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ABSTRACT 
 
In this paper, the concept of weak compatibility in Menger space has been applied to prove a common fixed point 
theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [8]. 
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INTRODUCTION 
 

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by 
Menger [6]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function 
Fx,y.  Schweizer and Sklar [9] studied this concept and gave some fundamental results on this space.  Sehgal and 

Bharucha-Reid [10] obtained a generalization of Banach Contraction Principle on a complete Menger space which is 
a milestone in developing fixed-point theory in Menger space. 
 
Recently, Jungck and Rhoades [5] termed a pair of self maps to be coincidentally commuting or equivalently weakly 
compatible if they commute at their coincidence points. Sessa [11] initiated the tradition of improving 
commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  Jungck 
[4] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been 
introduced by Mishra [7]. In the sequel, Pathak and Verma [8] proved a common fixed point theorem in Menger  
space using compatibility  and weak compatibility.  Using the concept of compatible mappings of type (A), Jain et. 
al. [1,2] proved some interesting fixed point theorems in Menger space. Afterwards, Jain et. al. [3] proved the fixed 
point theorem using the concept of weak compatible maps in Menger space. 
 
In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps and 
occasionally weak compatibility which turns out be a material generalization of the result of Pathak and Verma [8]. 
 
2.    Preliminaries. 

Definition 2.1.  A mapping F : R → R+ is called a distribution if it is non-decreasing left continuous with 
inf { F(t) | t ∈ R } = 0    and    sup { F(t) | t ∈  R} = 1. 
We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by 
0, t 0

H(t) .
1, t 0

≤=  >
 

Definition 2.2. [7] A mapping t : [0, 1] × [0, 1] → [0, 1] is called a  t-norm  if  it  satisfies the following conditions : 
(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 
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(t-2)   t(a, b) =  t(b, a) ; 
(t-3)   t(c, d) ≥  t(a, b) ;     for c ≥ a, d ≥ b, 
(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d ∈ [0, 1]. 
 
Definition 2.3. [7] A probabilistic metric space (PM-space)  is an ordered pair (X, F) consisting of a non empty set 
X and a function F : X × X → L, where L is the collection of all distribution functions and the value of F at (u, v) ∈ 
X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) F
u,v

(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) F
u,v

 (0) = 0; 

(PM-3) F
u,v

 = F
v,u

; 

(PM-4) If F
u,v

 (x) = 1 and F
v,w

 (y) = 1 then F
u,w

 (x + y) = 1, for all u,v,w ∈ X and x, y > 0. 

Definition 2.4. [7] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm such that the 
inequality 
(PM-5) F

u,w
 (x + y) ≥ t {F

u, v
 (x), F

v, w
(y) }, for all u, v, w ∈ X, x, y ≥ 0. 

 
Definition 2.5. [7] A sequence {x

n
} in a Menger space (X, F, t) is said to be convergent and converges to a point x 

in X if and only if for each  ε > 0 and  λ > 0, there is an integer M(ε, λ) such that 
Fx

n
, x (ε) > 1 - λ  for all n ≥ M(ε, λ). 

Further the sequence {x
n
} is said to be Cauchy sequence if for ε > 0 and  λ > 0, there is an integer M(ε, λ) such that 

F
x
n
, x

m

 (ε) > 1- λ  for all m, n ≥ M(ε, λ). 

A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 
 
A complete metric space can be treated as a complete Menger space in the following way: 
 
Proposition 2.1. [7] If (X, d) is a metric space then the metric d induces mappings 
  
F : X × X → L,  defined by Fp,q(x) = H(x - d(p, q)), p,  q ∈ X, where 

H(k) = 0,    for k ≤ 0   and   H(k) = 1,   for k >0. 
 
Further if,  t : [0,1] × [0,1] → [0,1] is defined by t(a, b) = min {a, b}. Then (X, F, t) is a Menger space.  It is 
complete if (X, d) is complete. 
 
The space (X, F, t) so obtained is called the  induced Menger space. 
 
Definition 2.6. [8] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 
commute at their coincidence points i.e. Ax = Sx   for x ∈ X implies  ASx = SAx. 
 
