

Pelagia Research Library

Advances in Applied Science Research, 2016, 7(5): 46-53



# On common fixed point theorems for weakly compatible mappings in Menger space

Arihant Jain<sup>1</sup> and Basant Chaudhary<sup>2</sup>

<sup>1</sup>Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.) 456550, India <sup>2</sup>Research Scholar, Department of Mathematics, Mewar University, Chittorgarh (Raj.), India

## ABSTRACT

In this paper, the concept of weak compatibility in Menger space has been applied to prove a common fixed point theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [8].

**Keywords:** *Probabilistic metric space, Menger space, common fixed point, compatible maps, weak compatibility.* AMS Subject Classification: *Primary 47H10, Secondary 54H25.* 

## INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [6]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function  $F_{x,y}$ . Schweizer and Sklar [9] studied this concept and gave some fundamental results on this space. Sehgal and Bharucha-Reid [10] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point theory in Menger space.

Recently, Jungck and Rhoades [5] termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they commute at their coincidence points. Sessa [11] initiated the tradition of improving commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [4] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [7]. In the sequel, Pathak and Verma [8] proved a common fixed point theorem in Menger space using compatibility and weak compatibility. Using the concept of compatible mappings of type (A), Jain et. al. [1,2] proved some interesting fixed point theorems in Menger space. Afterwards, Jain et. al. [3] proved the fixed point theorem using the concept of weak compatible maps in Menger space.

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps and occasionally weak compatibility which turns out be a material generalization of the result of Pathak and Verma [8].

## 2. Preliminaries.

t(a, 1) = a,

(t-1)

**Definition 2.1.** A mapping  $\mathcal{F}: \mathbb{R} \to \mathbb{R}^+$  is called a *distribution* if it is non-decreasing left continuous with inf { F(t) | t \in \mathbb{R} } = 0 and sup { F(t) | t \in \mathbb{R} } = 1. We shall denote by L the set of all distribution functions while H will always denote the specific distribution function defined by  $H(t) = \begin{cases} 0, & t \le 0 \\ 1, & t > 0 \end{cases}$ **Definition 2.2.** [7] A mapping t : [0, 1] × [0, 1]  $\rightarrow$  [0, 1] is called a *t-norm* if it satisfies the following conditions :

t(0, 0) = 0;

(t-2) t(a, b) = t(b, a);

(t-3)  $t(c, d) \ge t(a, b); \text{ for } c \ge a, d \ge b,$ 

 $(t-4) t(t(a, b), c) = t(a, t(b, c)) \text{ for all } a, b, c, d \in [0, 1].$ 

**Definition 2.3.** [7] A *probabilistic metric space (PM-space)* is an ordered pair (X, F) consisting of a non empty set X and a function  $\mathcal{F}: X \times X \to L$ , where L is the collection of all distribution functions and the value of  $\mathcal{F}$  at  $(u, v) \in X \times X$  is represented by  $F_{u, v}$ . The function  $F_{u, v}$  assumed to satisfy the following conditions:

 $\begin{array}{l} (PM-1) \ F_{u,v}(x) = 1, \ for \ all \ x > 0, \ if \ and \ only \ if \ u = v; \\ (PM-2) \ F_{u,v}(0) = 0; \\ (PM-3) \ F_{u,v} = F_{v,u}; \\ (PM-4) \ If \ F_{u,v}(x) = 1 \ and \ F_{v,w}(y) = 1 \ then \ F_{u,w}(x+y) = 1, \ for \ all \ u,v,w \in X \ and \ x, \ y > 0. \\ \hline \end{tabular} \end{array}$ 

**Definition 2.5.** [7] A sequence  $\{x_n\}$  in a Menger space (X,  $\mathcal{F}$ , t) is said to be *convergent* and *converges to a point* x in X if and only if for each  $\varepsilon > 0$  and  $\lambda > 0$ , there is an integer M( $\varepsilon$ ,  $\lambda$ ) such that  $F_{X_n, X}(\varepsilon) > 1 - \lambda$  for all  $n \ge M(\varepsilon, \lambda)$ .

Further the sequence  $\{x_n\}$  is said to be *Cauchy sequence* if for  $\varepsilon > 0$  and  $\lambda > 0$ , there is an integer  $M(\varepsilon, \lambda)$  such that  $F_{x_n, x_m}(\varepsilon) > 1-\lambda$  for all  $m, n \ge M(\varepsilon, \lambda)$ .

A Menger PM-space (X, F, t) is said to be *complete* if every Cauchy sequence in X converges to a point in X.

