On common fixed point theorems for weakly compatible mappings in Menger space

Arihant Jain ${ }^{1}$ and Basant Chaudhary ${ }^{2}$
${ }^{I}$ Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.) 456550, India
${ }^{2}$ Research Scholar, Department of Mathematics, Mewar University, Chittorgarh (Raj.), India

Abstract

In this paper, the concept of weak compatibility in Menger space has been applied to prove a common fixed point theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [8].

Keywords: Probabilistic metric space, Menger space, common fixed point, compatible maps, weak compatibility. AMS Subject Classification: Primary 47H10, Secondary 54H25.

INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [6]. It is a probabilistic generalization in which we assign to any two points x and y , a distribution function $\mathrm{F}_{\mathrm{x}, \mathrm{y}}$. Schweizer and Sklar [9] studied this concept and gave some fundamental results on this space. Sehgal and Bharucha-Reid [10] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point theory in Menger space.

Recently, Jungck and Rhoades [5] termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they commute at their coincidence points. Sessa [11] initiated the tradition of improving commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [4] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [7]. In the sequel, Pathak and Verma [8] proved a common fixed point theorem in Menger space using compatibility and weak compatibility. Using the concept of compatible mappings of type (A), Jain et. al. [1,2] proved some interesting fixed point theorems in Menger space. Afterwards, Jain et. al. [3] proved the fixed point theorem using the concept of weak compatible maps in Menger space.

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps and occasionally weak compatibility which turns out be a material generalization of the result of Pathak and Verma [8].

2. Preliminaries.

Definition 2.1. A mapping $F: \mathrm{R} \rightarrow \mathrm{R}^{+}$is called a distribution if it is non-decreasing left continuous with $\inf \{F(t) \mid t \in R\}=0 \quad$ and $\quad \sup \{F(t) \mid t \in R\}=1$.
We shall denote by L the set of all distribution functions while H will always denote the specific distribution function defined by $H(t)=\left\{\begin{array}{ll}0, & t \leq 0 \\ 1, & t>0\end{array}\right.$.
Definition 2.2. [7] A mapping $t:[0,1] \times[0,1] \rightarrow[0,1]$ is called a t-norm if it satisfies the following conditions : $(\mathrm{t}-1) \quad \mathrm{t}(\mathrm{a}, 1)=\mathrm{a}, \quad \mathrm{t}(0,0)=0$;
(t-2)
$\mathrm{t}(\mathrm{a}, \mathrm{b})=\mathrm{t}(\mathrm{b}, \mathrm{a}) ;$
$t(c, d) \geq t(a, b) ; \quad$ for $c \geq a, d \geq b$,
(t-3)
$\mathrm{t}(\mathrm{t}(\mathrm{a}, \mathrm{b}), \mathrm{c})=\mathrm{t}(\mathrm{a}, \mathrm{t}(\mathrm{b}, \mathrm{c}))$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2.3. [7] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty set X and a function $\mathcal{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{L}$, where L is the collection of all distribution functions and the value of \mathcal{F} at $(\mathrm{u}, \mathrm{v}) \in$ $\mathrm{X} \times \mathrm{X}$ is represented by $\mathrm{F}_{\mathrm{u}, \mathrm{v}}$. The function $\mathrm{F}_{\mathrm{u}, \mathrm{v}}$ assumed to satisfy the following conditions:
(PM-1) $\mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{x})=1$, for all $\mathrm{x}>0$, if and only if $\mathrm{u}=\mathrm{v}$;
$(\mathrm{PM}-2) \mathrm{F}_{\mathrm{u}, \mathrm{v}}(0)=0$;
(PM-3) $\mathrm{F}_{\mathrm{u}, \mathrm{v}}=\mathrm{F}_{\mathrm{v}, \mathrm{u}}$;
(PM-4) If $\mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{x})=1$ and $\mathrm{F}_{\mathrm{v}, \mathrm{w}}(\mathrm{y})=1$ then $\mathrm{F}_{\mathrm{u}, \mathrm{w}}(\mathrm{x}+\mathrm{y})=1$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{X}$ and $\mathrm{x}, \mathrm{y}>0$.
Definition 2.4. [7] A Menger space is a triplet $(\mathrm{X}, \mathcal{F}, \mathrm{t})$ where $(\mathrm{X}, \mathcal{F})$ is a PM-space and t is a t -norm such that the inequality
(PM-5) $\mathrm{F}_{\mathrm{u}, \mathrm{w}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{t}\left\{\mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{x}), \mathrm{F}_{\mathrm{v}, \mathrm{w}}(\mathrm{y})\right\}$, for all $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{X}, \mathrm{x}, \mathrm{y} \geq 0$.
Definition 2.5. [7] A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in a Menger space (X,F,t) is said to be convergent and converges to a point X in X if and only if for each $\varepsilon>0$ and $\lambda>0$, there is an integer $\mathrm{M}(\varepsilon, \lambda)$ such that
$\mathrm{F}_{\mathrm{X}, \mathrm{X}}(\varepsilon)>1-\lambda$ for all $\mathrm{n} \geq \mathrm{M}(\varepsilon, \lambda)$.
Further the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is said to be Cauchy sequence if for $\varepsilon>0$ and $\lambda>0$, there is an integer $\mathrm{M}(\varepsilon, \lambda)$ such that $\mathrm{F}_{\mathrm{x}_{\mathrm{n}, \mathrm{x}}}(\varepsilon)>1-\lambda$ for all $\mathrm{m}, \mathrm{n} \geq \mathrm{M}(\varepsilon, \lambda)$.
A Menger PM-space ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) is said to be complete if every Cauchy sequence in X converges to a point in X .
A complete metric space can be treated as a complete Menger space in the following way:
Proposition 2.1. [7] If (X, d) is a metric space then the metric d induces mappings
$\mathcal{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{L}$, defined by $\mathrm{F}_{\mathrm{p}, \mathrm{q}}(\mathrm{x})=\mathrm{H}(\mathrm{x}-\mathrm{d}(\mathrm{p}, \mathrm{q})), \mathrm{p}, \mathrm{q} \in \mathrm{X}$, where
$\mathrm{H}(\mathrm{k})=0, \quad$ for $\mathrm{k} \leq 0$ and $\mathrm{H}(\mathrm{k})=1$, for $\mathrm{k}>0$.
Further if, $t:[0,1] \times[0,1] \rightarrow[0,1]$ is defined $b y t(a, b)=\min \{a, b\}$. Then (X, F, t) is a Menger space. It is complete if (X, d) is complete.