Definition 2.7. [8] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if F

ASx
n
,SAx

n

(x)→1 

for all x>0, whenever {x
n
} is a sequence in X such that Ax

n
,Sx

n
→u for some u in X, as n → ∞. 

 
Remark 2.1. [8] The concept of weakly compatible mappings is more general than that of compatible mappings. 
 
Lemma 2.1. [8] Let (X, F, *) be a Menger space with t-norm * such that the family {*

n
(x)}

n∈N
 is equicontinuous at 

x = 1 and let E denote the family of all functions  
 

φ : R+ → R+ such that φ is non-decreasing with lim
n→∞

 φ
n
(t)=+∞,  ∀ t > 0.  If {y

n
}

n∈N
  is a sequence in X satisfying  

the condition 
F

y
n
, y

n+1

(t)    ≥  F
y
n-1

, y
n

 (φ(t)), 

 
for all t > 0 and α ∈ [−1, 0], then {y

n
}

n∈N
 is a Cauchy sequence in X. 
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Proposition 2.2. Let {xn} be a Cauchy sequence in a Menger space (X, F, t) with continuous t-norm t. If the 
subsequence {x2n} converges to x in X, then {xn} also converges to x. 
 
Proof. As {x2n} converges to x, we have 

n n 2n 2nx ,x x ,x x ,xF ( ) t F ,F .
2 2

 ε ε   ε ≥     
    

 

Then 

nx ,xn
limF ( ) t(1,1),

→∞
ε ≥  which gives 

nx ,xn
limF ( ) 1,

→∞
ε =  ∀ ε > 0 and the result follows. 

 
RESULTS 

 
Theorem 3.1. Let A, B, S, T, P and Q be self mappings on a Menger space  (X, F, *) with continuous t-norm * 
satisfying : 
(3.1.1)   P(X) ⊆  ST(X),  Q(X) ⊆  AB(X); 
(3.1.2)   AB = BA,   ST = TS,  PB = BP,  QT = TQ; 
(3.1.3)   One of ST(X), Q(X), AB(X) or P(X) is complete; 
(3.1.4)   The pairs (P, AB) and  (Q, ST) are weak compatible; 
(3.1.5)   [1 + αF

ABx, STy
(t)] * F

Px, Qy
(t) 

≥  α min{F
Px, ABx

(t) * F
Qy, STy

(t), F
Px, STy

(2t) *   F
Qy, ABx

(2t)} 

+ F
ABx, STy

(φ(t)) * F
Px,ABx

(φ(t)) * F
Qy, STy

(φ(t)) * F
Px, STy

(2φ(t)) 

* F
Qy, ABx

(2φ(t)) 

for all x, y ∈ X, t > 0 and φ ∈ E. 
 
Then A, B, S, T, P and Q have a unique common fixed point in X. 
 
Proof. Suppose x

0
 ∈ X.  From condition (3.1.1)  ∃  x1, x2 ∈ X  such that 

Px
0
 = STx

1
   and     Qx

1
 = ABx

2
. 

 
Inductively, we can construct sequences {x

n
} and {y

n
} in X such that 

y
2n

 = Px
2n

 = STx
2n+1

     and      y
2n+1

 = Qx
2n+1

 = ABx
2n+2

 

for n = 0, 1, 2, ... . 
 
Step I.  Let us show that F

y
n+2

, y
n+1

(t) ≥  F
y
n+1

, y
n

(φ(t)). 

 
For, putting x

2n+2
 for x and x

2n+1
 for y in (3.1.5) and then on simplification, we have 

[1 + αF
ABx

2n+2
, STx

2n+1

(t)] * F
Px

2n+2
, Qx

2n+1

(t) 

≥  α min{F
Px

2n+2
, ABx

2n+2

(t) * F
Qx

2n+1
, STx

2n+1

(t), F
Px

2n+2
, STx

2n+1

(2t) 

F
Qx

2n+1
, ABx

2n+2
 (2t)} 

+ F
ABx

2n+2
, STx

2n+1

(φ(t)) * F
Px

2n+2
, ABx

2n+2

(φ(t)) * F
Qx

2n+1
, STx

2n+1

(φ(t)) 

