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ABSTRACT 
 
This study reports the numerical solution of Laplace's equation in the first membrane of Giraud, using large 
singular finite elements method. We compare these results with those obtained using the conventional method of 
finite elements. Both methods provide results that align quite well everywhere except near the singularities where 
significant differences exist. The results deviate near the singularity and we obtain the classical Gibbs phenomenon. 
The comparisons are based on u solution values, those of its first derivatives and Laplacian's. 
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 INTRODUCTION 

 
The Laplace equation and more generally Poisson's equation is used in several problems in engineering, physics and 
other disciplines. This equation appears in electromagnetism [1], fluid dynamics [2], stationary heat conduction [3], 
electrostatics [4] and in elasticity [5-6]. When the problem is singular at the vertices of a polygon, the digital 
processing of the Laplace equation is very difficult and usual methods of finite elements give unsatisfactory results 
when used in their standard form. These methods as demonstrated by various authors [7-12] can be significantly 
improved if they take the analytical form of the solution near the singularities into account. In addition, the 
resolution of the Dirichlet’s problem with Laplace’s equation with cracks is particularly difficult. The main 

difficulty comes from the singularities which are located at their ends. Indeed, at these points ,iσ  the series 

corresponding to the solution of the Laplace’s equation are ∑
∞

=1

2

2
sin

k
i

k

iik

k
ra θ  and their first term which is 

proportional to 2

1

ir , presents derivatives that tend to infinity near the end of the crack [13]. Large singular finite 

elements method (LSFEM) was designed to overcome the “due to singularities” that gives very satisfactory results 
all over the study field while the finite elements method (FEM) gives good results only on areas located far from 
singularities. This demonstrates the power, efficiency and accuracy of this method for a number of coefficients that 
are less important than finite elements method. 

 
MATERIALS AND METHODS 

     
Let determine the stationary field temperature in a crack polygon which has the shape of a billiard or a Chapman-
Giraud membrane. It is a domain that was built by Chapman [14] and studied by Giraud [15]. The domain consists 
of a rectangle whose sides of reduced length are respectively 4 and 2 amputated of a square with a reduced unit side. 
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In addition, it has an internal boundary formed by two perpendicular line segments of unit length. This internal 
boundary is the equivalent of a crack in the domain. We assume that the external boundary of the domain and its 
internal boundary are respectively maintained at different fixed temperatures 0 and 1 in reduced variables. 
 We need to solve the Laplace’s equation with discontinued conditions at the Dirichlet boundaries in a domain that 
has  re-entrant angles of  3π/2 and 2π. The problem has five real singularities σ. Two of them are combined 
geometrically and are due to temperature variations that go from 0 to 1 and from 1 to 0 if it runs through the 
boundary of the domain clockwise. Two other singularities exist because of the presence of one re-entrant angle of  
3π/2 . The fifth is located at the end of the internal crack with a re-entrant angle whose value is 2π (Figure 1). 

 

 
Figure-2: Field of Chapman-Giraud. Dirichlet  boundary conditions 

 
Large singular finite elements method (LSFEM) which is due to Tolley [11], comprises three steps: 
  
Step 1: Decomposition of the domain 
A division of the field that does not take into account the real singularities is irrelevant to get a good approximate 
solution of the Dirichlet problem. The entire domain must be covered by the union of disks of convergence 
associated with singularities. Naturally, we need to introduce pseudo additional singularities to obtain a partition of 
the computational domain into sixteen sub-domains separated in pairs by twenty-two sub-borders (Figure 2). 
  

- Five identical rectangles: 2Ω , 3Ω , 8Ω , 9Ω and 16Ω   

- Five identical squares with no cracks 1Ω , 4Ω , 6Ω , 7Ω   and 15Ω  

- Three identical squares: 10Ω and  14Ω  with a crack at one side and 11Ω  which forms the crack on both sides of 

the right angle. 

- A unit side square 12Ω  with also a crack on half a median with an opening angle 2π at point L  

- Two  L-shaped domains : 5Ω  and  13Ω   where the opening of the re-entrant angle is 3π/2  

 
Figure-2 Division of the Chapman Giraud domain and singularities at J, K and L 
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Step 2: Resolution of auxiliary problems 
The second step involves solving auxiliary problems. It raises as many problems as the existing sub-domains. To 

each sub-domain iΩ  is associated an origin Pi a singularity, an angleiα  which is the opening angle in Pi and a 

local system of polar coordinates ),( iir θ . 

For the five identical rectangular sub-domains 2Ω , 3Ω , 8Ω , 9Ω and 16Ω , we solve the following identical 

auxiliary problems: 
 

0),( =∆ iiru θ                               iiir Ω∈),( θ                                                                                     (1-a) 

0)0,( =iru                             (1-b)                                 

0),( =πii ru                                                                                                                                                           (1-c) 

 
with i  taking respectively the values 2, 3, 8, 9 and 16. 
 

