library 

 
Advances in Applied Science Research, 2011, 2 (6):24-31   

  
 

 
ISSN: 0976-8610  

CODEN (USA): AASRFC 

 

24 
Pelagia Research Library 

On Optimal Termination Rule for Primal-Dual Algorithm for Semi-
Definite Programming 

 
B.O. Adejo1 and E. Ogala2 

 
Department of Mathematical Sciences, Kogi State University, Anyigba 

______________________________________________________________________________ 
 
ABSTRACT 
 
In this article, we compare three previous termination rules for primal-dual short step path-
following algorithm for semi-definite programming proposed earlier by Monteiro, Adejo and 
Adejo and Singh independently, which were based on analyses carried out independently by 
Franklin and Singh et al for Karmarkar’s algorithm for linear programming, Here, we develop a 
more efficient termination rule which on implementation saves at least 95% iterations over that 
of Monteiro and at least 8% iterations over that of Adejo and Singh. 
 
Keywords: Semi-definite, upper ceiling function   , primal-dual methods, path-following 

methods, NP-hard problems. 
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INTRODUCTION 

 
Not long after Karmarkar [ 5 ] in 1984 developed the first ever projective interior point algorithm 
that guaranteed iterates that lie in the interior of the feasible set, it was recognized that interior 
point methods (IPMS) for LPs can be used the same way for a matrix version of linear 
programming problems (LPs) as well. this matrix version is Known as semi-definite programs 
(SDPs). SDPs arise quite often in engineering disciplines, statistics, systems and control, signal 
processing etc. Roughly speaking, an SDP is the same as LP, except that the constraints are 
matrix inequalities instead of a set of scalar inequalities. Thus, SDP is an extension of linear 
programming (LP), where the component wise inequalities between vectors are replaced by 
matrix inequalities, or, equivalently the first orthant is replaced by the cone of positive semi-
definite matrices. Semi-definite programming unifies several standard problems (e.g linear and 
quadratic programming) and finds many applications in engineering and combinatorial 
optimization. Although semi-definite programs are much more general than linear programs, 
they are not much harder to solve. Most interior- point-methods for linear programming have 
been generalized to semi-definite programs. As in linear programming, these methods have 
polynomial worst-case complexity and perform very well in practice. In control theory, they are 
very popular these days and for many NP-hard problems, SDPs can be used to obtain meaningful 
lower or upper bounds. 
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In a semi-definite program (SDP), we minimize a linear function of a variable mRx∈   subject to 
a matrix inequality: 
 
  minimize xcT   
 
  subject to 0)( ≥xF                           . . . (1.1) 

where  ∑
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ii fxFxF
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The problem data are the vector mRc∈  and m + 1 symmetric matrices ..,..,0
nxn

m RFF ∈  The 

inequality sign in 0)( ≥xF  means that )(xF  is positive semi-definite. i. e, 0)( ≥zxFzT  for all 
nRz∈ . We call the inequality 0)( ≥xF  a linear matrix inequality (LMI). 

 
Now, we let nR denote n-dimensional Euclidean space, while nxmR denote the set of all m x n 
matrices with real entries, If nS denote the set of all n x n real symmetric matrices, then ,. nsxc ∈   
with the Frobenius matrices inner product of cand xdefined as 
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The dual (D) of the SDP (1.2) can be stated as  
 
(D) maximize ybT  

              subject to CSyA
m

i
ii∑

=
=+

1

      . . . (1.3) 

where mRy ∈  and nSS +∈  
 
Alizadeh (3) extended potential reduction method developed by Ye (8) for LP to SDP. This has 
led to the extension of many interior point (IP) methods to semi-definite programming. 
 
[2] Primal-Dual Algorithm for SDP 
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Let { }0,./)( 00 ≥=∈= xbxASxPF i  be the interior of the feasible set for the primal problem 

(1.4) and 






 ≥=+∈= ∑

=

0,/),())(
1

000 SCSyAxRSysDF i

n

i
i be the interior of the feasible set for 

the dual problem (1.4), then, we assume the following: 
 
(i) )()( 00 DxFPF ≠ 0  and 
 
(ii) the matrices nAAA ,..,., 21  that defines the SDP (1.2) are linearly independent. 

The set of primal-dual optimal solutions consist of the solutions ( ) nnn RXSxSySx +++∈,,  to 
the following system: 
 
(I) (i) mibxA ii ,...,2,1,0. ==−   

 

(ii) ∑
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(iii) 0. =Sx  
 
where the last equation I (iii) is the complementarity equation. 
 
To symmetrize (I), Zhang (7) introduced a general symmetrization mapping: 
 
(II) nmxn

p SRH →:  defined as  

 [ ]T
p PMPPMPmH )(

2

1
)( 11 −− +=  

 ,nxnRm∈∀ where nxnRP ∈   is some non-singular matrix . 
 
