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ABSTRACT

The instability problem of magnetorotatory thermosolutal convection of the Veronis and Sern type is examined
taking in to account the Dufour effect. Semi-circle theorems are derived, that prescribe upper limits for complex
growth rate of oscillatory motions of neutral or growing amplitude in such a manner that it naturally culminatesin
sufficient conditions precluding the non- existence of such mations for an initially bottom heavy as well as an
initially top heavy configurations. Further, results for Dufour-driven thermosolutal convection problems with or
without the individual effects of a rotation or magnetic field follow as a consequence.
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INTRODUCTION

The stability properties of binary fluids are quitiéferent from pure fluids because of Soret anddDu effects [1,
2]. An externally imposed temperature gradient poed a chemical potential gradient and the phenomknown
as the Soret effect, arises when the mass fluxagmta term that depends upon the temperatureegrtadihe
analogous effect that arises from a concentratiadignt dependent term in the heat flux is calledDufour effect.
Although it is clear that the themosolutal and $@efour problems are quite closely related, thelationship has
never been carefully elucidated. They are in féotmally identical and this is done by means ofirsedr
transformation that takes the equations and boyrmtarditions for the latter problem into those floe former. [3]
have studied the comparison between experimergaltseand theoretical prediction using Flory's thefor binary
liquid mixtures and have calculated u.s.velocitynixture at temperature 303.15K of molecules dfedent
assigned shapes and a good agreement betweennesperand theory has been observed. The effecttowf f
parameters on the velocity field, temperature figldl concentration distribution have been studigd4h and
results are presented graphically and discussedtitptevely on the problem of viscous dissipatiofieets on
unsteady free convection and mass transfer flow @asaccelerated vertical porous plate with suct[dh have
investigated the problem on hydromagnetic natusalvection flow of an incompressible viscoelastigdibetween
two infinite vertical moving and oscillating parlliplates.

Two fundamental configurations have been studiethéncontext of thermosolutal instability probletime first one
by [6] wherein the temperature gradient is stainijzand the concentration gradient is destabilizind the second
one by [7] wherin the temperature gradient is dBkténg and the concentration gradient is stabiliz The main
results derived by Stern and Veronis for theipeesive configurations are that both allow thewoence of a
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stationary pattern of motions or oscillatory mosiasf growing amplitude provided the destabilizimncentration
gradient or the temperature gradient is sufficietdrge. However, stationary pattern of motionhsg preferred
mode of setting instability in case of Stern’ cgufiation whereas oscillatory motions of growing éitage are
preferred in Veronis configuration. Further, thessults are independent of the initially gravitatfly stable or
unstable character of the two configurations. lewviof the above discussion, thermosolutal configoma of
Veronis and Stern types can therefore be furttessdied into the following two classes:

The first class in which thermosolutal instabilityanifests itself when the total density field métially bottom
heavy and

(i) The second class in which thermosolutal instabitignifests itself when the total density field ngtially top
heavy.

[8] has derived a characterization theorem for Deddriven thermosolutal convection problem of Vesotype that
disapproves the existence of oscillatory motiormsvgng amplitude in an initially bottom heavy condigtion if

0) r <1 and
g

277 (1+ Tj(l— r)

g
(i) R <

R,)B

thermal Prandtl number, the Dufour number, theoratf solute gradient to temperature gradient, ahe,
concentration Rayliegh number. The restrictionifi)the above results may be physically justifiablecertain
situations, however, it is not mathematically palpaFurther, the sufficient character of condit{dhcoupled with
the nature of their mathematical analysis strosgiggest the possibility of the derivation of anemppound for the
modulus of the complex growth rate of an arbitrasgillatory perturbation which may be neutral ostatle that
will automatically take care of condition (ii) ayield the above results without the restrictionad will also be
uniformly applicable for an initially bottom heawag well as an initially top heavy configurations.

Wwhere 7, g, y, B, R;, and Ry respectively denote the Lewis number, the

Motivated by these considerations, the presentmiapestigates the combined effect of rotation aragnetic field
on Dufour-driven thermosolutal convection probleofsthe Veronis and Stern type and derives semilecir
theorems that prescribe upper limits for the commeowth rate of oscillatory motions of neutral growing
amplitude in such a manner that. it naturally calatés in sufficient conditions precluding the nemistence of
such motions for initially bottom heavy as well tap heavy configurations.. Further, results for durfdriven
thermosolutal convection problems with or withcwe individual effects of a rotation or a magneigdtd follow as a
consequence.