And also in the five identical square sub-domains 1Ω , 4Ω , 6Ω , 7Ω   and 15Ω  with no cracks, we solve the 

following identical auxiliary problems : 
 

0),( =∆ jjj ru θ         jjjr Ω∈),( θ                                                                                                            (2-a)     

0)0,( =jj ru                          (2-b)                          

0)2/,( =πjj ru                                                                                                                                                      (2-c) 

j  is respectively 1, 4, 6, 7 and 15. 

 

In the square sub-domain 10Ω with the crack on one side, we solve the Laplace’s equation with conditions at the 

Dirichlet boundary: 
 

0),( 101010 =∆ θru         101010 ),( Ω∈θr                                                                                                              (3-a)                                       

1)0,( 1010 =ru                                                                                                                                      (3-b) 

0)2/,( 1010 =πru                                                                                                                            (3-c) 

 

In the square sub-domain 11Ω  with the crack on both sides of the right angle, we solve the Laplace’s equation with 

conditions at the Dirichlet boundaries. 

0),( 111111 =∆ θru      1111,11 )( Ω∈θr                                                                               (4-a)                     

1)0,( 1111 =ru                                                                                                                                      (4-b) 

1)2/,( 1111 =πru                                                                                                                            (4-c) 

In the square sub-domain  12Ω  with also a crack on half a median with an opening angle 2π, we solve:  

0),( 121212 =∆ θru       121212 ),( Ω∈θr                                                                                (5-a) 

1)0,( 1212 =ru                                                                                                                                      (5-b) 

1)2,( 1212 =πru                                                                                                                                           (5-c) 

 

In the square sub-domain 14Ω  which has a crack on one side, we solve: 

0),( 141414 =∆ θru      141414 ),( Ω∈θr                                                                                (6-a) 

0)0,( 1414 =ru                                                                                                                                      (6-b) 

1)2/,( 1414 =πru                                                                                                                            (7-c) 

 

Finally for the two L-shaped sub-domains 5Ω
 
and 13Ω  , we respectively solve:  
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0),( 555 =∆ θru      555 ),( Ω∈θr                                                                     (7-a)                              

0)0,( 55 =ru                                                                                                                                      (7-b) 

0)2/3,( 55 =πru                                                                                                                                                     (7-c) 

0),( 131313 =∆ θru   131313 ),( Ω∈θr                                                                                                                      (8-a) 

1)0,( 1313 =ru                                                                                                                                            (8-b)  

1)2/3,( 1313 =πru                                                                                                                            (8-c) 

 
The problems raised in identical sub-domains with the same boundary conditions will have identical auxiliary 
solutions. The undetermined solutions of the sixteen auxiliary problems taking into account the boundary conditions 
can be written as follows [13]:  
 
 - In the case of square sub-domains bearing no cracks on their sides, we have:  

∑
∞

=

=
1

2 2sin),(
n

i
n

iiniii nraru θθ  with 15,7,6,4,2=i                                                                         (9-a) 

- In the case of squares with cracks, we have the following four solutions:  

∑
∞
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+−=
1
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2
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∑
∞

=

+=
1

14
2

141414141414 2sin/2),(
n

n
n nraru θπθθ                                                                                                  (13-a)                                                

In the case of the rectangular domains with  j = 2, 3, 8, 9  et 16, 

∑
∞

=

=
1

sin),(
m

j
m
jjmjjj mraru θθ                                                                                                                           (14-a) 

In the case of L-shaped domains, we have: 

∑
∞

=

=
1

5
3

2

55555 )
3
2

sin(),(
l

l

l

l
raru θθ                                                                                                                        (15-a) 

∑
∞

=

+=
1

13
3

2

1313131313 )
3

2
sin(1),(

k

k

k

k
raru θθ                                                                                                      (16-a) 

The  kla  coefficients used in various auxiliary solutions from (9-a) to (16-a) remain arbitrary. 

 
Step 3: Connecting auxiliary solutions.  
The connection of auxiliary solutions is done by requiring the continuity of the function  u  and its normal 

derivative along the border ijΓ  in between two adjacent sub-domains iΩ  and jΩ . This continuity will be imposed 

on the least squares sense. In practice, we obtain the approximate solutions by keeping a finite number of 
coefficients in the auxiliary solutions from (9-a) to (16-a). The sensible choice is to take this number of coefficients 
proportional to the value of the opening of the angle at the origin of the local coordinate system [11-12]. 
 