A complete metric space can be treated as a complete Menger space in the following way:

**Proposition 2.1.** [7] If (X, d) is a metric space then the metric d induces mappings

$$\begin{split} {\boldsymbol{\mathscr F}}\colon X\times X\to L, \ \text{defined by } F_{p,q}(x)=H(x\text{ - }d(p,q)), \, p, \ q\in X, \, \text{where} \\ H(k)=0, \quad \text{for } k\leq 0 \quad \text{and} \quad H(k)=1, \ \text{ for } k>0. \end{split}$$

Further if,  $t : [0,1] \times [0,1] \rightarrow [0,1]$  is defined by  $t(a, b) = \min \{a, b\}$ . Then  $(X, \mathcal{F}, t)$  is a Menger space. It is complete if (X, d) is complete.

The space  $(X, \mathcal{F}, t)$  so obtained is called the *induced Menger space*.

**Definition 2.6.** [8] Self mappings A and S of a Menger space  $(X, \mathcal{F}, t)$  are said to be weak compatible if they commute at their coincidence points i.e. Ax = Sx for  $x \in X$  implies ASx = SAx.

**Definition 2.7.** [8] Self mappings A and S of a Menger space (X,  $\mathbf{F}$ , t) are said to be *compatible* if  $F_{ASx_s,SAx_s}(x) \rightarrow 1$ 

for all x>0, whenever  $\{x_n\}$  is a sequence in X such that Ax  $,Sx \rightarrow u$  for some u in X, as  $n \rightarrow \infty$ .

Remark 2.1. [8] The concept of weakly compatible mappings is more general than that of compatible mappings.

**Lemma 2.1.** [8] Let (X, F, \*) be a Menger space with t-norm \* such that the family  $\{*_{n}(x)\}_{n \in \mathbb{N}}$  is equicontinuous at x = 1 and let E denote the family of all functions

 $\phi: \mathbb{R}^+ \to \mathbb{R}^+$  such that  $\phi$  is non-decreasing with  $\lim_{n \to \infty} \phi^n(t) = +\infty$ ,  $\forall t > 0$ . If  $\{y_n\}_{n \in \mathbb{N}}$  is a sequence in X satisfying the condition  $\mathbb{E}_{(t)} = -\infty$  ( $\phi(t)$ )

 $F_{y_{n}, y_{n+1}}(t) \ge F_{y_{n-1}, y_{n}}(\phi(t)),$ 

for all t > 0 and  $\alpha \in [-1, 0]$ , then  $\{y_n\}_{n \in \mathbb{N}}$  is a Cauchy sequence in X.

## Pelagia Research Library

**Proposition 2.2.** Let  $\{x_n\}$  be a Cauchy sequence in a Menger space  $(X, \mathcal{F}, t)$  with continuous t-norm t. If the subsequence  $\{x_{2n}\}$  converges to x in X, then  $\{x_n\}$  also converges to x.

**Proof.** As  $\{x_{2n}\}$  converges to x, we have

$$F_{x_n,x}(\varepsilon) \ge t \left( F_{x_n,x_{2n}}\left(\frac{\varepsilon}{2}\right), F_{x_{2n},x}\left(\frac{\varepsilon}{2}\right) \right).$$
  
Then

 $\lim_{n\to\infty} F_{x_n,x}(\varepsilon) \ge t(1,1), \text{ which gives } \lim_{n\to\infty} F_{x_n,x}(\varepsilon) = 1, \forall \varepsilon > 0 \text{ and the result follows.}$ 

#### RESULTS

**Theorem 3.1.** Let A, B, S, T, P and Q be self mappings on a Menger space  $(X, \mathcal{F}, *)$  with continuous t-norm \* satisfying :

 $\begin{array}{ll} (3.1.1) \quad P(X) \subseteq ST(X), \ Q(X) \subseteq AB(X); \\ (3.1.2) \quad AB = BA, \ ST = TS, \ PB = BP, \ QT = TQ; \\ (3.1.3) \quad One \ of \ ST(X), \ Q(X), \ AB(X) \ or \ P(X) \ is \ complete; \\ (3.1.4) \quad The \ pairs (P, AB) \ and \ (Q, \ ST) \ are \ weak \ compatible; \\ (3.1.5) \quad [1 + \alpha F_{ABx, \ STy}(t)] \ ^* \ F_{Px, \ Qy}(t) \\ \geq \alpha \ min\{F_{Px, \ ABx}(t) \ ^* \ F_{Qy, \ STy}(t), \ F_{Px, \ STy}(2t) \ ^* \ F_{Qy, \ ABx}(2t)\} \\ + \ F_{ABx, \ STy}(\phi(t)) \ ^* \ F_{Px, ABx}(\phi(t)) \ ^* \ F_{Qy, \ STy}(\phi(t)) \ ^* \ F_{Px, \ STy}(2\phi(t)) \\ ^* \ F_{Qy, \ ABx}(2\phi(t)) \\ for \ all \ x, \ y \in X, \ t > 0 \ and \ \phi \in E. \end{array}$ 

Then A, B, S, T, P and Q have a unique common fixed point in X.