* F
Px

2n+2
, STx

2n+1
 (2φ(t)) * F

Qx
2n+1

, ABx
2n+2

(2φ(t)) 

[1 + αFy
2n+1

, y
2n

(t)] * Fy
2n+2

, y
2n+1

(t) 

≥  α min{F
y
2n+2

, y
2n+1

(t) * F
y
2n+1

, y
2n

(t), F
y
2n+2

, y
2n

(2t) *F
y
2n+1

, y
2n+1

(2t)} 

+ F
y
2n+1

, y
2n

(φ(t)) 

* F
y
2n+2

, y
2n+1

(φ(t)) * F
y
2n+1

, y
2n

(φ(t)) * F
y
2n+2

, y
2n

(2φ(t)) * F
y
2n+1

, y
2n+1

(2φ(t)) 

F
y
2n+2

, y
2n+1

(t) + αF
y
2n+1

, y
2n

(t) * F
y
2n+2

, y
2n+1

(t) 
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≥  α min{F
y
2n+2

, y
2n

(2t), F
y
2n+2

, y
2n

(2t)} + F
y
2n+1

, y
2n

(φ(t)) * F
y
2n+2

, y
2n+1

(φ(t)) 

* F
y
2n+2

, y
2n

(2φ(t)) * 1 

F
y
2n+2

, y
2n+1

(t) + αF
y
2n+1

, y
2n

(t) * F
y
2n+2

, y
2n+1

(t)   

≥  α F
y
2n+2

, y
2n

(2t) + F
y
2n+1

, y
2n

(φ(t)) * F
y
2n+2

, y
2n+1

(2φ(t)) 

F
y
2n+2

, y
2n+1

(t) + αF
y
2n+2

, y
2n

(2t) 

≥  α F
y
2n+2

, y
2n

(2t) + F
y
2n+1

, y2n
(φ(t)) * F

y
2n+2

, y
2n+1

(φ(t)) * F
y
2n+1

, y
2n

(φ(t)) 

F
y
2n+2

, y
2n+1

(t) ≥  F
y
2n+1

, y
2n

(φ(t)) * F
y
2n+2

, y
2n+1

(φ(t)) 

or,  F
y
2n+2

, y
2n+1

(t) ≥  F
y
2n+1

, y
2n+2

(φ(t)) * F
y
2n

, y
2n+1

(φ(t)) 

or,  F
y
2n+2

, y
2n+1

(t) ≥  min{F
y
2n+1

, y
2n+2

(φ(t)), F
y
2n

, y
2n+1

(φ(t))}. 

 

If F
y
2n+1

, y
2n+2

(φ(t))  is chosen 'min' then we obtain 

F
y
2n+2

, y
2n+1

(t) ≥  F
y
2n+2

, y
2n+1

(φ(t)),  ∀  t > 0 

a contradiction as φ(t) is non-decreasing function. 
 
Thus, 
F

y
2n+2

, y
2n+1

(t) ≥  F
y
2n+1

, y
2n

(φ(t)),  ∀  t > 0. 

 
Similarly, by putting x

2n+2
 for x and x

2n+3
 for y in (3.1.5), we have 

F
y
2n+3

, y
2n+2

(t) ≥  F
y
2n+2

, y
2n+1

(φ(t)),  ∀  t > 0. 

 
Using these two, we obtain 
F

y
n+2

, y
n+1

(t) ≥  F
y
n+1

, y
n

(φ(t)),  ∀  n = 0, 1, 2, ... , t > 0. 

 
Therefore, by lemma 2.1, {y

n
} is a Cauchy sequence in X. 

 
Case I.   ST(X) is complete.  In this case {y2n} = {STx2n+1} is a Cauchy sequence in ST(X), which is complete.  
Thus {y2n+1} converges to some z ∈ ST(X). By proposition 2.2, we have 
{Qx2n+1} →  z  and {STx2n+1}   →  z,                                      (3.1.6) 

{Px2n}  →  z    and    {ABx2n}  →  z.            (3.1.7) 

As z ∈ ST(X) there exists u ∈ X such that z = STu. 
 