- In the case of square domains with no cracks on their sides, we have these solutions:  
 

∑
=

=
N

n
i

n
iiniii nraru

1

2 2sin),( θθ  with 15,7,6,4,2=i                                                                                         (9-b) 

- In  the  case of  square  domains  with cracks, we have these four solutions: 
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∑
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- In the case of rectangular domains with  j = 2, 3, 8, 9  et 16; we have these solutions: 

∑
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- In the case of  L-shaped domains, we have: 
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In order to obtain the solution of the initial problem from solutions of auxiliary problems, we “just need” to make a 

“good choice" of arbitrary coefficientsina . According to Tolley [11], the good choice is obtained by imposing the 

continuity of auxiliary functions and those of their normal derivatives in the sense of least squares along the sub 

borders ijΓ .  
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involved in various approximate solutions. The method of least squares aims 

at minimizing the integral )( mnaI with respect to unknown coefficients involved in approximate solutions, i.e.  to  

write that  
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which gives as many equations as unknown coefficients. Then, we get a non homogeneous algebraic system of the 
unknown coefficients that can be solved. 
 
The accuracy of approximate solutions is directly linked to the quality of the connection of auxiliary solutions. It is 
therefore natural to characterize this precision by measuring the imperfections of continuity conditions. For this, we 
will use the overall error η  definite by (19): 
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where klds  is the element of  arc length of klΓ , klS  its length and kυ  and lυ the normals to the sub-boundary 

separating both two adjacent sub-domains. If the overall error is null, the approximate solution coincides with the 
exact solution.   
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 RESULTS AND DISCUSSION  
 

 Results obtained by LSFEM. 
 Our numerical results show that the convergence of the method of large singular finite elements is exponential as 
the logarithm to base ten of the overall error decreases linearly with N×28  as shown in Figure 3. If we limit the 

total number of coefficientskla  to 616 (for N = 22) the overall error is 1010− while it is close to 1210−  if  we keep 

700 coefficients kla  (for N = 25). 

 
 

Figure 3  Domain of Chapman-Giraud. Evolution of the overall error according to the number of coefficients kla  conserved. 

 
 Comparison of results obtained by the LSFEM  with those by the FEM.   
 
The comparison of the results obtained with those supplied by LSFEM with those given by FEM is the value of 

uand that of its partial derivatives  x
u

∂
∂

 and y
u

∂
∂

.  We examine the evolution of the approximations obtained by both 

methods on concentric circles around singularities 
5σ  and 13σ   whose radius is becoming gradually smaller. They 

correspond to the re-entrant angles 3π/2. Near these points, the large singular elements method is favored towards 
the method of finite elements.  
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Figure 4. Domain of Chapman-Giraud: comparison of the values of u (blue), x
u

∂
∂

 (red), y
u

∂
∂

 (black) obtained by LSFEM (continuous lines) 

and FEM (circles). 
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Figure 5.  Domain of Chapman-Giraud: comparing the values of u obtained by LSFEM (continuous lines) and FEM (circles).  

Figures 6 and 7 are similar to the previous two and refer to the singularity 13σ  of the sub-domain 13Ω . They can 

allow us to make the same observation as above.  

 
 

 
 

Figure 6. Domain of Chapman-Giraud: comparison of the values of u (blue) x
u

∂
∂

 (red), y
u

∂
∂

 (black) obtained by LSFEM (continuous lines) 

and FEM (circles). 
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Figure 7. Domain of Chapman-Giraud: comparison of the values of u, obtained by LSFEM (continuous lines) and FEM (circles).  
 

To complete our comparison of results obtained by both methods, we evaluated u∆  near the coordinate point (1, 2) 

(singularities 10σ  and 14σ ) on circles of radii, 2102 − , 2105 − , 110−  and 1105.2 − .The  results of  LSFEM are 

not represented since the very principle of the method implies that 0=∆u  on  all the circles. As for values 
obtained by FEM, they are given in like polar diagrams in Figure 8. Although these values are obtained with the 
finer grid, we can see that results are becoming worse as the radius of the circle becomes smaller and that u∆ takes 
values up to 1000!  
 
The study of cracked polygons obtained through translations, symmetries and rotations from a basic equilateral 
triangle  using the LSFEM gives also satisfactory results throughout the study area except at the end of the cracks 
where there are large variations of u and its first derivatives [16-17].  
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Figure 8. Domain of Chapman-Giraud : values of  Laplacian obtained by finite element method (217,857  degrees of  freedom) on the 
circles around the coordinates (1, 2). 

 
CONCLUSION  

 
Large singular finite elements method gives very satisfactory results with singularities and the points far from them. 
Solutions to problems are sought in analytical form, which provides all the derived quantities with the same 
accuracy as the key item, without further formulation. By comparing the results obtained with the conventional 
finite elements method, this gives the advantage to those of large finite singular  elements method because it leads to 
much more accurate results, especially near singularities. It gives accurate results in all parts of the domain, u∆ is 
everywhere zero because of the analytical form of the solution. Although the values obtained with the finer grid 
(217,857 degrees of freedom), we can see that the results are even worse when the radius of the circle is small and 
the laplacian takes values that ranging over 1000. Results deteriorate near the singularity and we obtain the classical 
Gibbs phenomenon. 
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