The space (X, F, t) so obtained is called the induced Menger space.
Definition 2.6. [8] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they commute at their coincidence points i.e. $A x=S x$ for $x \in X$ implies $A S x=S A x$.

Definition 2.7. [8] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if $F_{A S x_{X_{n}} S A x_{n}}(x) \rightarrow 1$ for all $x>0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $A_{n}, S x_{n} \rightarrow u$ for some u in X, as $n \rightarrow \infty$.

Remark 2.1. [8] The concept of weakly compatible mappings is more general than that of compatible mappings.
Lemma 2.1. [8] Let (X,F,*) be a Menger space with t-norm * such that the family $\left\{*_{\mathrm{n}}(\mathrm{x})\right\}_{\mathrm{n} \in \mathrm{N}}$ is equicontinuous at $\mathrm{x}=1$ and let E denote the family of all functions
$\phi: R^{+} \rightarrow R^{+}$such that ϕ is non-decreasing with $\lim _{\mathrm{n} \rightarrow \infty} \phi^{\mathrm{n}}(\mathrm{t})=+\infty, \forall \mathrm{t}>0$. If $\left\{\mathrm{y}_{\mathrm{n}}\right\}_{\mathrm{n} \in \mathrm{N}}$ is a sequence in X satisfying the condition
$\mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{t}) \quad \geq \mathrm{F}_{\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}}(\phi(\mathrm{t}))$,
for all $\mathrm{t}>0$ and $\alpha \in[-1,0]$, then $\left\{y_{n}\right\}_{n \in N}$ is a Cauchy sequence in X.

Proposition 2.2. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in a Menger space ($X, \mathcal{F}, \mathrm{t}$) with continuous t-norm t. If the subsequence $\left\{\mathrm{x}_{2 \mathrm{n}}\right\}$ converges to x in X , then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ also converges to x .

Proof. As $\left\{\mathrm{x}_{2 \mathrm{n}}\right\}$ converges to x , we have
$\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}}(\varepsilon) \geq \mathrm{t}\left(\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}}\left(\frac{\varepsilon}{2}\right), \mathrm{F}_{\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}}\left(\frac{\varepsilon}{2}\right)\right)$.
Then
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}}(\varepsilon) \geq \mathfrak{t}(1,1)$, which gives $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}}(\varepsilon)=1, \forall \varepsilon>0$ and the result follows.

