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ABSTRACT

In this paper, the concept of weak compatibility in Menger space has been applied to prove a common fixed point
theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [8] .
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INTRODUCTION

There have been a number of generalizations ofiergiace. One such generalization is Menger spatiatéd by
Menger [6]. It is a probabilistic generalizationvilnich we assign to any two points x and vy, a itistion function
Fx y Schweizer and Sklar [9] studied this concept gade some fundamental results on this space. abahd

Bharucha-Reid [10] obtained a generalization ofd&4nContraction Principle on a complete Menger spdtich is
a milestone in developing fixed-point theory in Njen space.

Recently, Jungck and Rhoades [5] termed a paielbfisaps to be coincidentally commuting or equindieweakly
compatible if they commute at their coincidence ngoi Sessa [11] initiated the tradition of imprayin
commutativity in fixed-point theorems by introdugithe notion of weak commuting maps in metric spackingck
[4] soon enlarged this concept to compatible mapg. notion of compatible mapping in a Menger spaa been
introduced by Mishra [7]. In the sequel, Pathak &edma [8] proved a common fixed point theorem ierder
space using compatibility and weak compatibilitysing the concept of compatible mappings of tyg Jain et.
al. [1,2] proved some interesting fixed point trexos in Menger space. Afterwards, Jain et. al. {8yed the fixed
point theorem using the concept of weak compatitd@s in Menger space.

In this paper a fixed point theorem for six selfp®das been proved using the concept of semi-cdoigpataps and
occasionally weak compatibility which turns outdenaterial generalization of the result of Pathadk ¥erma [8].

2. Preliminaries.

Definition 2.1. A mappingf: R - R* is called adistribution if it is non-decreasing left continuous with
inff{Ft) |[tOR}=0 and sup { F(t) | R}=1.

We shall denote by L the set of all distributiomdtions while H will always denote the specific tdlsution
0, t<0

1, t>0

Definition 2.2. [7] A mapping t: [0, 1] x [0, 1] [0, 1] is called at-norm if it satisfies the following conditions :
(t-1) t(a, 1) = a, t(0,0)=0;

function defined byH(t) :{
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(t-2) t(a, b) = t(b, a);
(t-3) t(c, d)= t(a,b); forea,d=b,
(t-4) t(t(a, b), c) = t(a, t(b, c)) for allb, c, dO [0, 1].

Definition 2.3. [7] A probabilistic metric space (PM-space) is an ordered pair (&) consisting of a non empty set
X and a functionF: X x X - L, where L is the collection of all distributionrictions and the value afat (u, v)OI
X x X'is represented by f,, The function F , assumed to satisfy the following conditions:

(PM-1) Fu V(x) =1, forallx>0,ifand only if u=v;

(PM-2) F_(0)=0;

(PM-3) F_=F ;

(PM-4) IfF_()=1landF_(y)=1thenF_(x+y)=1, forall u,v,w] X and x,y>0.

Definition 2.4. [7] A Menger space is a triplet (X, F, t) where (X,F) is a PM-space and t is a t-norm such that the
inequality
(PM-5) FuW x+y)=>t {Fu V(x), FV W(y) }, forallu, v, wO X, x, y= 0.

Definition 2.5. [7] A sequence {l>1§ in a Menger space (XF, t) is said to beonvergent andconverges to a point x

in X if and only if for eache > 0 and A > 0, there is an integer BI(A\) such that
Fxn, 5 (€) > 1 -\ foralln= M(g, A).

Further the sequencen{}xis said to beCauchy sequence if for € > 0 and A > 0, there is an integer BJ(A) such that
FX iy (€) > 1-A for all m, n= M(g, A).

n'm

A Menger PM-space (X, F, t) is said to dmnplete if every Cauchy sequence in X converges to a poikt
A complete metric space can be treated as a coendlehger space in the following way:
Proposition 2.1. [7] If (X, d) is a metric space then the metri;xduces mappings

F: Xx X 5 L, defined by 5 q(x) =H(x -d(p, q)), p, 4 X, where
H(k) =0, fork€0 and H(k)=1, fork>0.

Further if, t: [0,1] x [0,1]- [0,1] is defined by t(a, b) = min {a, b}. Then (&, t) is a Menger space. It is
complete if (X, d) is complete.

The space (X, t) so obtained is called theduced Menger space.

Definition 2.6. [8] Self mappings A and S of a Menger space £€X{) are said to be weak compatible if they
commute at their coincidence points i.e. Ax = $x¢r x [0 X implies ASx = SAX.

