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ABSTRACT

This study reports the numerical solution of Laplacequation in the first membrane of Giraud, usiage
singular finite elements method. We compare thesalts with those obtained using the conventionathod of
finite elements. Both methods provide results #iigh quite well everywhere except near the singtiés where
significant differences exist. The results deviaear the singularity and we obtain the classicablid phenomenon.
The comparisons are based on u solution valuesgtbbits first derivatives and Laplacian's.
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INTRODUCTION

The Laplace equation and more generally Poissguati®n is used in several problems in engineephgsics and
other disciplines. This equation appears in elecagnetism [1], fluid dynamics [2], stationary heahduction [3],
electrostaticg4] and in elasticity [5-6]When the problem is singular at the vertices ofolygon, the digital
processing of the Laplace equation is very diffi@rd usual methods of finite elements give unieatisry results
when used in their standard form. These methoddeatmonstrated by various authors [7-12] can be fsogmitly
improved if they take the analytical form of thelldimn near the singularities into account. In &ddi, the
resolution of the Dirichlet's problem with Laplaseequation with cracks is particularly difficult.h& main

difficulty comes from the singularities which arechted at their ends. Indeed, at these podits the series

oo k
corresponding to the solution of the Laplace’s ¢iqnaare Zaﬂ( 2 Sin§¢9i and their first term which is
k=1

1
proportional to I’iz, presents derivatives that tend to infinity ndse &nd of the crack [13]. Large singular finite

elements method (LSFEM) was designed to overcomédhe to singularities” that gives very satisfagteesults
all over the study field while the finite elemem&thod (FEM) gives good results only on areas &xtdar from
singularities. This demonstrates the power, efficieand accuracy of this method for a number offients that
are less important than finite elements method.

MATERIALS AND METHODS
Let determine the stationary field temperature wrack polygon which has the shape of a billiarcad@hapman-

Giraud membrane. It is a domain that was built byanan [14] and studied by Giraud [15]. The dontainsists
of a rectangle whose sides of reduced length apentively 4 and 2 amputated of a square with aaedl unit side.
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In addition, it has an internal boundary formedtiwp perpendicular line segments of unit length.sTimternal
boundary is the equivalent of a crack in the dom¥#ile assume that the external boundary of the doiaad its
internal boundary are respectively maintained dfeint fixed temperatures 0 and 1 in reduced bWiem
We need to solve the Laplace’s equation with difooed conditions at the Dirichlet boundaries idamain that
has re-entrant angles o872 and Z. The problem has five real singularities Two of them are combined
geometrically and are due to temperature variatitias go from 0 to 1 and from 1 to O if it runsdbgh the
boundary of the domain clockwise. Two other singtiés exist because of the presence of one rexsenémgle of
3172 . The fifth is located at the end of the interor@ck with a re-entrant angle whose valuergFgure 1).
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Figure-2: Field of Chapman-Giraud. Dirichlet boundary conditions
Large singular finite elements method (LSFEM) whigldue to Tolley [11], comprises three steps:

Step 1: Decomposition of the domain

A division of the field that does not take into agnt the real singularities is irrelevant to gejamd approximate
solution of the Dirichlet problem. The entire domanust be covered by the union of disks of converge
associated with singularities. Naturally, we neséhtroduce pseudo additional singularities to mbtapartition of
the computational domain into sixteen sub-domaépasated in pairs by twenty-two sub-borders (Fig)re

-Five identical rectangle£2,,Q,,Q,, Qgand Q,
-Five identical squares with no crack ,Q,,Q,, Q, andQ,

-Three identical square€2,,and Q,, with a crack at one side arf@,; which forms the crack on both sides of
the right angle.
- A unit side squareQ12 with also a crack on half a median with an operingle Z at point L

-Two L-shaped domainsQ5 and Q13 where the opening of the re-entrant angleri2 3
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Figure-2 Division of the Chapman Giraud domain andsingularities at J, K and L
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Step 2: Resolution of auxiliary problems
The second step involves solving auxiliary problethsaises as many problems as the existing subadtts. To

each sub-domaif; is associated an origin B singularity, an angl®, which is the opening angle in nd a
local system of polar coordinatéfs, 8) .

For the five identical rectangular sub-domafds , Q,,Q,, Qgand Q,4, we solve the following identical
auxiliary problems:

Au(r,8)=0 (r;,6)0Q, (1-a)
u(,0)=0 (1-b)
u(r,m7)=0 (1-c)

with i taking respectively the values 2, 3, 8, 9 and 16.

And also in the five identical square sub-domdis, Q,,Q,, Q, andQ,. with no cracks, we solve the
following identical auxiliary problems :

Au,(r;,6,) =0 (r;,6,)0Q, (2-a)
u;(r;,0)=0 (2-b)
u(r,,7m/2)=0 (R-c

j is respectively 1, 4, 6, 7 and 15.