RESULTS

Theorem 3.1. Let A, B, S, T, P and Q be self mappings on a Menger space ($\mathrm{X}, \mathcal{F}, *$) with continuous t -norm * satisfying :
(3.1.1) $\quad \mathrm{P}(\mathrm{X}) \subseteq \mathrm{ST}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subseteq \mathrm{AB}(\mathrm{X})$;
(3.1.2) $\quad \mathrm{AB}=\mathrm{BA}, \quad \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{QT}=\mathrm{TQ} ;$
(3.1.3) One of $\mathrm{ST}(\mathrm{X}), \mathrm{Q}(\mathrm{X}), \mathrm{AB}(\mathrm{X})$ or $\mathrm{P}(\mathrm{X})$ is complete;
(3.1.4) The pairs $(\mathrm{P}, \mathrm{AB})$ and $(\mathrm{Q}, \mathrm{ST})$ are weak compatible;
(3.1.5) $\left[1+\alpha \mathrm{F}_{\mathrm{ABx}, \mathrm{STy}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Px}, \mathrm{Qy}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Px}, \mathrm{ABx}}(\mathrm{t}){ }^{*} \mathrm{~F}_{\mathrm{Qy}, \mathrm{STy}}(\mathrm{t}), \mathrm{F}_{\mathrm{Px}, \mathrm{STy}}(2 \mathrm{t}) * \quad \mathrm{~F}_{\mathrm{Qy}, \mathrm{ABx}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{ABx}, \mathrm{STy}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}, \mathrm{ABx}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qy}, \mathrm{STy}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}, \mathrm{STy}}(2 \phi(\mathrm{t}))$
$*^{\mathrm{F}_{\mathrm{Qy}, \mathrm{ABx}}}(2 \phi(\mathrm{t}))$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and $\phi \in \mathrm{E}$.
Then A, B, S, T, P and Q have a unique common fixed point in X .
Proof. Suppose $x_{0} \in X$. From condition (3.1.1) $\exists x_{1}, x_{2} \in X$ such that $\mathrm{Px}_{0}=\mathrm{STx}_{1}$ and $\mathrm{Qx}_{1}=\mathrm{ABx}_{2}$.

Inductively, we can construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that
$\mathrm{y}_{2 \mathrm{n}}=\mathrm{Px}_{2 \mathrm{n}}=\mathrm{STx}_{2 \mathrm{n}+1}$ and $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Qx}_{2 \mathrm{n}+1}=\mathrm{ABx}{ }_{2 \mathrm{n}+2}$
for $\mathrm{n}=0,1,2, \ldots$.
Step I. Let us show that $\mathrm{F}_{\mathrm{y}_{\mathrm{n}+2}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}}(\phi(\mathrm{t}))$.
For, putting $\mathrm{x}_{2 \mathrm{n}+2}$ for x and $\mathrm{x}_{2 \mathrm{n}+1}$ for y in (3.1.5) and then on simplification, we have
$\left[1+\alpha \mathrm{F}_{\mathrm{ABx}}^{2 \mathrm{n}+2}, \mathrm{STx}_{2 \mathrm{n}+1}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}+2}, \mathrm{Qx} \mathrm{Qn}_{2 \mathrm{+}}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Px}_{2 n+2},}, \mathrm{ABx}_{2 \mathrm{n}+2}(\mathrm{t}){ }^{*} \mathrm{~F}_{\mathrm{Qx}}^{2 \mathrm{n}+1}, \mathrm{STx}{ }_{2 \mathrm{n}+1}(\mathrm{t}), \mathrm{F}_{\mathrm{Px}_{2 \mathrm{n}+2}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \mathrm{t})\right.$
$\left.\mathrm{F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{ABx}_{2 \mathrm{n}+2}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{ABx}_{2 \mathrm{n}+2}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}+2}, \mathrm{ABx}_{2 \mathrm{n}+2}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}+2},}, \mathrm{STx}_{2 \mathrm{n}+1}(2 \phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1},}, \mathrm{ABx}_{2 \mathrm{n}+2}(2 \phi(\mathrm{t}))$
$\left[1+\alpha \mathrm{F}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}(\mathrm{t})}$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}}(\phi(\mathrm{t}))$
$* \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}}}(2 \phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t})$

If $\mathrm{F}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}(\phi(\mathrm{t}))$ is chosen 'min' then we obtain
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})), \quad \forall \mathrm{t}>0$
a contradiction as $\phi(\mathrm{t})$ is non-decreasing function.