Definition 2.7. [8] Self mappings A and S of a Menger space&Xt) are said to beompatible if FASX . x)-1
nn

for all x>0, whenever {% is a sequence in X such that Ax - u for some uin X, as B, oo.
n n n

Remark 2.1. [8] The concept of weakly compatible mappings igemgeneral than that of compatible mappings.

Lemma 2.1. [8] Let (X, F, *) be a Menger space with t-norm * subht the family {*n(x)} N is equicontinuous at
x = 1 and let E denote the family of all functions

Q: Rt - R such thatpis non-decreasing with Iign (pn(t):+oo, Ot>0. If {yn} N is a sequence in X satisfying
the condition

Fyn' yn+l(t) = I:yn—l' Yn (q(t))’

forall t >0 andx 00 [-1, 0], then {){1}nDN is a Cauchy sequence in X.
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Proposition 2.2. Let {x,} be a Cauchy sequence in a Menger space®X) with continuous t-norm t. If the
subsequence {¢ converges to x in X, then {} also converges to x.

Proof. As {x,} converges to x, we have

I:Xn,x (8) 2 t[ I:xn,x2n (%j ' |:)(2n,x (%jj )

Then
Li[l;lo F. «(€) 2 t(L,1), which gives!j[l;lo F. «(€) =1, 0e> 0 and the result follows.

RESULTS

Theorem 3.1. Let A, B, S, T, P and Q be self mappings on a Mergpace (X&, *) with continuous t-norm *
satisfying :

(3.11) PX)O STX), QX) O AB(X);

(3.1.2) AB=BA, ST=TS, PB=BP, QT =TQ;

(3.1.3) One of ST(X), Q(X), AB(X) or P(X) is conmte;

(3.1.4) The pairs (P, AB) and (Q, ST) are weatpatible;

(315) [1+aF, _ (@]*F, (0

2 aminfF, , (0*F, o (©.F, o (@0* F_ (20
T F e sy @) T F L (01) FF (@) T F o (200)

FF oy ap20(1)

forall x, yOX,t>0andpOE.
Then A, B, S, T, P and Q have a unique common fpadt in X.

Proof. Suppose 3<D X. From condition (3.1.1)] x4, X, [ X such that
Px0 = STx1 and Qi<= Asz.

Inductively, we can construct sequenceg} fnd {yn} in X such that
y =Px =STx and Y= Qx =ABx
2n 2n n+1 2n+1

2n+1

forn=0,1, 2, ....

2n+2

Step |. Let us show thaF (t)=z F (o(t))-

Yn+2> Yn+1 Yn+1’Yn

For, puttingx2n+2 for x andem1 for y in (3.1.5) and then on simplification, we have

[1+aF t)] * F (t)
ABX) v ST%on 4y PXons2 Ponsy

> d min{F (t) * FQ (2t)

X STx (t) ’ FPX STx
2n+1’ 2n+1 2n+2’ 2n+1

PXons2 AB%040
F (2t)}

one1 AB%on40

+F () * F (@) * F
ABX) v STRon 1 PXont ABXpp 40 Q

“F_ . QOO)*F_ _ (20()

on+2’ ST¥on+1 QX410 ABgp40
[1+aF (t)] * F. (t)
y2n+1’ y2n y 2n+2’ y2n+1
> o min{F (t)*F (t), F (2t) *F (2t)}
Yon+2’ Yon+1 Yon+1’Yon Yon+2' Yon Yon+1' Yon+1

+F (@(t)

Yon+1'Yon

*F (@(t) * F (@(t) * F (2¢(t) * F (2¢(t)
Yon+2' Yon+1 Yon+1’Yon Yon+2’ Yon Yon+1' Yon+1

F (t) + O(F‘y (t)*F (t)

Yon+2' Yon+1 on+1’ Yon Yon+2’ Yon+1

L (olt)

B *on+1

*on+1’
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= o min{F (2t), F 2t +F (@) * F (1)
Yon+2 Yon Yon+2 Yon Yon+1’Yon Yon+2’ Yon+1
*F (29(t) * 1
y2n+2’y2n
F (t) + oF (t)*F (t)
Yon+2' Yon+1 Yon+1’Yon Yon+2' Yon+1
=aF (2t) + F (o(t) * F (29(1))
Yon+2’ Yon Yon+1'Y2n Yon+2' Yon+1
F (t) + oF (2t)
Yon+2' Yon+1 Yon+2' Yon
2 aF (2t) +F (@) * F (@) * F (@(t)
Yon+2’ Yon Yon+12 Y21 Yon+2’ Yon+1 Yon+1’Yon
F (t)=z F (@) * F (@(t)
Yon+2' Yon+1 Yon+1'Yon Yon+2’ Yon+1
or, F ()= F (@) * F (@)
Yon+2' Yon+1 Yon+1’ Yon+2 Yon’ Yon+1

or, F (t) 2 minF_ (@(t), F (@(t));-

Yon+2' Yon+1 on+1’ Yon+2 Yon' Yon+1

IfF (@(t)) is chosen 'min' then we obtain
Yon+1’ Yon+2

(t)2 F (@), O t>0

Yon+2' Yon+1 Yon+2' Yon+1
a contradiction ag(t) is non-decreasing function.