In the square sub-domaif,,with the crack on one side, we solve the Laplaegsation with conditions at the
Dirichlet boundary:

Auy(ry,, 6) =0 (r:6h0) Q44 (3-a)
Uy(rp0) =1 (3-b)
Uyo(y0,77/2) =0 (3-c)

In the square sub-domak,; with the crack on both sides of the right angle,swelve the Laplace’s equation with
conditions at the Dirichlet boundaries.

Auy,(r,,6,) =0 (r,6,)0Qy, (4-a)
U, (1,0 =1 (4-b)
uy,(r,, 77/2) =1 (4-c)
In the square sub-domaiﬁl12 with also a crack on half a median with an operingle Z, we solve:

Au,(r,,6,) =0  (r,.60,)0Q,, (5-a)
U,(r,,0) =1 (5-b)
Uy,(r,27) =1 (5-c)

In the square sub—doma@m which has a crack on one side, we solve:

AU14(r14, 614) = O (r14' 914) D Ql4 (6-3.)
u,,(r,0 =0 (6-b)
Uy, (r,,7ml2) =1 (7-c)

Finally for the two L-shaped sub-domaiﬁkS and Q13 , we respectively solve:
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Aug (r5,6,) =0 (rs,65)0Q, (7-a)
us(rs,0) =0 (7-b)
ug(r;.377/2) =0 (7-c)
Au,(n3,65) =0 (15, 65) Q45 (8-a)
U;5(r5.0) =1 (8-b)
Uy5(ri5,377/2) =1 (8-)

The problems raised in identical sub-domains wite same boundary conditions will have identicalileary
solutions. The undetermined solutions of the sixtaexiliary problems taking into account the bougdanditions
can be written as follows [13]:

- In the case of square sub-domains bearing reksm@n their sides, we have:

u(r,8)=> a,r>"sin2ng with i = 24,6715 (9-a)
n=1
- In the case of squares with cracks, we havedth@ifing four solutions:
Wo(ho Bo) =1-26,,/ T+ zamnrl%n sin2ng, (10-a)
n=1
Uy (ry, &) =1+ Z a11nr121n sin2né, (11-a)
n=1
o0 P ]
U, (rp, 6,) =1+ z a12pr1§ sin(pé,,/2) (12-a)
p=1
Wy(Ne 84) =26,/ T+ Z Bualia SIN2NE,, (1B-a
n=1
In the case of the rectangular domains with j 3,8, 9 et 16,
u, (r;,6,) =Y a,,r"sinmé, (14-a)
m=1
In the case of L-shaped domains, we have:
2l
e S .2
Us(rs, &) = zaa Iy’ 5'”(365) (15-a)
1=1
© a2k
Uy3(ris,015) =1+ z Q5 13 Sm(? 6,5) 16¢a)
k=L

The @, coefficients used in various auxiliary solutionsm (9-a) to (16-a) remain arbitrary.

Step 3: Connecting auxiliary solutions.
The connection of auxiliary solutions is done byuieing the continuity of the functionU and its normal

derivative along the bordel?ij in between two adjacent sub-domafs and Qj . This continuity will be imposed

on the least squares sense. In practice, we oli@napproximate solutions by keeping a finite numbg
coefficients in the auxiliary solutions from (94a) (16-a). The sensible choice is to take this nemub coefficients
proportional to the value of the opening of thelarag the origin of the local coordinate system-{P].

- In the case of square domains with no crack$ein sides, we have these solutions:

N
u(5,8)=> a,r’"sin2n@ with i = 2,4,6,715 (9-b)
n=1

- In the case of square domains with craclkshave these four solutions:
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N
Uo(ro, 6lo) =1- 26,/ T+ Z uonlio SIN2NE, (10-b)
n=1
N
Wy, (1, 6,) =1+ z allnrlzln sin2ng,, (11-b)
n=1
4N LI
U, (rp, 6,) =1+ z 0115 sin(pé,, /2) (12b)
p=1
N ) .
W,(Nae 84) =26,/ T+ z a14nr14n sin2nég,, (13-b
n=1
- In the case of rectangular domains with j =,8,3 et 16; we have these solutions:
2N
u, (r,,6,) = > a,r"sinmg, (14-b)
m=1
- In the case of L-shaped domains, we have:
N2 2
Us (15, 65) = D ag 1y sm(g 6,) (15-b)
1=1
N =2k
Upa(Ts, 65) =1+ z N Sm(? 6.,) (16-b)
k=1

In order to obtain the solution of the initial ptelm from solutions of auxiliary problems, we “justed” to make a
“good choice" of arbitrary coefficieng, . According to Tolley [11], the good choice is db&d by imposing the
continuity of auxiliary functions and those of theormal derivatives in the sense of least squalesg the sub
borderd ;.

@) =Y | (ui(aik)—uj(aj.))z+[0”‘(a‘k)+a“i(a“)j ds, )

o on, on J.

If 1 is a function of all coefficientsl,, involved in various approximate solutions. The roeltbf least squares aims

at minimizing the integral (amn) with respect to unknown coefficients involved irpegximate solutions, i.e. to
write that
0 @) _

18
0a,, (18)

which gives as many equations as unknown coeffigierhen, we get a non homogeneous algebraic sysfténe
unknown coefficients that can be solved.