Thus,
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}}(\phi(\mathrm{t})), \quad \forall \mathrm{t}>0$.
Similarly, by putting $x_{2 n+2}$ for x and $x_{2 n+3}$ for y in (3.1.5), we have
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+3}, \mathrm{y}_{2 \mathrm{n}+2}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})), \quad \forall \mathrm{t}>0$.
Using these two, we obtain
$\mathrm{F}_{\mathrm{y}_{\mathrm{n}+2}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}}(\phi(\mathrm{t})), \quad \forall \mathrm{n}=0,1,2, \ldots, \mathrm{t}>0$.
Therefore, by lemma 2.1, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .
Case I. ST(X) is complete. In this case $\left\{\mathrm{y}_{2 \mathrm{n}}\right\}=\left\{\mathrm{STx}_{2 \mathrm{n}+1}\right\}$ is a Cauchy sequence in $\mathrm{ST}(\mathrm{X})$, which is complete.
Thus $\left\{\mathrm{y}_{2 \mathrm{n}+1}\right\}$ converges to some $\mathrm{z} \in \mathrm{ST}(\mathrm{X})$. By proposition 2.2, we have
$\left\{\mathrm{Qx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}$ and $\quad\left\{\mathrm{STx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}$,
$\left\{\mathrm{Px}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z} \quad$ and $\quad\left\{\mathrm{ABx}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z}$.

As $\mathrm{z} \in \mathrm{ST}(\mathrm{X})$ there exists $\mathrm{u} \in \mathrm{X}$ such that $\mathrm{z}=\mathrm{STu}$.
Step I. Put $x=x_{2 n}$ and $y=u$ in (3.1.5), we get
$\left[1+\alpha \mathrm{F}_{\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{STu}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qu}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Px}_{2 n}, \mathrm{ABx}}^{2 \mathrm{n}}\right.$ (t$) * \mathrm{~F}_{\mathrm{Qu}, \mathrm{STu}}(\mathrm{t}), \mathrm{F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{STu}}(2 \mathrm{t}) * \quad \mathrm{~F}_{\mathrm{Qu}, \mathrm{ABx}}^{2 \mathrm{n}}$ (2t)\}
$+\mathrm{F}_{\mathrm{ABx}_{2 \mathrm{n},}, \mathrm{STu}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{ABx}_{2 \mathrm{n}}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qu}, \mathrm{STu}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{STu}}(2 \phi(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{Qu}, \mathrm{ABx}_{2 \mathrm{n}}}(2 \phi(\mathrm{t}))$.

Letting $\mathrm{n} \rightarrow \infty$ and using (3.1.6), (3.1.7), we get
$\left[1+\alpha \mathrm{F}_{z, \mathrm{z}}(\mathrm{t})\right]{ }^{*} \mathrm{~F}_{\mathrm{z}, \mathrm{Qu}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{z, z}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Qu}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{z}, \mathrm{z}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{Qu}, \mathrm{z}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{z, z}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{z, \mathrm{z}}(\phi(\mathrm{t}))$

* $\mathrm{F}_{\mathrm{Qu}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(2 \phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qu}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{z, \mathrm{Qu}}(\mathrm{t})+\alpha \mathrm{F}_{z, \mathrm{Qu}}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}), \mathrm{F}_{\mathrm{Qu}, z}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{\phi}(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Qu}, z}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}), \mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, z}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{Qu}, z}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qu}, z}(\phi(\mathrm{t}))$
* $\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t})+\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{C}(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Qu}, z}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{Qu}, \mathrm{z}}(\phi(\mathrm{t}))$
which is a contradiction by lemma (2.1) and we get
$\mathrm{Qu}=\mathrm{z}$ and so $\mathrm{Qu}=\mathrm{z}=\mathrm{STu}$.
Since (Q, ST) is weakly compatible, we have
$\mathrm{STz}=\mathrm{Qz}$.
Step III. Put $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{y}=\mathrm{Tz}$ in (3.1.5), we have
$\left[1+\alpha \mathrm{F}_{\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{STTz}}(\mathrm{t})\right]{ }^{*} \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{OTz}}(\mathrm{t})$

$+\mathrm{F}_{\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{STTz}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}_{2 \mathrm{n}}{ }^{\prime} \text { ABx }{ }_{2 \mathrm{n}}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{QTz}, \mathrm{STTz}}(\phi(\mathrm{t}))$
* $\mathrm{F}_{\mathrm{Px}_{2 \mathrm{n}}, \mathrm{STTz}}(2 \phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{QTz}, \mathrm{ABx}}^{2 \mathrm{n}}$ ($2 \phi(\mathrm{t})$.