2. Mathematical Formulation and Analysis

The relevant governing non-dimensional linearizeertyrbation equations of Dufour-driven thermosdluta
convection of the Veronis’ type in the presence ainiform vertical rotation and magnetic field wilight change
in notations are [8,9]

(D2 —aZ{DZ -a? —ij: Ra’6-Ra’p+TD -QD(D? -a%)h,,  (2.1)
g

(D2 -a? - p)o+RyD? -a%Jp=-w . 2.2)
|r(D? -a%)- plp=-w, (2.3)
(DZ -a’ —&th =-Dw , (2.4)
o
(Dz—az——pji=—Dw—QD£ , 2.5)
o

and
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(Dz—az— paaljfz—DZ, (2.6)

4 114 ]
WhereRT=ga’Bd , >0 and RS=M,,B'>O,R=%,
KU KU

and y = Do, , (ﬂ is called the Dufour coefficientj ,
C,k (C,
with
w=0=08=¢=h,=Dw={=D¢ atz=0andz=1. 2.7)
(both boundaries rigid and petfeconducting)

d
In the above equations z is the real independenihla such thaO< z<1, D =d—is the differentiation with
V4

respect to z a” > 0 is a constantg >0 is a constant, 0, >0 is a constanty > 0 is a constant yy > Ois a
constantRr and Ry are positive constantd, > 0 is a constanQ > 0 is a constanp = p, + i p; is a complex
constant and as a consequence the dependent eariat{z)=w, (z)+iw (z), 8(z)=8,(z)+i6,(2).

W2)=0(2)+ia(z) h(z)=h, +ih,, 1(2)=2,(2)+it(z) and&(z) =&, (2)+i& (2) are complex

valued functions of real variable z. The meanihgymbols from the physical point of view are akkdws: z is the
d

vertical coordinate,d— is the differentiation along the vertical directj@® is the square of the wave numberis
V4

the Prandtl numbeig; is the magnetic Prandtl numberjs the Lewis number J is here referred to as Dufour
number Ry is the thermal Rayleigh numbeIRS is the concentration Rayleigh numbe&tis the Taylor numbeR is

the Chandrasekhar numberjs the complex growth ratey is the vertical velocityf is the temperaturep is the
concentrationh, is the vertical magnetic field, is the vertical vorticity, and, is the vertical current density.

The system of equations (2.1-2.6) together withbthendary conditions (2.7) constitute an eigen egdctoblem for
complex growth rate p=p +ipi for given values of the other parameters , namely,

aZ,J, RT RS’Q,T,UlandT and a given state of the system is stable, neatrainstable according ap, is
negative, zero or positive. Further,

@p # Oand p, 2 O describe oscillatory motions of neutral or growargplitude;

(b) R>0and R; >0and either Q=0=T or Q=00r T =0 respectively describe Dufour-  driven
Veronis thermosolutal configuration (DDVTC) or rtatey DDVTC or hydromagnetic DDVTC;

() Ry <0and Ry <0 and either Q =0=T or Q = 0 or T = O respecfivdscribe Dufour-  driven Stern
thermosolutal configuration (DDSTC) or rotatory DDS or hydromagnetic DDSTC;

a)yr= % < 1{I: = @ < 1} describes an initially bottom heavy DDVTC (DDSTai)d

R
(e) M= 1(I: = 1) describes an top heavy DDVTC (DDSTC).
Finally, if p, = 0= p, = O,Daz’ then the principle of exchange of stabilities @id, otherwise we have

overstability at least when instability sets incagtain modes.
We now prove the following theorems:
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Theorem 1 (A semi-circletheorem for Dufour-driven magnetorotatory Veronis thermosolutal convection)
If (p,w,é?,go, hZ,Z,f), p=p, +ip,,p, 20,p, #0 , is a nontrivial solution of the equations (2.7),and