**Proof.** Suppose  $x_0 \in X$ . From condition (3.1.1)  $\exists x_1, x_2 \in X$  such that  $Px_0 = STx_1$  and  $Qx_1 = ABx_2$ .

Inductively, we can construct sequences  $\{x_n\}$  and  $\{y_n\}$  in X such that  $y_{2n} = Px_{2n} = STx_{2n+1}$  and  $y_{2n+1} = Qx_{2n+1} = ABx_{2n+2}$  for n = 0, 1, 2, ....

**Step I.** Let us show that  $F_{y_{n+2}, y_{n+1}}(t) \ge F_{y_{n+1}, y_n}(\phi(t)).$ 

For, putting 
$$x_{2n+2}$$
 for x and  $x_{2n+1}$  for y in (3.1.5) and then on simplification, we have  
 $[1 + \alpha F_{ABx_{2n+2}, STx_{2n+1}}(t)] * F_{Px_{2n+2}, Qx_{2n+1}}(t)$   
 $\geq \alpha \min\{F_{Px_{2n+2}, ABx_{2n+2}}(t) * F_{Qx_{2n+1}, STx_{2n+1}}(t), F_{Px_{2n+2}, STx_{2n+1}}(2t)$   
 $F_{Qx_{2n+1}, ABx_{2n+2}}(2t)\}$   
 $+ F_{ABx_{2n+2}, STx_{2n+1}}(\phi(t)) * F_{Px_{2n+2}, ABx_{2n+2}}(\phi(t)) * F_{Qx_{2n+1}, STx_{2n+1}}(\phi(t))$   
 $* F_{Px_{2n+2}, STx_{2n+1}}(2\phi(t)) * F_{Qx_{2n+1}, ABx_{2n+2}}(2\phi(t))$   
 $[1 + \alpha F_{y_{2n+1}, y_{2n}}(t)] * F_{y_{2n+2}, y_{2n+1}}(t)$   
 $\geq \alpha \min\{F_{y_{2n+2}, y_{2n+1}}(t) * F_{y_{2n+2}, y_{2n}}(t), F_{y_{2n+2}, y_{2n}}(2t) * F_{y_{2n+1}, y_{2n+1}}(2t)\}$   
 $+ F_{y_{2n+2}, y_{2n+1}}(\phi(t)) * F_{y_{2n+1}, y_{2n}}(\phi(t)) * F_{y_{2n+2}, y_{2n}}(2\phi(t)) * F_{y_{2n+1}, y_{2n+1}}(2\phi(t))$   
 $F_{y_{2n+2}, y_{2n+1}}(t) + \alpha F_{y_{2n+1}, y_{2n}}(t) * F_{y_{2n+2}, y_{2n+1}}(t)$ 

 $\geq \alpha \min\{F_{y_{2n+2}, y_{2n}}(2t), F_{y_{2n+2}, y_{2n}}(2t)\} + F_{y_{2n+1}, y_{2n}}(\phi(t)) * F_{y_{2n+2}, y_{2n+1}}(\phi(t)) \\ * F_{y_{2n+2}, y_{2n+1}}(2\phi(t)) * 1 \\ F_{y_{2n+2}, y_{2n+1}}(t) + \alpha F_{y_{2n+1}, y_{2n}}(t) * F_{y_{2n+2}, y_{2n+1}}(t) \\ \geq \alpha F_{y_{2n+2}, y_{2n}}(2t) + F_{y_{2n+1}, y_{2n}}(\phi(t)) * F_{y_{2n+2}, y_{2n+1}}(2\phi(t)) \\ F_{y_{2n+2}, y_{2n+1}}(t) + \alpha F_{y_{2n+2}, y_{2n}}(2t) \\ \geq \alpha F_{y_{2n+2}, y_{2n+1}}(t) + \alpha F_{y_{2n+1}, y_{2n}}(\phi(t)) * F_{y_{2n+2}, y_{2n+1}}(\phi(t)) * F_{y_{2n+1}, y_{2n}}(\phi(t)) \\ F_{y_{2n+2}, y_{2n+1}}(t) \geq F_{y_{2n+1}, y_{2n}}(\phi(t)) * F_{y_{2n+2}, y_{2n+1}}(\phi(t)) \\ or, F_{y_{2n+2}, y_{2n+1}}(t) \geq F_{y_{2n+1}, y_{2n+2}}(\phi(t)) * F_{y_{2n}, y_{2n+1}}(\phi(t)) \\ or, F_{y_{2n+2}, y_{2n+1}}(t) \geq \min\{F_{y_{2n+1}, y_{2n+2}}(\phi(t)), F_{y_{2n}, y_{2n+1}}(\phi(t))\}.$ 