As $\mathrm{QT}=\mathrm{TQ}$ and $\mathrm{ST}=\mathrm{TS}$, we have
$\mathrm{QTz}=\mathrm{TQz}=\mathrm{Tz} \quad$ and $\quad \mathrm{ST}(\mathrm{Tz})=\mathrm{T}(\mathrm{STz})=\mathrm{Tz}$.
Letting $\mathrm{n} \rightarrow \infty$, we get
$\left[1+\alpha \mathrm{F}_{z, \mathrm{Tz}}(\mathrm{t})\right] * \mathrm{~F}_{z, \mathrm{Tz}}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{z, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Tz}, \mathrm{Tz}}(\mathrm{t}), \mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{T} z, z}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\phi(\mathrm{t})){ }^{\mathrm{F}} \mathrm{F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$

* $\mathrm{F}_{\mathrm{T}, \mathrm{Tz}}(\phi(\mathrm{t}))$) $\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(2 \phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{Tz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{z, \mathrm{Tz}}(\mathrm{t})+\alpha\left\{\mathrm{F}_{z, \mathrm{Tz}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t})\right\} \geq \alpha \min \left\{1 * \mathrm{~F}_{\mathrm{T}, \mathrm{z}}(2 \mathrm{t})\right\}+\mathrm{F}_{z, \mathrm{Tz}}(\phi(\mathrm{t}))$
* 1 * 1 * $\mathrm{F}_{\mathrm{Tz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Tz}, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{T}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{T}, z}(2 \mathrm{t})+\mathrm{F}_{\mathrm{Tz}, z}(\phi(\mathrm{t})){ }^{2} \mathrm{~F}_{\mathrm{Tz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{T}, z, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{T}, z, z}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{\mathrm{Tz}, z}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, z}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{T}, z, z}(\mathrm{\phi}(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{Tz}, z}(\phi(\mathrm{t}))^{*} \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Tz}, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Tz}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Tz}, \mathrm{z}}(\mathrm{t})+\mathrm{F}_{\mathrm{Tz}, z}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{T}, \mathrm{z}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{T}, z, z}(\mathrm{\phi}(\mathrm{t}))$
which is a contradiction and we get $\mathrm{Tz}=\mathrm{z}$.
Now, $\mathrm{STz}=\mathrm{Tz}=\mathrm{z}$ implies $\mathrm{Sz}=\mathrm{z}$.
Hence, $\mathrm{Sz}=\mathrm{Tz}=\mathrm{Qz}=\mathrm{z}$.
Step IV. As $Q(X) \subseteq A B(X)$, there exists $w \in X$ such that $\mathrm{z}=\mathrm{Qz}=\mathrm{ABw}$.

Put $\mathrm{x}=\mathrm{w}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (3.1.5), we get
$\left[1+\alpha \mathrm{F}_{\mathrm{ABw}, \mathrm{STx}_{2 \mathrm{n}+1}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Pw}, \mathrm{Qx}}^{2 \mathrm{n}+1}{ }^{(\mathrm{t})}$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pw}, \mathrm{ABw}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}+1}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pw}, \mathrm{STx}}^{2 \mathrm{n}+1}\right.$ (2t)