Thus,
F )= F (p(t)), O t>o0.
Yon+2' Yon+1 Yon+1’Yon
Similarly, by puttingx2n+2 for x andx2n+3 for y in (3.1.5), we have
F (t) = Fy (p(t)), 0 t>0.

Yon+3’ Yon+2 on+2’ Yon+1

Using these two, we obtain

F )= F @t), On=0,1,2,...,t>0.

Yn+2 Yn+1 n+l’’n

Therefore, by lemma. 1, {yn} is a Cauchy sequence in X.

Casel. ST(X) iscomplete. In this case {y} = {STxan:1} is @ Cauchy sequence in ST(X), which is complete.
Thus {yn+1} converges to some(@ ST(X). By proposition 2.2, we have

{Qxon+ - 2z and {ST»n+1 - Z, (3.1.6)
{Pxoqt - 2 and {AB%,} - z. 3.1.7)
As z[ ST(X) there exists I X such that z = STu.

Stepl. Putx = X andy =uin (3.1.5), we get

1+ 0P, 01 Fy o0

2amintf, 07 Fo o0 F, @07 F )
* FABXQH STu((p(t)) ¥ FPXQH, ABXQH((p(t)) ¥ FQu, STu((p(t)) ¥ FPXQH, STu(2(p(t))

* (20(t).

Qu, ABX2n

Letting n —» o and using (3.1.6), (3.1.7), we get
[1+ oF Z(t)] “F Qu(t)

> min{FZ Z(t) * FQu Z(t), Fz Z(gt) * FQu z(zt)}
+F,(0(t) " F, (@)
*Fo, @0) *F_ (20(t) * F_  (20(t))
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S raF (92 aminfF (1), F O+ F (@) *F - (20(t)
)

+aF, (6> aminfF (0, F  (0*F (0} +F  (9t) *F,(elt)

Qu, z u, z ,Z z ,Z

oF, (2 aF  ()+F_ (@)

Qu, z Qu, z

which is a contradiction by lemma (2.1) and we get
Qu=z andso Qu=2z=STu.

Since (Q, ST) is weakly compatible, we have
STz = Qz.

Step 111, Putx = X andy = Tz in (3.1.5), we have

[1 * GFABXQH, STTz(t)] ¥ FPXQH, QTz(t)

> o min{F
Px,. ,
2n

* FABXQH, S’["I‘z((p(t)) * FPX ABXQH((p(t)) * FQTz, S’["I‘z((p(t))

“Fy nl200) *Fo o 20t),

As QT = TQ and ST =TS, we have

QTz=TQz= Tz and ST(Tz) =T(STz) = Tz.

Letting n —» o, we get

[1+ O(FZ Tz(t)] * FZ TZ(t) > a min{Fz Z(t) * FTZ TZ(t), FZ TZ(2t) * FTZ Z(2t)}
+F L (0) * F,_(@(1)

FEL @) T F L 2e() FF - (20()

FL TZ(t) + (X{FL TZ(t) * FL TZ(t)} > o min{l * FTZ’ Z(2t)} + FZ’ TZ((p(t))
*1*1* FTZ Z(2(p(t))

FTZ, Z(t) + GFTZ, Z(t) > a FTZ) Z(2t) + FTZ, Z((p(t)) * FTZ) Z(Q(p(t))

Fo 0roF (®)zaiF () F (t+F (o)

*F,, 00)*F, (@)

FTZ, z(t) * GFTZ, z(t) z a FTz, z(t) * FTz, z((p(t))

F, 0=z F (@)

2t)*F (2t}

ABx, on

(t) * F (t), F
on Px2n, STTz

QTz, STTz QTz, ABx,

2n’

which is a contradiction and we get Tz = z.
Now, STz =Tz =z implies Sz = z.
Hence, Sz=Tz=Qz =z.

Step 1V. As Q(X) O AB(X), there exists wil X such that
z= Qz = ABw.