Step I.   Put x = x

2n
  and y = u in (3.1.5), we get 

[1 + αF
ABx

2n
, STu

(t)] * F
Px

2n
, Qu

(t) 

≥  α min{F
Px

2n
, ABx

2n

(t) * F
Qu, STu

(t), F
Px

2n
, STu

(2t) *   F
Qu, ABx

2n

(2t)} 

+ F
ABx

2n,
 STu

(φ(t)) * F
Px

2n
, ABx

2n

(φ(t)) * F
Qu, STu

(φ(t)) * F
Px

2n
, STu

(2φ(t)) 

* F
Qu, ABx

2n

(2φ(t)). 

 

Letting n →  ∞  and using (3.1.6), (3.1.7), we get 

[1 + αF
z, z

(t)] * F
z, Qu

(t) 

≥  α min{F
z, z

(t) * F
Qu, z

(t), F
z, z

(2t) * F
Qu, z

(2t)} 

+ F
z, z

(φ(t)) * F
z, z

(φ(t)) 

* F
Qu, z

(φ(t)) * F
z, z

(2φ(t)) * F
Qu, z

(2φ(t)) 
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F
z, Qu

(t) + αF
z, Qu

(t) ≥  α min{F
Qu, z

(t), F
Qu, z

(2t)} + F
Qu, z

(φ(t)) * F
Qu, z

(2φ(t)) 

F
Qu, z

(t) + αF
Qu, z

(t) ≥  α min{F
Qu, z

(t), F
Qu, z

(t) * F
z, z

(t)} + F
Qu, z

(φ(t)) * F
Qu, z

(φ(t)) 

* F
z, z

(φ(t)) 

F
Qu, z

(t) + αF
Qu, z

(t) ≥  α F
Qu, z

(t) + F
Qu, z

(φ(t)) 

F
Qu, z

(t) ≥  F
Qu, z

(φ(t)) 

 
which is a contradiction by lemma (2.1) and we get 
Qu = z  and so Qu = z = STu. 
 
Since (Q, ST) is weakly compatible, we have 
STz  =  Qz. 
 
Step III.  Put x = x

2n
 and y = Tz in (3.1.5), we have 

[1 + αF
ABx

2n
, STTz

(t)] * F
Px

2n
, QTz

(t) 

≥  α min{F
Px

2n
, ABx

2n

(t) * F
QTz, STTz

(t), F
Px

2n
, STTz

(2t) * F
QTz, ABx

2n

(2t)} 

+ F
ABx

2n
, STTz

(φ(t)) * F
Px

2n
, ABx

2n

(φ(t)) * F
QTz, STTz

(φ(t)) 

* F
Px

2n
, STTz

(2φ(t))  * F
QTz, ABx

2n

(2φ(t)). 

As QT = TQ and ST = TS, we have 
QTz = TQz =  Tz    and   ST(Tz) = T(STz) = Tz. 

Letting n →  ∞,  we get 

[1 + αF
z, Tz

(t)] * F
z, Tz

(t)    ≥  α min{F
z, z

(t) * F
Tz, Tz

(t), F
z, Tz

(2t) * F
Tz, z

(2t)} 

+ F
z, Tz

(φ(t)) * F
z, z

(φ(t)) 

* F
Tz, Tz

(φ(t)) * F
z, Tz

(2φ(t)) * F
Tz, z

(2φ(t)) 

F
z, Tz

(t) + α{F
z, Tz

(t) * F
z, Tz

(t)} ≥  α min{1 * F
Tz, z

(2t)} + F
z, Tz

(φ(t)) 

* 1 * 1 * F
Tz, z

(2φ(t)) 

F
Tz, z

(t) + αF
Tz, z

(t) ≥  α F
Tz, z

(2t) + F
Tz, z

(φ(t)) * F
Tz, z

(2φ(t)) 

F
Tz, z

(t) + αF
Tz, z

(t) ≥  α {F
Tz, z

(t) * F
z, z

(t)} + F
Tz, z

(φ(t)) 

*F
Tz, z

(φ(t))*F
z, z

(φ(t)) 

F
Tz, z

(t) + αF
Tz, z

(t) ≥  α F
Tz, z

(t) + F
Tz, z

(φ(t)) 

F
Tz, z

(t) ≥  F
Tz, z

(φ(t)) 

 
which is a contradiction and we get Tz = z. 
 