If  $F_{y_{2n+1}, y_{2n+2}}(\phi(t))$  is chosen 'min' then we obtain  $F_{y_{2n+2}, y_{2n+1}}(t) \ge F_{y_{2n+2}, y_{2n+1}}(\phi(t)), \forall t > 0$ a contradiction as  $\phi(t)$  is non-decreasing function.

Thus,  $F_{y_{2n+2}, y_{2n+1}}(t) \geq F_{y_{2n+1}, y_{2n}}(\phi(t)), \quad \forall \ t > 0.$ 

Similarly, by putting  $x_{2n+2}$  for x and  $x_{2n+3}$  for y in (3.1.5), we have  $F_{y_{2n+3}, y_{2n+2}}(t) \ge F_{y_{2n+2}, y_{2n+1}}(\phi(t)), \forall t > 0.$ 

Using these two, we obtain  $F_{y_{n+2}, y_{n+1}}(t) \ge F_{y_{n+1}, y_{n}}(\phi(t)), \ \forall \ n = 0, \ 1, \ 2, \ \dots, \ t > 0.$ 

Therefore, by lemma 2.1,  $\{y_n\}$  is a Cauchy sequence in X.

**Case I. ST**(**X**) is complete. In this case  $\{y_{2n}\} = \{STx_{2n+1}\}$  is a Cauchy sequence in ST(X), which is complete. Thus  $\{y_{2n+1}\}$  converges to some  $z \in ST(X)$ . By proposition 2.2, we have  $\{Qx_{2n+1}\} \rightarrow z$  and  $\{STx_{2n+1}\} \rightarrow z$ , (3.1.6)

 $\{Qx_{2n+1}\} \rightarrow z \text{ and } \{STx_{2n+1}\} \rightarrow z,$   $\{Px_{2n}\} \rightarrow z \text{ and } \{ABx_{2n}\} \rightarrow z.$  (3.1.6) (3.1.7)

As  $z \in ST(X)$  there exists  $u \in X$  such that z = STu.

Step I. Put 
$$x = x_{2n}$$
 and  $y = u$  in (3.1.5), we get  
 $[1 + \alpha F_{ABx_{2n}, STu}(t)] * F_{Px_{2n}, Qu}(t)$   
 $\geq \alpha \min\{F_{Px_{2n}, ABx_{2n}}(t) * F_{Qu, STu}(t), F_{Px_{2n}, STu}(2t) * F_{Qu, ABx_{2n}}(2t)\}$   
 $+ F_{ABx_{2n}, STu}(\phi(t)) * F_{Px_{2n}, ABx_{2n}}(\phi(t)) * F_{Qu, STu}(\phi(t)) * F_{Px_{2n}, STu}(2\phi(t))$   
 $* F_{Qu, ABx_{2n}}(2\phi(t)).$ 