R >0,R, >0 y>0,Q=0 and T =0, then

|p|< FR.B’Ry’ \/—1

n2(1+o)1-r1)

where A = 4rRiRy 5 ,0 =min Li,l and ™ =&.
(1-7)2m*(1+0)B oo, R,

Proof: Using the transformations

~ 1-1
O=—0+
Ry ¢
9=¢
W=W (2.10)
h,=h,
{=¢
and g?:f
equations (2.1)-(2.8) assume the following forms
(D2 —aZID2 -a’ ——pjw: Ra*g- R;azgo+TDZ—QD(D2 —az)hz, (2.11)
g
(D2 -a’- p)6’ =-Bw , (2.12)
2_.2_0P __Ww
(D a %) Q= - (2.13)
D? - a2 —ﬂ]hz =—Dw , (2.14)
(o)
D2 -4’ —g = -QDE-Dw , (2.15)
and
D?-a’ —%}E =-DC , (2.16)
with
w=0=60=¢=h,=Dw=¢ =D¢ atz=0andz=1,
(both boundaries rigid and perfectly conducting) (2.17)

whereR; :%(T <1) RS Rs +RT B= %}/T)] and the sign '~ has been omitted for
simplicity.

Multiplying equation (2.11) by* (* indicates complex conjugation) throughout,dgtating the resulting equation
over the vertical range of z and utilizing (2.12€),we get
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.:[W*(Dz —aZXD2 -a? —gjwdz+ RTBaZ .1[9(D2 -a® - p*)e* dZ‘TRs,azi¢{D2 -a’ ‘pT*jW dz

f(m2 . Ppro| .
+Q'(|)'(D2 az)hz{D2 a’ — 1}hzdz

h 2 2 P*),, h | 2 2 POy
-T[¢|D?-a - dz-QT[é*| D* -a — tfd =0
0 0

(2.18)

Integrating the various terms of equations (2.38pérts for an appropriate number of times and nkise of the
boundary conditions (2.17)), it follows that

EUDZMZ +2a%|Dw’ +a“|vv12]dz+gpiﬂow12 + 7w iz TRS'aZ:[QDﬂz + 27 bz

+Q h(DZ —az)hZ ’

Qp 0,

+QT:|;0DE|2 + a2|£|2)dz+T:[0DZ|2 + a2|Z|2)dz— er':z :[QDHF + a2|6?|2)+ Rslazp* :[Mzdz

1 2 %1 % 1 1
R N e L [ (G

(2.19)

Equating the real and imaginary parts of (2.1%ewm and canceling p, # 0) throughout from the imaginary part,
we get

J(jowi* + 221w e+ 2] (o 2
+T Ry anD(AZ +az|€42)dZ+Q£ (D* ~a*)h,

floer a2 oot +athes

[loa e ) e

0

1 1 ! 21 1 1 2
' Qo. R a T Qo T _
+pr[ 2 2O 2 J1 QDhZ|2+a2|hZ|2)dz—_B _([|9|2d2+0_£|5|2d2+71_([|‘(| dz|=

(2.20)
and
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LR e e e L

T To
ez + 2% flgf az= 0
o3 g
(2.21)
Multiplying equation (2.21) byp, and adding the resulting equation to (2.20), wiziob

h([)2 —512)\/\42 +%EQDV\,{2 + a2|vx42}jz+QTali|£|2dz+r Rs’aziﬁD(;}z +a2|¢}2}jz
\( a’)h,
= flod +aefhe=o ez

We first note that, since w,8,¢,h, and{ satisfy W(O) =0= W(l), 9(0) =0= 9(1) ,

[(pa? +alekiz+ T (Dl + vl b

¢(0)=0=¢(1), hz(0)= ()andz(o) :z() we have by [10]

1

J'|va12dzz rrzj'|vx,1 dz , (2.23)

s \

[|pg*dz=1 [l "az | (2.24)

s s

[|og*dz= e [lgf dz | (2.25)

s B

[|oh,[ dz= 12 [|n,[*dz (2.26)
and i i

1 1

[I0g*dz= 1 f[¢dz . (2.27)
Further(,) i

J1.|DV\:12dZ=—J1.W*D2WdZ <
0
Hw D Mdz

0
Jiw [z
0 0

_Dwﬂowdzs @|w12dzJ%@DdeZJ%

(utilizing Schwartz inequality)