* $\left.\mathrm{F}_{\mathrm{Qx} \mathrm{D}_{\mathrm{n}+1}, \mathrm{ABw}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{ABw}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pw}, \mathrm{ABw}}(\phi(\mathrm{t}))$
$* \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1},}, \mathrm{STx}_{2 \mathrm{n}+1}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Pw}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{ABw}}(2 \phi(\mathrm{t}))$.
Letting $\mathrm{n} \rightarrow \infty$, we get
$\left[1+\alpha \mathrm{F}_{z, z}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Pw}, z}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pw}, z}(\mathrm{t}) * \mathrm{~F}_{z, z}(\mathrm{t}), \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(2 \mathrm{t}) * \mathrm{~F}_{z, \mathrm{z}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{z, z}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pw}, \mathrm{z}}(\phi(\mathrm{t}))$
* $\mathrm{F}_{z, z}(\phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(2 \phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{z}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pw}, z}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pw}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\phi(\mathrm{t}))$
* $\mathrm{F}_{z, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}) \geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pw}, z}(\mathrm{t}), \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\phi(\mathrm{t}))$
$\left.\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pw}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pw}, z}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{Pw}, z}(\phi(\mathrm{t}))$
which is a contradiction and hence, we get $\mathrm{Pw}=\mathrm{z}$.
Hence, $\mathrm{Pz}=\mathrm{z}=\mathrm{ABz}$.
Step V. Put $x=z$ and $y=x_{2 n+1}$ in (3.1.5), we have
$\left[1+\alpha \mathrm{F}_{\mathrm{ABz}}, \mathrm{STx}_{2 \mathrm{n}+1}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Pz}, \mathrm{Qx}_{2 \mathrm{n}+1}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{ABz}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}+1}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pz}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{Qx}}^{2 \mathrm{n}+1}, \mathrm{ABz}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{ABz}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{ABz}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Pz}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \phi(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{ABz}}(2 \phi(\mathrm{t}))$.

Letting $\mathrm{n} \rightarrow \infty$, we get
$\left[1+\alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{Pz}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{Pz}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{Pz}}(\phi(\mathrm{t}))$

* $\mathrm{F}_{z, \mathrm{z}}(\phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(2 \phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{z}, \mathrm{Pz}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, z}(\mathrm{t})+\alpha\left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})\right\}$
$\geq \alpha \min \left\{1 * 1, \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t})) *{ }^{*}{ }^{*} 1 * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{z}, \mathrm{Pz}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{P}, \mathrm{z}}(\mathrm{t}) \geq \alpha \min \left\{1, \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{P}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(2 \mathrm{t})+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{z, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{P}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t}))$ * $\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) * 1\right\}+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t})) * 1$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t})+\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{Pz}, \mathrm{z}}(\phi(\mathrm{t}))$
which is a contradiction and hence, $\mathrm{Pz}=\mathrm{z}$
and so $\mathrm{z}=\mathrm{Pz}=\mathrm{ABz}$.
Step VI. Put $\mathrm{x}=\mathrm{Bz}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (3.1.5), we get
$\left[1+\alpha \mathrm{F}_{\mathrm{ABBz}, \mathrm{STx}_{2 \mathrm{n}+1}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{PBz}, \mathrm{Qx}}^{2 \mathrm{n}+1}{ }^{(\mathrm{t})}$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{PBz}, \mathrm{ABBz}}(\mathrm{t}){ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1},}, \mathrm{STx}_{2 \mathrm{n}+1}(\mathrm{t}), \mathrm{F}_{\mathrm{PBz}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \mathrm{t})\right.$
$\left.* \mathrm{~F}_{\mathrm{Qx}}^{2 \mathrm{n}+1}, \mathrm{ABBz}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{ABBz}, \mathrm{STx}_{2 \mathrm{n}+1}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{PBz}, \mathrm{ABBz}}(\phi(\mathrm{t}))$
$\left.{ }^{*} \mathrm{~F}_{\mathrm{Qx}_{2 \mathrm{n}+1},}, \mathrm{STx}_{2 \mathrm{n}+1}(\phi(\mathrm{t})) \quad * \mathrm{~F}_{\mathrm{PBz}, \mathrm{STx}_{2 \mathrm{n}+1}}(2 \phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qx}}^{2 \mathrm{n}+1}, \mathrm{ABBz} 2(\mathrm{t})\right)$.