Letting  $n \to \infty$  and using (3.1.6), (3.1.7), we get  $[1 + \alpha F_{z, z}(t)] * F_{z, Qu}(t)$   $\geq \alpha \min\{F_{z, z}(t) * F_{Qu, z}(t), F_{z, z}(2t) * F_{Qu, z}(2t)\}$   $+ F_{z, z}(\phi(t)) * F_{z, z}(\phi(t))$  $* F_{Qu, z}(\phi(t)) * F_{z, z}(2\phi(t)) * F_{Qu, z}(2\phi(t))$   $F_{z, Ou}(t) + \alpha F_{z, Ou}(t) \ge \alpha \min\{F_{Ou, z}(t), F_{Ou, z}(2t)\} + F_{Ou, z}(\phi(t)) * F_{Ou, z}(2\phi(t))$  $F_{Qu, z}(t) + \alpha F_{Qu, z}(t) \ge \alpha \min\{F_{Qu, z}(t), F_{Qu, z}(t) * F_{z, z}(t)\} + F_{Qu, z}(\phi(t)) * F_{Qu, z}(\phi(t))$ \*  $F_{z,z}(\phi(t))$  $F_{OU,z}(t) + \alpha F_{OU,z}(t) \ge \alpha F_{OU,z}(t) + F_{OU,z}(\phi(t))$  $F_{Qu, z}(t) \ge F_{Qu, z}(\phi(t))$ which is a contradiction by lemma (2.1) and we get Qu = z and so Qu = z = STu. Since (Q, ST) is weakly compatible, we have STz = Qz.**Step III.** Put  $x = x_{2n}$  and y = Tz in (3.1.5), we have  $[1 + \alpha F_{ABx_{2n}, STTz}(t)] * F_{Px_{2n}, QTz}(t)$  $\geq \alpha \min\{F_{P_{X_{2n}}, AB_{X_{2n}}}(t) * F_{QT_{z}, STT_{z}}(t), F_{P_{X_{2n}}, STT_{z}}(2t) * F_{QT_{z}, AB_{X_{2n}}}(2t)\}$ +  $F_{ABx_{2n}, STTz}(\phi(t)) * F_{Px_{2n}, ABx_{2n}}(\phi(t)) * F_{QTz, STTz}(\phi(t))$ \*  $F_{Px_{2n}, STTz}(2\phi(t)) * F_{QTz, ABx_{2n}}(2\phi(t)).$ As QT = TQ and ST = TS, we have QTz = TQz = Tz and ST(Tz) = T(STz) = Tz. Letting  $n \rightarrow \infty$ , we get  $[1 + \alpha F_{z, Tz}(t)] * F_{z, Tz}(t) \ge \alpha \min\{F_{z, z}(t) * F_{Tz, Tz}(t), F_{z, Tz}(2t) * F_{Tz, z}(2t)\}$ +  $F_{z} F_{z}(\phi(t)) * F_{z}(\phi(t))$ \*  $F_{Tz, Tz}(\phi(t))$  \*  $F_{z, Tz}(2\phi(t))$  \*  $F_{Tz, z}(2\phi(t))$  $F_{z,Tz}(t) + \alpha \{F_{z,Tz}(t) * F_{z,Tz}(t)\} \ge \alpha \min\{1 * F_{Tz,z}(2t)\} + F_{z,Tz}(\phi(t))$ \* 1 \* 1 \* F<sub>Tz</sub> (2 $\phi$ (t))  $F_{Tz, z}(t) + \alpha F_{Tz, z}(t) \ge \alpha F_{Tz, z}(2t) + F_{Tz, z}(\phi(t)) * F_{Tz, z}(2\phi(t))$  $F_{Tz, z}(t) + \alpha F_{Tz, z}(t) \ge \alpha \{F_{Tz, z}(t) * F_{z, z}(t)\} + F_{Tz, z}(\phi(t))$  $F_{T_{z}z}(\phi(t))F_{z}(\phi(t))$  $F_{Tz, z}(t) + \alpha F_{Tz, z}(t) \ge \alpha F_{Tz, z}(t) + F_{Tz, z}(\phi(t))$  $F_{Tz, z}(t) \ge F_{Tz, z}(\phi(t))$ which is a contradiction and we get Tz = z. Now, STz = Tz = z implies Sz = z. Hence, Sz = Tz = Qz = z.

**Step IV.** As  $Q(X) \subseteq AB(X)$ , there exists  $w \in X$  such that z = Qz = ABw.

Put x = w and y = 
$$x_{2n+1}$$
 in (3.1.5), we get  
 $[1 + \alpha F_{ABw, STx_{2n+1}}(t)] * F_{Pw, Qx_{2n+1}}(t)$   
 $\geq \alpha \min\{F_{Pw, ABw}(t) * F_{Qx_{2n+1}, STx_{2n+1}}(t), F_{Pw, STx_{2n+1}}(2t)$   
 $* F_{Qx_{2n+1}, ABw}(2t)\} + F_{ABw, STx_{2n+1}}(\phi(t)) * F_{Pw, ABw}(\phi(t))$   
 $* F_{Qx_{2n+1}, STx_{2n+1}}(\phi(t)) * F_{Pw, STx_{2n+1}}(2\phi(t)) * F_{Qx_{2n+1}, ABw}(2\phi(t)).$ 