H
IN
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L[ B,k
s—{ﬂDwfdz} {HDZM dz} ,
mn 0 0
So that we have

j‘DZMZdZ > T[ZhDV\fdz > n“hw]zdz
0 0 0

(using 2.23)
Therefore by utilizing inequalities (2.23) and @.2we obtain

1 1
J(|p2wf* +a'iwi* +2a%puf" Joz = (re +a° [jw"cz .
Further(,) (2.12) implies that i

RS CRYRY CERERE
& lfox -k +20,float +ato o o |

Second, sincep, = 0, therefore it follows from (2.30) that
j|vx42dzz§ﬁ\(oz —a2)9‘2d2+|p|2i|6’|2dz]

0 0 0

And

Lo 1L )

'([|V\:1 dz >?.([‘(D2 - az)H‘ dz

Also, emulating the derivation of inequality (2.28)d (2.29), we have

_h(DZ - az)ﬁ‘zdz = mDZH‘Z +2a%|Dg" + a4|6'|2jdz > (7 + az)zjl'|€|2dz
0 0 0

Combining inequalities (2.31) and (2.33), we obtain

[ a2 gl vty +lof o e

Again

(el
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(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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gl oo o]

[Using (2.32) and (2.34)]
1
Jwra)) e |
B? (7 +a)

1
- [6*(D?-a%)q ¢z
0
[Using Schwartz inequality]
1
m +a? 27
SRL A J(Der +a(e e 239
B ( ) o
Using inequality (2.29) in the first integral, inedities (2.23)-(2.27) and (2.35) in (2.22) andizitig the fact
thatp, =0, we get

(2 4 2 f [+ 7 R, 22 (2 + 02|z + Qi + a2 (D + a7, ) iz

0

+T(n2+a2)i|i|2dz
TN
s T B

Equatlon (2 21) upon using (2.23) yields the follogvinequalities

R.a j|¢1 dz>( )M dz Q”1j0[>h| +a?h,|” )dz——j|Z| dz

(2.37)
QHDhZ|2+a2|hZ|2)dz>(”2+a )j|v»1 dz-Fs a 0j|¢1 dz ——j|(| dz
i (2.38)
and
T|Z|2> (772 +a2)I|V\42dZ—Q01IQDhZ|2 + a2|hz|2)dz— Rs'aza_ﬂqfdz

(2.39)
Inequality (2.36) coupled with each of the ineqtirdi (2.37)-(2.39) yields the following inequal@tieespectively:

(7 + a2)2(1+§ji|w|2dz+Q(n2 +a2Xl—T%1E0DhZ|2 +a2|hz|2)dz+T(n2 +a2X1—§E|{|Zdz

R, & L
7 e {“(nuaz)z} Jln e @40
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(nz+az)2(1+aijiwzdzm;az(nz+az)( W dz+7( + 22| 1 )( ]ym iz

1

R, @’ LS
<(772 +a’)B? {1+ (n2 +a ) } “WI @ @40
and

2(;12 + a2)2.|1‘|vx,12dz+Q(n2 +a2)(1—al).1[0th|2 +a2|hz|2)dz+ RS'aZ(IZz +a2)(T‘U)Jl.|¢12dZ

1
R, a’ L
1+ d .
Sihpifie e
Now, if 0 = min(%,ai j then depending on the value of,exactly one of the inequalities (2.40)-(2.42) will
1
imply that
, 1
1 2 21
1+ o) +a2) [|wW?dz< R a 2dz. (2.43)
( )_([|W1 (n2+a2)B (n2+a) ,([|W1
2,3
Since the minimum value ognz-'-iza)with respect toa’ is 271 , it therefore follows from inequality (2.43)
a
that
JIRF:
271 p ' _RRy _TRRy
1+ J)B? N L S G = =S 2.44
R ){ (nz+az)2} A s ey e
Inequality (2.44) implies that
P < (’72 +a’NA* -1, (2.45)
4R Ry 4rR;Ry
A=
A T e e J)Bz( (L-7)277* 1+ 0)B? j

Further, it follows from inequality (2.43) that

+a’ +a2f(1+
(7 +a )(’2722 a’)'(1+9) <R =IR, (2.46)
a’B°Ry
2\2
Since the minimum value ogiza)with respect toa’ is 477°, therefore it follows from inequality (2.46)
a
that
2
(7 +a%)< RRBy 42)

4?1+ 9)1-1)

Combining inequalities (2.45) and (2.47), we figajket
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FRSRBZy (2 4
|p|<4n2(1+5)(1—r) AL

This completes the proof of the theorem.