As $\mathrm{BP}=\mathrm{PB}, \mathrm{AB}=\mathrm{BA}$ so we have
$\mathrm{P}(\mathrm{Bz})=\mathrm{B}(\mathrm{Pz})=\mathrm{Bz}$ and $\mathrm{AB}(\mathrm{Bz})=\mathrm{B}(\mathrm{AB}) z=\mathrm{Bz}$.
Letting $\mathrm{n} \rightarrow \infty$ and using (3.1.6), we get
$\left[1+\alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Bz}, \mathrm{Bz}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{Bz}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Bz}, \mathrm{Bz}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(2 \phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{Bz}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\alpha\left\{\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})\right\}$
$\geq \alpha \min \left\{1 * 1, \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})) * 1^{*} 1 * \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(2 \mathrm{t})+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})^{*} 1\right\}+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t})){ }^{*} 1$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \geq \alpha \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})+\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\phi(\mathrm{t}))$
which is a contradiction and we get $\mathrm{Bz}=\mathrm{z}$ and so
$z=A B z=A z$.
Therefore, $\mathrm{Pz}=\mathrm{Az}=\mathrm{Bz}=z$.
Combining the results from different steps, we get
$\mathrm{Az}=\mathrm{Bz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{Tz}=\mathrm{Sz}=\mathrm{z}$.
Hence, the six self maps have a common fixed point in this case.
Case when $P(X)$ is complete follows from above case as $P(X) \subseteq S T(X)$.
Case II. $\mathbf{A B}(\mathbf{X})$ is complete. This case follows by symmetry. As $Q(X) \subseteq A B(X)$, therefore the result also holds when $\mathrm{Q}(\mathrm{X})$ is complete.

Uniqueness :

Let z_{1} be another common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{Q}, \mathrm{S}$ and T . Then

Put $x=z$ and $y=z_{1}$ in (3.1.5), we get
$\left[1+\alpha \mathrm{F}_{\mathrm{ABz}, \mathrm{ST} \mathrm{z}_{1}}(\mathrm{t})\right]{ }^{*} \mathrm{~F}_{\mathrm{Pz}, \mathrm{Qz}}^{1} \mathrm{(t)}$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Pz}, \mathrm{ABz}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Qz}_{1}, \mathrm{STz}_{1}}(\mathrm{t}), \mathrm{F}_{\mathrm{Pz}, \mathrm{STz}_{1}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{Qz}_{1}, \mathrm{ABz}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{ABz}, \mathrm{ST} z_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{ABz}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qz}_{1}, \mathrm{ST}_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Pz}, \mathrm{ST} \mathrm{z}_{1}}(2 \phi(\mathrm{t}))$

* $\mathrm{F}_{\mathrm{Qz}_{1}, \mathrm{ABz}}(2 \phi(\mathrm{t}))$
$\left[1+\alpha \mathrm{F}_{z, z_{1}}(\mathrm{t})\right] * \mathrm{~F}_{\mathrm{z}, \mathrm{z}_{1}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{z, \mathrm{z}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{z}_{1}, z_{1}}(\mathrm{t}), \mathrm{F}_{\mathrm{z}, \mathrm{z}_{1}}(2 \mathrm{t}) * \mathrm{~F}_{\mathrm{z}_{1}, z}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{z}, \mathrm{z}_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
* $\mathrm{F}_{z_{1}, z_{1}}(\phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{z}, \mathrm{z}_{1}}(2 \phi(\mathrm{t})){ }^{*} \mathrm{~F}_{\mathrm{z}_{1}, z^{2}}(2 \phi(\mathrm{t}))$
$\mathrm{F}_{z, z_{1}}(\mathrm{t})+\alpha\left\{\mathrm{F}_{z, z_{1}}(\mathrm{t}) * \mathrm{~F}_{z, z_{1}}(\mathrm{t})\right\} \geq \alpha \min \left\{1, \mathrm{~F}_{z, z_{1}}(2 \mathrm{t})\right\}+\mathrm{F}_{z, z_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{z, z_{1}}(2 \phi(\mathrm{t}))$
$\left.\mathrm{F}_{z, z_{1}}(\mathrm{t})+\alpha \mathrm{F}_{\mathrm{z}, \mathrm{z}_{1}}(\mathrm{t}) \geq \alpha \mathrm{F}_{z, z_{1}}(2 \mathrm{t})\right\}+\mathrm{F}_{\mathrm{z}, \mathrm{z}_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}_{1}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{z}, \mathrm{z}}(\phi(\mathrm{t}))$
$\mathrm{F}_{z_{1}, z}(\mathrm{t})+\alpha \mathrm{F}_{z_{1}, z}(\mathrm{t}) \geq \alpha\left\{\mathrm{F}_{z_{1}, z}(\mathrm{t}) * \mathrm{~F}_{z, \mathrm{z}}(\mathrm{t})\right\}+\mathrm{F}_{z_{1}, z}(\phi(\mathrm{t})) * 1$
$\mathrm{F}_{z_{1}, z}(\mathrm{t})+\alpha \mathrm{F}_{z_{1}, z}(\mathrm{t}) \geq \alpha \mathrm{F}_{z_{1}, z}(\mathrm{t})+\mathrm{F}_{z_{1}, z}(\phi(\mathrm{t}))$
$\mathrm{F}_{z_{1}, z}(\mathrm{t}) \geq \mathrm{F}_{z_{1}, z}(\phi(\mathrm{t}))$
which is a contradiction.
Hence $\mathrm{z}=\mathrm{z}_{1}$ and so z is the unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q .
This completes the proof.
Remark 3.1. If we take $B=T=I$, the identity map on X in theorem 3.1, then condition (3.1.2) is satisfied trivially and we get