Letting  $n \to \infty$ , we get

$$\begin{split} & [1 + \alpha F_{z, z}(t)] * F_{Pw, z}(t) \geq \alpha \min\{F_{Pw, z}(t) * F_{z, z}(t), F_{Pw, z}(2t) * F_{z, z}(2t)\} \\ & + F_{z, z}(\phi(t)) * F_{Pw, z}(\phi(t)) \\ & * F_{z, z}(\phi(t)) * F_{Pw, z}(2\phi(t)) * F_{z, z}(2\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha \min\{F_{Pw, z}(t), F_{Pw, z}(2t)\} + F_{Pw, z}(\phi(t)) * F_{Pw, z}(2\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha \min\{F_{Pw, z}(t), F_{Pw, z}(t) * F_{z, z}(t)\} + F_{Pw, z}(\phi(t)) \\ & * F_{z, z}(\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha \min\{F_{Pw, z}(t), F_{Pw, z}(t)\} + F_{Pw, z}(\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha \min\{F_{Pw, z}(t), F_{Pw, z}(t)\} + F_{Pw, z}(\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha F_{Pw, z}(t) + F_{Pw, z}(\phi(t)) \\ & F_{Pw, z}(t) + \alpha F_{Pw, z}(t) \geq \alpha F_{Pw, z}(t)\} + F_{Pw, z}(\phi(t)) \end{split}$$

which is a contradiction and hence, we get Pw = z.

Hence, Pz = z = ABz.

Step V. Put x = z and y = 
$$x_{2n+1}$$
 in (3.1.5), we have  
 $[1 + \alpha F_{ABz, STx_{2n+1}}(t)] * F_{Pz, Qx_{2n+1}}(t)$   
 $\geq \alpha \min\{F_{Pz, ABz}(t) * F_{Qx_{2n+1}, STx_{2n+1}}(t), F_{Pz, STx_{2n+1}}(2t) * F_{Qx_{2n+1}, ABz}(2t)\}$   
 $+ F_{ABz, STx_{2n+1}}(\phi(t)) * F_{Pz, ABz}(\phi(t)) * F_{Qx_{2n+1}, STx_{2n+1}}(\phi(t)) * F_{Pz, STx_{2n+1}}(2\phi(t))$   
 $* F_{Qx_{2n+1}, ABz}(2\phi(t)).$ 

$$\begin{split} & \text{Letting } n \to \infty, \text{ we get} \\ & [1 + \alpha F_{\text{Pz, z}}(t)] * F_{\text{Pz, z}}(t) \\ & \geq \alpha \min\{F_{\text{Pz, Pz}}(t) * F_{z, z}(t), F_{\text{Pz, z}}(2t) * F_{z, \text{Pz}}(2t)\} + F_{\text{Pz, z}}(\phi(t)) * F_{\text{Pz, Pz}}(\phi(t)) \\ & * F_{z, z}(\phi(t)) * F_{\text{Pz, z}}(2\phi(t)) * F_{z, \text{Pz}}(2\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha\{F_{\text{Pz, z}}(t) * F_{\text{Pz, z}}(2t)\} + F_{\text{Pz, z}}(\phi(t)) * 1 * 1 * F_{\text{Pz, z}}(2\phi(t)) \\ & \geq \alpha \min\{1 * 1, F_{\text{Pz, z}}(2t) * F_{\text{Pz, z}}(2t)\} + F_{\text{Pz, z}}(\phi(t)) * 1 * 1 * F_{\text{Pz, z}}(2\phi(t)) \\ & * F_{z, \text{Pz}}(2\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha \min\{1, F_{\text{Pz, z}}(2t)\} + F_{\text{Pz, z}}(\phi(t)) * F_{\text{Pz, z}}(2\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha F_{\text{Pz, z}}(2t) + F_{\text{Pz, z}}(\phi(t)) * F_{\text{Pz, z}}(2\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) * F_{z, z}(t)\} + F_{\text{Pz, z}}(\phi(t)) * F_{\text{Pz, z}}(\phi(t)) * F_{z, z}(\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) * 1\} + F_{\text{Pz, z}}(\phi(t)) * 1 \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) * 1 \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) * 1 \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) + \alpha F_{\text{Pz, z}}(t) \geq \alpha\{F_{\text{Pz, z}}(t) + F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) = F_{\text{Pz, z}}(t) \\ & F_{\text{Pz, z}}(t) = F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) = F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}(t) = F_{\text{Pz, z}}(\phi(t)) \\ & F_{\text{Pz, z}}$$

which is a contradiction and hence, Pz = z

and so z = Pz = ABz.