Theorem 1, from the point of view of hydrodynarstability theory, may be stated as: the complexwgnorate
pP=p +ipi of an arbitrary oscillatory perturbation of neltmr growing amplitude in Dufour-driven

magnetorotatory thermosolutal instability of Versiriype lies inside a semicircle in the right haffthe p, p; -
plane whose centre is at the origin and whose sadiu is

2 2
4ﬂ2r(i|:\;_l§)‘)(ly— T)\Mz -1= 47722_?5_)({_ T) VA% =1. This result is uniformly valid for an initiallyop

heavy as well as initially bottom heavy configuoati

Corollary 1: If, (p,W,H,(D, hZ,Z,f) ,P=p, +ip; p, # 0,is a non trivial solution of equations (2.11)-(2.&hd
27m* (1-1)(1+0)B?

>0,R.>0and T <
R >0,Rs AR.Ry

,then p, <O.

Proof: Follows from theorem 1.
Cor. 1 implies that oscillatory motions of growiagplitude are not allowed in Dufour —driven magnetiatory
thermosolutal instability of Veronis’ type if theniiial stability parameter [ does not exceed the

21 (1-1)(1+9)B?
© 4RRy

bottom heavy configuration.

valu . Further, this result is uniformly valid for irdlly top heavy as well as initially

Remarks: The following remarks, now, deserve attent

@) If
Afr _ 2
O0<R <Rg< 217 (1-1)1+ J)B and p; # 0, then cor.1 implies thgy, <O.
4Ry
(b) If
27 (1-1)1+9)B?

O<R; < <Rg andp, # 0,even then cor.1 implies thpt <0

4Ry
It is easy to see that

i) o =L for DDVTC, (ii) J = min(i,ij for Dufour — driven hydromagneticVTC, and
g g O

1
(T
(i) 0 = mln(— ,].j for Dufour-driven rotatory VTC. Consequently, ttigaracterization theorem of [8] can easily
g
be averred from (a).

Theorem 2 (A Semi-circle theorem for Dufour-driven magnetor otatory Stern ther mosolutal convection):
If (p,W,9,¢7, hZ,Z,f) p=p, +ip,,p, 20,p, Z0, is a non trivial solution of equations (2.11)-(@).1

and R, <0,Rg <0, then

1061
Pelagia Research Library



Hari Mohan Adv. Appl. Sci. Res,, 2012, 3(2):1052-1063

~ Ry
M+ )R]
1-1 [32 _
Pl AL+ A
~ Ry]
M+ R
j_{ -1 " 5 {lll}le&l

.0 =min
27 [+ 5)r

oo,

Proof: ReplacingR; and Ry, by |RT|and - |RS| respectively in equation (2.11) and proceeding:tixas in
theorem 1mutatis mutandis, we get the desired result.

Corollary 2: If, (p,w,H,go, hZ,Z,f), p=p, +ip; p; # O,is a nontrivial solution of equations(2.11)-(2.:EAd

27n“r(1+ 5)_(;1Ry)
R <OR, <Oandf < Py ~T) | then p, <O.

Proof: Follows from Theorem 2.

The essential contents of Theorem 2 and cor.2 flapoint of view of hydrodynamic stability are din to those
of Theorem 1. However now they pertain this timedDufour -driven magnetorotatory thermosolutal ibgtey of
Stern type .Further remarks similar to those afterl hold here also. To be specific, cor. 2 ingptizat:

@) If
27n“r(1+ 5)—ﬂ
0<|Rs| <|RT|S 1 (1_T) andp, # 0, thenp, <O.
(b) If
27711+ 8)- M

0<|RS|S|RT|S (1_T) <|RT| andp, # 0, even therp, <O.

4

Further, it is easy to see that

(i) 3=% for DD STC, (ii) e min(%,aij for Dufour — driven hydromagnetic STC, and
1

~ (1
@iy 0= mln(— ,lj for Dufour—driven rotatory STC. Consequently, aaa easily write down from cor.2 the
g
characterization theorem for DDSTC with or withthe individual effects of a rotation and a magnééld.
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