Now, STz = Tz = z  implies Sz = z. 
 
Hence, Sz = Tz = Qz = z. 
 
Step IV. As  Q(X) ⊆ AB(X),  there exists w  ∈ X such that 
z =  Qz = ABw. 
 
Put x = w and y = x

2n+1
 in (3.1.5), we get 

[1 + αF
ABw, STx

2n+1

(t)] * F
Pw, Qx

2n+1

(t) 

≥  α min{F
Pw, ABw

(t) * F
Qx

2n+1
, STx

2n+1

(t), F
Pw, STx

2n+1

(2t) 

*  F
Qx

2n+1
, ABw

(2t)} + F
ABw, STx

2n+1

(φ(t)) * F
Pw, ABw

(φ(t)) 

* F
Qx

2n+1
, STx

2n+1

(φ(t)) * F
Pw, STx

2n+1

(2φ(t))  * F
Qx

2n+1
, ABw

(2φ(t)). 

 

Letting n → ∞, we get 
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[1 + αF
z, z

(t)] * F
Pw, z

(t)  ≥  α min{F
Pw, z

(t) * F
z, z

(t), F
Pw, z

(2t) * F
z, z

(2t)} 

+ F
z, z

(φ(t)) * F
Pw, z

(φ(t)) 

* F
z, z

(φ(t)) * F
Pw, z

(2φ(t)) * F
z, z

(2φ(t)) 

F
Pw, z

(t) + αF
Pw, z

(t)  ≥  α min{F
Pw, z

(t), F
Pw, z

(2t)}  + F
Pw, z

(φ(t)) * F
Pw, z

(2φ(t)) 

F
Pw, z

(t) + αF
Pw, z

(t)  ≥  α min{F
Pw, z

(t), F
Pw, z

(t) * F
z, z

(t)} + F
Pw, z

(φ(t)) 

* F
z, z

(φ(t)) 

F
Pw, z

(t) + αF
Pw, z

(t)  ≥  α min{F
Pw, z

(t), F
Pw, z

(t)} + F
Pw, z

(φ(t)) 

F
Pw, z

(t) + αF
Pw, z

(t)  ≥  α F
Pw, z

(t)}  + F
Pw, z

(φ(t)) 

F
Pw, z

(t)  ≥  F
Pw, z

(φ(t)) 

 
which is a contradiction and hence, we get  Pw = z. 
 
Hence,  Pz = z = ABz. 
 
Step V.  Put x = z and y = x

2n+1
 in (3.1.5), we have 

[1 + αF
ABz, STx

2n+1

(t)] * F
Pz, Qx

2n+1

(t) 

≥  α min{F
Pz, ABz

(t) * F
Qx

2n+1
, STx

2n+1

(t), F
Pz, STx

2n+1

(2t) *  F
Qx

2n+1
, ABz

(2t)} 

+ F
ABz, STx

2n+1

(φ(t)) * F
Pz, ABz

(φ(t)) * F
Qx

2n+1
, STx

2n+1

(φ(t)) * F
Pz, STx

2n+1

(2φ(t)) 

* F
Qx

2n+1
, ABz

(2φ(t)). 

 

Letting n → ∞, we get 

[1 + αF
Pz, z

(t)] * F
Pz, z

(t) 

≥  α min{F
Pz, Pz

(t) * F
z, z

(t), F
Pz, z

(2t) * F
z, Pz

(2t)}  + F
Pz, z

(φ(t)) * F
Pz, Pz

(φ(t)) 

* F
z, z

(φ(t)) * F
Pz, z

(2φ(t)) * F
z, Pz

(2φ(t)) 

F
Pz, z

(t) + α{F
Pz, z

(t) * F
Pz, z

(t)} 

≥  α min{1 * 1, F
Pz, z

(2t) * F
Pz, z

(2t)}  + F
Pz, z

(φ(t)) * 1 * 1 * F
Pz, z

(2φ(t)) 