$$\begin{split} & \textbf{Step VI. Put x = Bz and y = x}_{2n+1} \text{ in } (3.1.5), \text{ we get} \\ & [1 + \alpha F_{ABBz, STx_{2n+1}}(t)] * F_{PBz, Qx_{2n+1}}(t) \\ & \geq \alpha \min\{F_{PBz, ABBz}(t) * F_{Qx_{2n+1}, STx_{2n+1}}(t), F_{PBz, STx_{2n+1}}(2t) \\ & * F_{Qx_{2n+1}, ABBz}(2t)\} + F_{ABBz, STx_{2n+1}}(\phi(t)) * F_{PBz, ABBz}(\phi(t)) \\ & * F_{Qx_{2n+1}, STx_{2n+1}}(\phi(t)) * F_{PBz, STx_{2n+1}}(2\phi(t)) * F_{Qx_{2n+1}, ABBz}(2\phi(t)). \end{split}$$

As BP = PB, AB = BA so we have P(Bz) = B(Pz) = Bz and AB(Bz) = B(AB)z = Bz. Letting  $n \to \infty$  and using (3.1.6), we get  $[1 + \alpha F_{Bz, z}(t)] * F_{Bz, z}(t)$   $\geq \alpha \min\{F_{Bz, Bz}(t) * F_{z, z}(t), F_{Bz, z}(2t) * F_{z, Bz}(2t)\}$   $+ F_{Bz, z}(\phi(t)) * F_{Bz, Bz}(\phi(t)) * F_{z, z}(\phi(t)) * F_{Bz, z}(2\phi(t)) * F_{z, Bz}(2\phi(t))$   $F_{Bz, z}(t) + \alpha\{F_{Bz, z}(t) * F_{Bz, z}(t)\}$   $\geq \alpha \min\{1 * 1, F_{Bz, z}(2t)\} + F_{Bz, z}(\phi(t)) * 1 * 1 * F_{Bz, z}(2\phi(t))$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha F_{Bz, z}(2t) + F_{Bz, z}(\phi(t)) * F_{Bz, z}(2\phi(t))$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) * F_{z, z}(t)\} + F_{Bz, z}(\phi(t)) * F_{Bz, z}(\phi(t)) * F_{z, z}(\phi(t)) * F_{Bz, z}(\phi(t)) * F_{Bz, z}(\phi(t)) + \alpha F_{Bz, z}(\phi(t)) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + 1\} + F_{Bz, z}(\phi(t)) * 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$   $F_{Bz, z}(t) + \alpha F_{Bz, z}(t) \geq \alpha \{F_{Bz, z}(t) + F_{Bz, z}(\phi(t)) + 1$  $F_{Bz, z}(t) = F_{Bz, z}(\phi(t))$ 

which is a contradiction and we get Bz = z and so z = ABz = Az.

Therefore, Pz = Az = Bz = z.

Combining the results from different steps, we get Az = Bz = Pz = Qz = Tz = Sz = z.

Hence, the six self maps have a common fixed point in this case.

Case when P(X) is complete follows from above case as  $P(X) \subseteq ST(X)$ .

**Case II.** AB(X) is complete. This case follows by symmetry. As  $Q(X) \subseteq AB(X)$ , therefore the result also holds when Q(X) is complete.

#### **Uniqueness :**

Let  $z_1$  be another common fixed point of A, B, P, Q, S and T. Then A $z_1 = Bz_1 = Pz_1 = Sz_1 = Tz_1 = Qz_1 = z_1$ , assuming  $z \neq z_1$ .

Put x = z and y = z<sub>1</sub> in (3.1.5), we get  

$$\begin{bmatrix} 1 + \alpha F_{ABz, STz_{1}}(t) \end{bmatrix}^{*} F_{Pz, Qz_{1}}(t)$$

$$\geq \alpha \min\{F_{Pz, ABz}(t) * F_{Qz_{1}, STz_{1}}(t), F_{Pz, STz_{1}}(2t) * F_{Qz_{1}, ABz}(2t)\}$$

$$+ F_{ABz, STz_{1}}(\phi(t)) * F_{Pz, ABz}(\phi(t)) * F_{Qz_{1}, STz_{1}}(\phi(t)) * F_{Pz, STz_{1}}(2\phi(t))$$

$$* F_{Qz_{1}, ABz}(2\phi(t))$$

$$\begin{bmatrix} 1 + \alpha F_{z, z_{1}}(t) \end{bmatrix}^{*} F_{z, z_{1}}(t)$$

$$\geq \alpha \min\{F_{z, z}(t) * F_{z_{1}, z_{1}}(t), F_{z, z_{1}}(2t) * F_{z_{1}, z}(2t)\} + F_{z, z_{1}}(\phi(t)) * F_{z, z}(\phi(t))$$