Putx = w andy = X o in (3.1.5), we get
[1+aF O F, o

ABw, S’I‘x2n+ ontl
Qx, X, (t)’ FPW STx, (Qt)
2n+1’ 2n+1 ’ 2n+1

Xon+1’ ABW(Qt)} * FABW, S’I‘x2n+1((p(t)) * FPW, ABW((p(t))
T WOTE, o 20 F,

QX2n+ 1> ¥on+1

, Q%

> min{FPW ABW(t) *F or

*F
Q
(29(t)-

on+1’ ABw

Letting n — o, we get
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[1+aF, (O] *F, (0 >aminfF, () *F (1, F, (2)*F (2t)
F, (00) *F, (9(0) |
F, (@) * F,(20(0) * F, (20(t)
F,, (0 +aF, () = aminfF, (1), F, (20} +F, (@) *F, (29(t)
FPW () +aF, (0 = aminfF, (0, F, (0*F () +F, ()
“F, (00)
F, (t) +aF_ () > aminfF, (1), F_ (O} +F_ (¢t)
P )+ oF :Z(t) zaF, () +F, (00
. 0 2 F,, (@)

which is a contradiction and hence, we get Pw = z.
Hence, Pz =z = ABz.

Step V. Putx=zandy :2>r<]+lin (3.1.5), we have
[1+aF ] *F (t)

2n+1 2n+1
O*F, & OF @)* F_ . (21

Pz, ABz *on+1” © *on+1 > on+1 2n+1’

(00) " F g (00) " Fo o (@O)F,, o (20(0)

2n+1 on+1’ > “2n+1

“F_(20().

QX one1

ABz, STx, Pz, Qx

> o min{F

ABz, STx,

Letting n — o, we get
[1+ O(FPZ Z(t)] * sz Z(t)

Pz Pz(t) * Fz z(t)’ FPZ z(zt) ¥ Fz Pz(2t)} * FPZ z(qt)) *F
*F_ (@1) * F,, (20(t) * F _ (20(t)

> o min{F (@(t)

Pz, Pz

FPZ z(t) * G{FPZ z(t) * FPZ z(t)}
> amin{l * 1,F, (20 *F_ (2t +F,_ (@) *1*1*F, (2q(t)
F, ,,(20()
F,, (0 +aF, () 2 amin{l, F, (20} +F, (9(t) *F, (20(t)
F, ()+oF, (1) 2aF, (2 +F_ (ot) *F, (20(t)
F, (O +aF, () 2aF, (*F (0} +F, (@1)*F, (@1)*F, (o)
F, (O+aF, () 2aF, (%1} +F (o) *1
FPZ, z(t) * GFPz, z(t) 2 GFPZ, z(t) * FPZ, z((p(t))
F,, (0 2 F (¢t)

which is a contradiction and hence, Pz=z
and so z =Pz =ABz.

StepVI. Putx=Bzand y = X in (3.1.5), we get
[1+aF M) *F (t)

ABBz, S’I‘x2n+ 1 o+l
STx, (8, FPBZ STx
2n+1’ 2n+1 ? 2n+1

(@(t)) * (@(t)

ABBz, STX2n+ 1

PBz, Qx

2 o min{F (t) * FQX (21

PBz, ABBz

* F, (2t) + F

X2n+1, ABBz

“F,, (@) *F

PBz, ABBz

PBz, STx, (th)) * FQX

on+ 1> ST¥on+1 > on+1 2n+1’

(29(t)).-

ABBz
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As BP = PB, AB = BA so we have
P(Bz) = B(Pz) = Bz and AB(Bz) = B(AB)z = Bz.

Letting n - o and using (3.1.6), we get

[1+aF_ (K] *F_ (1

> a min{iTBz, K F (. F, (20 F__(2)

+F, (0f) *F,_ (@) *F, (@) *F, (200) *F, _(20()

Fo, O +aF, ©FF,

>amin{l* 1,F_ (20} +F_ (@t)* 1*1*F_ (20(t)

AR (0 > aF, (2t)+ F,, (@) *F, (20(1)

) +aF, (2 oF, ()*F (6 +F (0t)*F,  (¢t)*F (o)
JHaF, (02 aF, (0% 1 F, () * 1
) )2 aF, () +F, (o)
)

Bz,

which is a contradiction and we get Bz = z and so
z = ABz = Az.

Therefore Pz = Az = Bz = z.

Combining the results from different steps, we get
Az=Bz=Pz=Qz=Tz=Sz = z.

Hence, the six self maps have a common fixed poititis case.
Case when P(X) is complete follows from above @asB(X)0 ST(X).