* F
z, Pz

(2φ(t)) 

F
Pz, z

(t) + αF
Pz, z

(t)  ≥  α min{1, F
Pz, z

(2t)}  + F
Pz, z

(φ(t)) * F
Pz, z

(2φ(t)) 

F
Pz, z

(t) + αF
Pz, z

(t)  ≥  α F
Pz, z

(2t)  + F
Pz, z

(φ(t)) * F
Pz, z

(2φ(t)) 

F
Pz, z

(t) + αF
Pz, z

(t)  ≥  α{F
Pz, z

(t) * F
z, z

(t)}  + F
Pz, z

(φ(t)) * F
Pz, z

(φ(t)) * F
z, z

(φ(t)) 

F
Pz, z

(t) + αF
Pz, z

(t)  ≥  α{F
Pz, z

(t) * 1}  + F
Pz, z

(φ(t)) * 1 

F
Pz, z

(t) + αF
Pz, z

(t)  ≥  αF
Pz, z

(t) + F
Pz, z

(φ(t)) 

F
Pz, z

(t)  ≥  F
Pz, z

(φ(t)) 

 
which is a contradiction and hence,  Pz = z 
 
and so   z = Pz = ABz. 
 
Step VI.  Put x = Bz and y = x

2n+1
 in (3.1.5), we get 

[1 + αF
ABBz, STx

2n+1

(t)] * F
PBz, Qx

2n+1

(t) 

≥  α min{F
PBz, ABBz

(t) * F
Qx

2n+1
, STx

2n+1

(t), F
PBz, STx

2n+1

(2t) 

*  F
Qx

2n+1
, ABBz

(2t)} + F
ABBz, STx

2n+1

(φ(t)) * F
PBz, ABBz

(φ(t)) 

* F
Qx

2n+1
, STx

2n+1

(φ(t))  * F
PBz, STx

2n+1

(2φ(t))  * F
Qx

2n+1
, ABBz

(2φ(t)). 
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As BP = PB, AB = BA so we have 
P(Bz) = B(Pz) = Bz  and AB(Bz) = B(AB)z = Bz. 
 

Letting n → ∞ and using (3.1.6), we get 

[1 + αF
Bz, z

(t)] * F
Bz, z

(t) 

≥  α min{F
Bz, Bz

(t) * F
z, z

(t), F
Bz, z

(2t) *  F
z, Bz

(2t)} 

+ F
Bz, z

(φ(t)) * F
Bz, Bz

(φ(t)) * F
z, z

(φ(t)) * F
Bz, z

(2φ(t))  * F
z, Bz

(2φ(t)) 

F
Bz, z

(t) + α{F
Bz, z

(t) * F
Bz, z

(t)} 

≥  α min{1 * 1, F
Bz, z

(2t)} + F
Bz, z

(φ(t)) * 1 * 1 * F
Bz, z

(2φ(t)) 

F
Bz, z

(t) + αF
Bz, z

(t) ≥  α F
Bz, z

(2t) + F
Bz, z

(φ(t)) * F
Bz, z

(2φ(t)) 

F
Bz, z

(t) + αF
Bz, z

(t) ≥  α {F
Bz, z

(t) * F
z, z

(t)} + F
Bz, z

(φ(t)) * F
Bz, z

(φ(t)) * F
z, z

(φ(t)) 

F
Bz, z

(t) + αF
Bz, z

(t) ≥  α {F
Bz, z

(t) * 1} + F
Bz, z

(φ(t)) * 1 

F
Bz, z

(t) + αF
Bz, z

(t) ≥  α F
Bz, z

(t) + F
Bz, z

(φ(t)) 

F
Bz, z

(t) ≥  F
Bz, z

(φ(t)) 

 
which is a contradiction and we get Bz = z and so 
z = ABz = Az. 
 
Therefore,  Pz = Az = Bz = z. 
 
Combining the results from different steps, we get 
Az = Bz = Pz = Qz = Tz = Sz  =  z. 
 
Hence, the six self maps have a common fixed point in this case. 
 