The accuracy of approximate solutions is diredtiked to the quality of the connection of auxiliaglutions. It is
therefore natural to characterize this precisiom@asuring the imperfections of continuity condisoFor this, we
will use the overall error] definite by (19):

2
1 , [ 0u, 6u,J
=> || U —u)?+| —+—-| d (19)
7 k<IS<|r'[(k ) (auk 3y S

where ds, is the element of arc length 6%, S, its length andy, and v, the normals to the sub-boundary

separating both two adjacent sub-domains. If therallverror is null, the approximate solution coiles with the
exact solution.

177
Pelagia Research Library



Ouigou M. Zongoet al Adv. Appl. Sci. Res., 2013, 4(5):173-183

RESULTS AND DISCUSSION

Results obtained by LSFEM.
Our numerical results show that the convergendh®fmethod of large singular finite elements ipanential as

the logarithm to base ten of the overall error dases linearly witi28% N as shown in Figure 3. If we limit the
total number of coefficien®,; to 616 (for N = 22) the overall error 0 °while it is close tal0™? if we keep

700 coefficientsa,, (for N = 25).

Graph of global error
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Figure 3 Domain of Chapman-Giraud. Evolution of the overall error according to the number of (:oeffi(}izntsakI conserved.

Comparison of results obtained by the LSFEM \ithse by the FEM

The comparison of the results obtained with thaggpked by LSFEM with those given by FEM is the ualof
Uand that of its partial derivative%% and 3—; . We examine the evolution of the approximatiobtamed by both

methods on concentric circles around singularifp%sand 0,; whose radius is becoming gradually smaller. They

correspond to the re-entrant angle#$23 Near these points, the large singular elemergthodis favored towards
the method of finite elements.
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Figure 4. Domain of Chapman-Giraud: comparison of ie values of u (blue), 5, (red), 0—3 (black) obtained by LSFEM (continuous lines)

and FEM (circles).

~ Summit n°5 - Circle ?fra_di:ps_ﬁ-l o Summit 05 - Circle of radins 10

w 0014 5 i
R 0012
0z oo
el 0,008

= =
a P
oS 0,004
o Q002
%% ! 2 o " B (] i ] 3 1 &
8 radians 8 racdians
179

Pelagia Research Library



Ouigou M. Zongoet al Adv. Appl. Sci. Res,, 2013, 4(5):173-183
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Figure 5. Domain of Chapman-Giraud: comparing thevalues of u obtained by LSFEM (continuous lines) ahFEM (circles).

Figures 6 and 7 are similar to the previous two rafier to the singularityd, ; of the sub—domai|Ql3. They can

allow us to make the same observation as above.
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Figure 6. Domain of Chapman-Giraud: comparison of fie values of u (blue)g, (red), Wu (black) obtained by LSFEM (continuous lines)

and FEM (circles).
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Figure 7. Domain of Chapman-Giraud: comparison of he values of u, obtained by LSFEM (continuous lingsand FEM (circles).

To complete our comparison of results obtaineddiy imethods, we evaluateédlu near the coordinate point (1, 2)
(singularitiesg,, and g,,) on circles of radii,21072, 51072, 10" and 25107 .The results of LSFEM are

not represented since the very principle of thehwoetimplies thatAu =0 on all the circles. As for values
obtained by FEM, they are given in like polar degs in Figure 8. Although these values are obtaini¢ld the

finer grid, we can see that results are becomingevas the radius of the circle becomes smallettzatd\U takes
values up to 1000!

The study of cracked polygons obtained throughstedions, symmetries and rotations from a basidlatgual
triangle using the LSFEM gives also satisfact@gufts throughout the study area except at theoétioe cracks
where there are large variations of u and its fiessivatives [16-17].
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2 “alues of Laplacian on circle of radius 0.05
Walues of Laplacian on circle of radius 0.02 around coordinates (1,21

around coordinates (1,2)

Walues of Laplacian.un circle of radius 0.25

Values of Laplacian an circle of radius 0.1 around coordinates (1,2).

around coordinates (1,2

Figure 8. Domain of Chapman-Giraud : values of Lafacian obtained by finite element method (217,85degrees of freedom) on the
circles around the coordinates (1, 2).

CONCLUSION

Large singular finite elements method gives vetis&ectory results with singularities and the peifdr from them.
Solutions to problems are sought in analytical fomich provides all the derived quantities withe tkame
accuracy as the key item, without further formwati By comparing the results obtained with the emtional

finite elements method, this gives the advantaghdse of large finite singular elements methochbse it leads to

much more accurate results, especially near sirigefa It gives accurate results in all parts led lomain,AuU is
everywhere zero because of the analytical formhefgolution.Although the values obtained with the finer grid
(217,857 degrees of freedom), we can see thatethdts are even worse when the radius of the dscéenall and
the laplacian takes values that ranging over 1B@3ults deteriorate near the singularity and wainhihe classical
Gibbs phenomenon.
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