Corollary 3.1. Let A, S, P and Q be self mappings on a Menger space ($\mathrm{X}, \mathrm{F}, *$) with continuous t-norm * satisfying
(i) $\mathrm{P}(\mathrm{X}) \subseteq \mathrm{T}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subseteq \mathrm{A}(\mathrm{X})$;
(ii) One of $\mathrm{S}(\mathrm{X}), \mathrm{Q}(\mathrm{X}), \mathrm{A}(\mathrm{X})$ or $\mathrm{P}(\mathrm{X})$ is complete;
(iii) The pairs (P, A) and (Q, S) are weak compatible;
(iv) $\left[1+\alpha \mathrm{F}_{\mathrm{Ax}, \mathrm{Sy}}(\mathrm{t})\right]$ * $\mathrm{F}_{\mathrm{Px}, \mathrm{Qy}}(\mathrm{t})$
$\geq \alpha \min \left\{\mathrm{F}_{\mathrm{Px}, \mathrm{Ax}}(\mathrm{t}) * \mathrm{~F}_{\mathrm{Qy}, \mathrm{Sy}}(\mathrm{t}), \mathrm{F}_{\mathrm{Px}, \mathrm{Sy}}(2 \mathrm{t}) * \quad \mathrm{~F}_{\mathrm{Qy}, \mathrm{Ax}}(2 \mathrm{t})\right\}$
$+\mathrm{F}_{\mathrm{Ax}, \mathrm{Sy}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}, \mathrm{Ax}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Qy}, \mathrm{Sy}}(\phi(\mathrm{t})) * \mathrm{~F}_{\mathrm{Px}, \mathrm{Sy}}(2 \phi(\mathrm{t}))$
${ }^{*} \mathrm{~F}_{\mathrm{Qy}, \mathrm{Ax}}(2 \phi(\mathrm{t}))$
for all $x, y \in X, t>0$ and $\phi \in E$.
Then A, S, P and Q have a unique common fixed point in X .
Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of the result of Pathak and Verma [8] in the sense that condition of compatibility of the first pair of self maps has been restricted to weak compatibility and we have dropped the condition of continuity in a Menger space with continuous t-norm.

REFERENCES

[1]. Jain, Arihant and Singh, Bijendra, Common fixed point theorem in Menger space through compatible maps of type (A), Chh. J. Sci. Tech. 2 (2005), 1-12.
[2]. Jain, Arihant and Singh, Bijendra, A fixed point theorem in Menger space through compatible maps of type (A), V.J.M.S. 5(2), (2005), 555-568.
[3]. Jain, Arihant and Singh, Bijendra, Common fixed point theorem in Menger Spaces, The Aligarh Bull. of Math. 25 (1), (2006), 23-31.
[4]. Jungck, G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9(4), (1986), 771-779.
[5]. Jungck, G. and Rhoades, B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), 227-238.
[6]. Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA. 28(1942), 535 -537.
[7]. Mishra, S.N., Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36(2), (1991), 283289.
[8]. Pathak, H.K. and Verma, R.K., Common fixed point theorems for weakly compatible mappings in Menger space and application, Int. Journal of Math. Analysis, Vol. 3, 2009, No. 24, 1199-1206.
[9]. Schweizer, B. and Sklar, A., Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
[10]. Sehgal, V.M. and Bharucha-Reid, A.T., Fixed points of contraction maps on probabilistic metric spaces, Math. System Theory 6(1972), 97-102.
[11]. Sessa, S., On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Beograd 32(46), (1982), 146-153.