Case when P(X) is complete follows from above case as P(X) ⊆ ST(X). 
 
Case II. AB(X) is complete. This case follows by symmetry. As Q(X) ⊆ AB(X), therefore the result also holds 
when Q(X) is complete. 
 
Uniqueness : 
Let z

1
 be another common fixed point of A, B, P, Q, S and T.  Then 

Az
1
 = Bz

1
 = Pz

1
 = Sz

1
 = Tz

1
 = Qz

1
 = z

1
, assuming z ≠ z

1
. 

 
Put x = z and y = z

1
 in (3.1.5), we get 

[1 + αF
ABz, STz

1

(t)] * F
Pz, Qz

1

(t) 

 ≥  α min{F
Pz, ABz

(t) * F
Qz

1
, STz

1

(t), F
Pz, STz

1

(2t) * F
Qz

1
, ABz

(2t)} 

+ F
ABz, STz

1

(φ(t)) * F
Pz, ABz

(φ(t)) * F
Qz

1
, STz

1

(φ(t)) * F
Pz, STz

1

(2φ(t)) 

* F
Qz

1
, ABz

(2φ(t)) 

[1 + αF
z, z

1

(t)] * F
z, z

1

(t) 

 ≥  α min{F
z, z

(t) * F
z
1
, z

1

(t), F
z, z

1

(2t) * F
z
1
, z

(2t)} + F
z, z

1

(φ(t)) * F
z, z

(φ(t)) 

* F
z
1
, z

1

(φ(t)) * F
z, z

1

(2φ(t)) * F
z
1
, z

(2φ(t)) 

F
z, z

1

(t)  + α{F
z, z

1

(t) * F
z, z

1

(t)}  ≥  α min{1, F
z, z

1

(2t)} + F
z, z

1

(φ(t)) * F
z, z

1

(2φ(t)) 

F
z, z

1

(t)  + αF
z, z

1

(t) ≥  αF
z, z

1

(2t)} + F
z, z

1

(φ(t)) * F
z, z

1

(φ(t)) * F
z, z

(φ(t)) 

F
z
1
, z

(t)  + αF
z
1
, z

(t) ≥  α{F
z
1
, z

(t) * F
z, z

(t)} + F
z
1
, z

(φ(t)) * 1 

F
z
1
, z

(t)  + αF
z
1
, z

(t) ≥  αF
z
1
, z

(t) + F
z
1
, z

(φ(t)) 
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F
z
1
, z

(t)  ≥  F
z
1
, z

(φ(t)) 

 
which is a contradiction. 
 
Hence z = z

1
 and so z is the unique common fixed point of A, B, S, T, P and Q. 

 
This completes the proof. 
 
Remark 3.1. If we take B = T = I, the identity map on X in theorem 3.1, then condition (3.1.2) is satisfied trivially 
and we get 
 
Corollary 3.1.  Let A, S, P and Q be self mappings on a Menger space  (X, F, *) with continuous t-norm * satisfying 
: 
(i) P(X) ⊆  T(X),  Q(X) ⊆  A(X); 
(ii)  One of S(X), Q(X), A(X) or P(X) is complete; 
(iii)  The pairs (P, A) and  (Q, S) are weak compatible; 
(iv) [1 + αF

Ax, Sy
(t)] * F

Px, Qy
(t) 

≥  α min{F
Px, Ax

(t) * F
Qy, Sy

(t), F
Px, Sy

(2t) *   F
Qy, Ax

(2t)} 

+ F
Ax, Sy

(φ(t)) * F
Px,Ax

(φ(t)) * F
Qy, Sy

(φ(t)) * F
Px, Sy

(2φ(t)) 

* F
Qy, Ax

(2φ(t)) 

 
for all x, y ∈ X, t > 0 and φ ∈ E. 
 
Then A, S, P and Q have a unique common fixed point in X. 
 
Remark 3.2.   In view of remark 3.1, corollary 3.1 is a generalization of the result of Pathak and Verma [8] in the 
sense that condition of compatibility of the first pair of self maps has been restricted to weak compatibility and we 
have dropped the condition of continuity in a Menger space with continuous t-norm. 
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