Based on symmetric mapping (II), the system of equations (I) can be written as 
 
(III) (i) nibxA ii ,...,2,1,0. ==−  

 (ii) ∑
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 (iii) ( ) 0. =SxH p  

 
Consequently, the search direction ( ) nnn RxSxSySx +++∈∆∆∆ ,,  at a point ),,( ySx  is the 
solution of the following system:  
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where ]1,0[=δ  is the centering parameter and ).(
1

sx
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and I is the identity matrix. If ).( sxd  denote the measure of centrality at a point 

,).( nn SxSsx +++∈  then 
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where [ ]sxi .∈λ  denote the eigen value of the matrix )..( sx  Based on this centrality condition, 

we define  a Frobenius neighbourhood )(γpN  of the central path as follows: 

 
 ( ) ( ){ }γµγ ≤∈= sxdDFxPFysxN f ./)()(,,)( 00  

 
where γ is a real constant in the interval (0, 1). 
 
The algorithm that follows is a short-step path-following algorithm based on Monteiro – Zhang 
unified search direction obtained using equations IV (i), IV (ii) and IV (iii) 
 
Algorithm: 
 
Choose real constants γ  and δ  in (0, 1) such that  
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γ
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Let q be any positive integer and ( ) )()(,, 00000 DFxpFysx ∈  be an initial starting point 

satisfying the condition ,),( 0
00 γµ≤sx  

where 
n

sx .0

0 =µ  

Repeat until convergence 02 µµ q
k

−≤  is reached. 

(i) Choose a non-singular matrix mxnk RP ∈  

(ii)  Compute search direction ( )kkk ysx ∆∆∆ ,,  as the solution of system IV with 

iipp µ.=  and ( ) ( )kkk ysxysx ,,,, =  
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(iii)  Obtain the next point ( )111 , +++ kkk ysx  in the solution sequence as 

(iv) ( ) ( ) ( )kkkkkkkkk ysxysxysx ∆∆∆+=+++ ,,,,, 111  

(v) Set 
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+ n
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Theorem 1 

If γ  and δ  are some fixed real constants such that 10 << δ  and 4
10 << γ  satisfy the 

following inequalities: 
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then, the sequence of iterates ( ){ }kkk ysx ,,  generated by the algorithm in the neighbourhood 
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Proof 
 From Monteiro[ 6 ] 
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Now (i) any value of γ  in the interval ( )4
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Monteiro [ 6 ], since the interval ( )4
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(ii) the inequality (1.5) is equivalent to the inequality (1.6) in Monteiro [ 6 ]. Hence, all the 
results that are valid for the theorem in Monteiro [ 6 ] will also be valid for our own analysis. 
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Theorem 2 

In at most 
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From Karmarkar [ 5 ], 
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From the inequality in theorem 1 
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Now, inequality (1.6) is true if k satisfies 
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Now, as in Franklin [ 4 ] and Singh et al [ 7 ], we may define the number of iterations to find 
optimal solution as 
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CONCLUSION 
 
The algorithm will stop if the number of iterations k reaches .maxk  If the k  reaches maxk  before 

the convergence check q
kk

sx

sx −<







2

.

.
00

 is reached, we stop and conclude that the SDP (1.2) has no 

solution. The larger the value of δ in (0, 1) satisfying (1.5), the faster the convergence of the 

algorithm. Monteiro [ 6 ] proposed 20
1== δγ  and with this choice, he obtained 

 nqk 2ln20max = . Adejo [1] proposed 12
1== δγ and obtained  nqk 2ln12max =  with a 

termination rule which reduced at least 40% iterations in comparison to Monteiro’s choice. 

Adejo and Singh [ 2 ] chose 
10

9=δ  and 
12

1=γ  as obtained  nqk 2ln1.1max =   which further 

reduces by 94.5% the number of iterations in comparison to that of Monteiro [ 6 ]. Adejo and 
Singh [ 2 ] termination rule was better than that achieved in Adejo [ 1 ] by %91%8.90 ≈ . Here, 
our current termination rule on implementation sares 94.95% iterations over Monteiro [ 6 ] and 
with 8.18%. Slight improvement on the iterations over Adejo and Singh [ 3 ]. 
 
Justification 
The larger the value of δ  in (0,1) that satisfies (1.4), the faster the rate of convergence. Now, 

Monteiro [ 6 ] chose ,20
1=δ  Adejo [ 1 ] chose ,12

1=δ  Adejo and Singh chose 10
9=δ  

while here we choose .100
99=δ  

 

Since ,20
1
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1
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9
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99 =>=>=>= δδδ  it implies that our choice of 100

99=δ  will 

ensure faster convergence than those of .20
1,12

1,10
9 == δδδ   

 

Hence, for Monteiro [ 6 ], 20
1=δ  with  nqK 2ln20max =  

 

For Adejo [ 1 ], 12
1=δ  with  nqK 2ln12max =  

 

while, Adejo and Singh [ 2 ], 10
9=δ  with   nqK 2ln1.1max =  

 
Now, percentage (%) improvement of Adejo [ 1 ] over Monteiro [ 6 ] 
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% improvement of Adejo and singh [ 2 ] over Adejo [ 1 ] 

  

%5.94

100
20

1.120

=








 −= x
 



B.O. Adejo et al                                                       Adv. Appl. Sci. Res., 2011, 2(6):24-31   
 _____________________________________________________________________________ 

31 
Pelagia Research Library 

% improvement of Adejo and Singh [ 2 ] over Adejo [ 1 ] 
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% improvement of Adejo and Ogala over Monteiro [ 6 ] 

  

%95.94

100
20

01.120

=








 −= x
 

 
% improvement of Adejo and Ogala over Adejo and Singh [ 2 ] 
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