Case I1. AB(X) is complete. This case follows by symmetry. As Q(X) AB(X), therefore the result also holds
when Q(X) is complete.

Uniqueness:
Let zZ be another common fixed point of A, B, P, Q, S @ndrhen

Az1 = le = le = Szl = Tz1 = Qz1 =z, assumingz # z,.

Putx = z andy = z, in (3.1.5), we get

[1 * GFABZ, STzl( )] ¥ FPZ, Qzl(t)

t)* F (), F 29 " Fy, 5,20

Pz, ABZ( Qzl, STz1 Pz, S’I‘z1

P s (00 7 By o (00) B, o (00) 7, (2040)
“Fy, g 2000
[1+aF, ()] *F, ()
> aminf_(O°F, _(0,F_(20°F (20+F_ (@) *F,_(o(0)
“F__(00)*F_ (200)*F, (240) 1
K a{FZJZI(tI) “F,, () > amin(l, F,, CUIF, (@) "F,  (20(0)

771

F
F,, (0 +oF, (02 aF, (20}+F (o) *F, , (0t) *F, (o)
F
F

> o min{F

’Zl , Z

() +oF (M2 o ()*F () +F (o) * 1
1’ 1’ 1’ ’ 1

2

() +oF ()2 aF () +F (q(t)
1’ ’ 1

l ’ 17Z
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F, (0 2 F, ol0)

Zl’ z
which is a contradiction.

Hence z = 1zand so z is the unique common fixed point of ASBT, P and Q.

This completes the proof.

Remark 3.1. If we take B = T = I, the identity map on X in thhem 3.1, then condition (3.1.2) is satisfied il
and we get

Corollary 3.1. Let A, S, P and Q be self mappings on a Mengacesp(X, F, *) with continuous t-norm * satisfying

() P(X) O T(X), Q) 0 ARX);

(i) One of S(X), Q(X), A(X) or P(X) is complete;

(iii) The pairs (P, A) and (Q, S) are weak conitgat

() [1+0F, (O]*F, ()

) *F, (0. F, @) Foy m(21)

, Ax Px, S; Qy, Ax
* FA& Sy((p(t)) ’ FPX,AX((p(t)) ¥ FQy, Sy((P(t)) * Ko Sy(2(p(t))
“F,, (20(0)

> o min{F
Px

forall x, yOX,t>0andpOE.
Then A, S, P and Q have a unique common fixed poiXt

Remark 3.2. In view of remark 3.1, corollary 3.1 is a geneation of the result of Pathak and Verma [8] ie th
sense that condition of compatibility of the figsir of self maps has been restricted to weak ctibifiy and we
have dropped the condition of continuity in a Menggace with continuous t-norm.

REFERENCES

[1]. Jain, Arihant and Singh, Bijendra, Common fixednpaheorem in Menger space through compatible noéps
type (A), Chh. J. Sci. Tech. 2 (2005), 1-12.

[2]. Jain, Arihant and Singh, Bijendra, A fixed poinétiniem in Menger space through compatible mapspaf (),
V.J.M.S. 5(2), (2005), 555-568.

[3]. Jain, Arihant and Singh, Bijendra, Common fixednpaheorem in Menger Spaces, The Aligarh Bull. aftM

25 (1), (2006), 23-31.

[4]. Jungck, G., Compatible mappings and common fixedtpolnternat. J. Math. and Math. Sci. 9(4), (1986
771-779.

[5]. Jungck, G. and Rhoades, B.E., Fixed points fovakted functions without continuity, Indian LrE Appl.
Math. 29(1998), 227-238.

[6]. Menger, K., Statistical metrics, Proc. Nat. Acadi. USA. 28(1942), 535 -537.

[7]. Mishra, S.N., Common fixed points of compatible piags in PM-spaces, Math. Japon. 36(2), (1991); 283
289.

[8]. Pathak, H.K. and Verma, R.K., Common fixed poirgdrems for weakly compatible mappings in Menger
space and application, Int. Journal of Math. Anialygol. 3, 2009, No. 24, 1199-1206.

[9]. Schweizer, B. and Sklar, A., Statistical metriasgs, Pacific J. Math. 10 (1960), 313-334.

[10]. Sehgal, V.M. and Bharucha-Reid, A.T., Fixed poiofscontraction maps on probabilistic metric spaces
Math. System Theory 6(1972), 97- 102.

[11]. Sessa, S., On a weak commutativity condition of piregs in fixed point consideration, Publ. Inst. Kat
Beograd 32(46), (1982), 146-153.

53
Pelagia Research Library