$$* F_{z_{1}, z_{1}}(\phi(t)) * F_{z, z_{1}}(2\phi(t)) * F_{z_{1}, z}(2\phi(t))$$

$$F_{z, z_{1}}(t) + \alpha\{F_{z, z_{1}}(t) * F_{z, z_{1}}(t)\} \geq \alpha \min\{1, F_{z, z_{1}}(2t)\} + F_{z, z_{1}}(\phi(t)) * F_{z, z_{1}}(2\phi(t))$$

$$F_{z_{1}, z_{1}}(t) + \alpha F_{z, z_{1}}(t) \geq \alpha F_{z, z_{1}}(2t)\} + F_{z, z_{1}}(\phi(t)) * F_{z, z_{1}}(\phi(t))$$

$$F_{z_{1}, z_{1}}(t) + \alpha F_{z, z_{1}}(t) \geq \alpha F_{z_{1}, z}(t) * F_{z, z_{1}}(\phi(t)) * 1$$

$$F_{z_{1}, z}(t) + \alpha F_{z_{1}, z}(t) \geq \alpha F_{z_{1}, z}(t) + F_{z, z_{1}}(\phi(t))$$

**Pelagia Research Library** 

 $F_{z_{1}, z}(t) \geq F_{z_{1}, z}(\phi(t))$ 

which is a contradiction.

Hence  $z = z_1$  and so z is the unique common fixed point of A, B, S, T, P and Q.

This completes the proof.

**Remark 3.1.** If we take B = T = I, the identity map on X in theorem 3.1, then condition (3.1.2) is satisfied trivially and we get

Corollary 3.1. Let A, S, P and Q be self mappings on a Menger space (X, F, \*) with continuous t-norm \* satisfying

 $\begin{array}{ll} (i) & P(X) \subseteq T(X), \ Q(X) \subseteq A(X); \\ (ii) & One \ of \ S(X), \ Q(X), \ A(X) \ or \ P(X) \ is \ complete; \\ (iii) & The \ pairs \ (P, \ A) \ and \ (Q, \ S) \ are \ weak \ compatible; \\ (iv) & \left[1 + \alpha F_{_{Ax}, \ Sy}(t)\right] * F_{_{Px}, \ Qy}(t) \\ \geq \alpha \ min\{F_{_{Px}, \ Ax}(t) * F_{_{Qy}, \ Sy}(t), \ F_{_{Px}, \ Sy}(2t) * F_{_{Qy}, \ Ax}(2t)\} \\ + \ F_{_{Ax}, \ Sy}(\phi(t)) * F_{_{Px}, \ Ax}(\phi(t)) * F_{_{Qy}, \ Sy}(\phi(t)) * F_{_{Px}, \ Sy}(2\phi(t)) \\ * \ F_{_{Qy}, \ Ax}(2\phi(t)) \end{array}$ 

for all x,  $y \in X$ , t > 0 and  $\phi \in E$ .

Then A, S, P and Q have a unique common fixed point in X.

**Remark 3.2.** In view of remark 3.1, corollary 3.1 is a generalization of the result of Pathak and Verma [8] in the sense that condition of compatibility of the first pair of self maps has been restricted to weak compatibility and we have dropped the condition of continuity in a Menger space with continuous t-norm.

#### REFERENCES

[1]. Jain, Arihant and Singh, Bijendra, Common fixed point theorem in Menger space through compatible maps of type (A), Chh. J. Sci. Tech. 2 (2005), 1-12.

[2]. Jain, Arihant and Singh, Bijendra, A fixed point theorem in Menger space through compatible maps of type (A), V.J.M.S. 5(2), (2005), 555-568.

[3]. Jain, Arihant and Singh, Bijendra, Common fixed point theorem in Menger Spaces, The Aligarh Bull. of Math. 25 (1), (2006), 23-31.

[4]. Jungck, G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9(4), (1986), 771-779.

[5]. Jungck, G. and Rhoades, B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), 227-238.

[6]. Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA. 28(1942), 535 -537.

[7]. Mishra, S.N., Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36(2), (1991), 283-289.

[8]. Pathak, H.K. and Verma, R.K., Common fixed point theorems for weakly compatible mappings in Menger space and application, Int. Journal of Math. Analysis, Vol. 3, 2009, No. 24, 1199-1206.

[9]. Schweizer, B. and Sklar, A., Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.

[10]. Sehgal, V.M. and Bharucha-Reid, A.T., Fixed points of contraction maps on probabilistic metric spaces, Math. System Theory 6(1972), 97-102.

[11]. Sessa, S., On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Beograd 32(46), (1982), 146-153.