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Introduction
Classical test theory as described in introductory measurement 
textbooks such as Allen and Yen was formulated and promulgated 
during the first six decades of the 20th century [1]. The generative 
context was a growing recognition that scientific observation 
is subject to error and that error can be construed as following 
a normal distribution [2,3]. Traub in tracing the historical 
perspective of classical test theory identified five major milestones 
in classical test theory evolution as: (i) Spearman’s correction for 
attenuation; (ii) the Spearman-Brown formula; (iii) the index of 
reliability and other related concepts; (iv) the Kuder-Richardson 
formulas; and (v) lower bounds to reliability estimates [4]. 

Over subsequent years, various attempts were made to formalize 
classical test theory. One of the earliest was Kelley’s Statistical 
Methods with a chapter devoted to reliability [5]. A more 
comprehensive formulation was Gulliksen’s Theory of Mental 
Tests [6]. Formal axioms were first derived by Novick and further 
expanded and elaborated by Lord and Novick [7,8]. Novick 
designated classical test theory as weak true-score theory in that 
no specific assumptions were made as to the form of observed, 
true score, or error score distributions. Subsequent attempts 
have been made to strengthen the theory by deriving its axioms 
from concepts of probability theory [9,10].

Emergent Criticisms
Criticism centers on the key classical definitions that a true score 
can be defined as the expected value of a subject’s observed test 
scores over an infinite number of independent replications and 
the definition of error as the difference between the observed 
and true score [11]. This definition allows the construction that 
error must have zero expectation. Critics charge that so construing 
a true score is tautological [11-14]. The necessary stipulation 
that error scores have zero expectation shifts the status from a 
testable hypothesis that true score is equal to the observed score 
expectation to the nonfalsifiable declaration that true score 
is the expectation. As expectations are assumed to exist for all 
subjects, true-score entities created by definition are empirically 
irrefutable. Irrefutability belies the experimental requirement 
that all theory should be empirically falsifiable, resulting in what 
Michell has termed “pathological science”.

Defining true score as an expectation implies that within-subject 
true scores remain constant across independent replications. 
Independence of replications requires absence of individual 
memory. Lord and Novick dealt with this prerequisite by asserting 
that their hypothetical subject, Mr. Brown, be brainwashed 
between replications [8]. Brainwashing or other means to 
neutralize memory so as to assure independent trials does not 
mitigate the consequences that fixed individual true scores 
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theory. To avoid ambiguity, test theory and true-score theory 
designations are used interchangeably. Each tenet is formally 
stated and accompanied by discussion that provides further 
contextual elaboration and explanation. Topical coverage is of 
necessity brief and oriented to conceptual development. Readers 
are encouraged to pursue tutorial supplements to the extent of 
their need and inclination and to use the Internet as a valuable 
reference source. The second part addresses the benefits 
and costs of theory modernization. Educational and training 
requirements needed for three levels of working understanding 
and use are outlined. The final section contains brief concluding 
remarks.

Tenets of a Neo-Classical True-Score 
Theory
Psychopathology and measurement
The effectiveness of diagnosis and assessment of psychological 
dysfunctioning depends upon the extent to which a chosen 
quantitative method measures the psychological attributes 
thought to be measured. Choice of specific measurement 
instrumentation is dependent upon an underlying theory 
of measurement formalized and communicated as a set of 
principles referred to as tenets. Although tenets may draw upon 
mathematical or statistical principles, their collective purpose is to 
elucidate the process by which the measurement of psychological 
attributes takes place. True scores serve as generic placeholders 
for the constructs of interest to a scientific discipline, in this case 
psychopathology.

Neo-Classical True Score Theory is a measurement theory formalized 
by 14 tenets. At the genesis is the axiom that an observed score is 
the sum of a true component and an error component functioning 
as primitive causal agents [Tenet #1]. Measurement error as a 
causal contribution is uncorrelated with the true score component 
[Tenet #2]. An observed clinical measure X can be expressed as a 
latent variable measurement model X = µT + σT . f + E [Tenet #3]. 
If a clinical score is standardized, 1/2

T XXσ ρ= , which is the index 
of reliability [Tenet #4]. If standardized item true scores are 
perfectly correlated across p clinical items, the p items are said to 
be unidimensional [Tenet #5]. Covariance across unidimensional 
clinical scores imposes a recognizable structure on the covariance 
matrix [Tenet #6]. If all subjects are defined by identical latent 
variable measurement models and each subject is randomly 
drawn, then between-subject equal within-subject variability 
[Tenet #7]. True score and observed clinical scores are defined to 
be multivariate normally distributed [Tenet #8]. Standardized true 
scores can be linearly regressed on observed clinical scores and 
the square of the multiple regression coefficient interpreted as 
the maximum reliability of a weighted sum that can be obtained 
with an optimum choice of variable weights [Tenet #9]. True score 
estimates are attenuated as a function of maximum reliability 
[Tenet #10]. The hypothesis of unidimensionality is testable by 
confirmatory factor analysis (CFA) [Tenet #11]. A distinction is 
drawn between true score estimation and true score prediction 
[Tenet #12]. Standard errors of estimation and prediction are 
provided [Tenet #13]. Estimation and prediction confidence 

across trials cannot be said to cause individual observed scores. 
Causation requires variability in the causal factor in order to 
create variability in the effect. Thus, in classic test theory, cause 
operates only at the between-subject population level.

According to the axioms of classic test theory, a test score can 
be said to measure a theoretical construct if its expected value 
increases monotonically with the construct [8]. If true score is 
equated with a theoretical construct of interest and defined as 
an expectation, one is left with the rather vacuous statement that 
a test score is a valid measure if true score varies monotonically 
with itself. As this will always be the case, every conceivable test 
must validly define a distinct construct [11].

Purpose and Organization
Despite substantive formal and semantic shortcomings, the 
fundamental premise of classical test theory that an observed 
test can be decomposed into the sum of a true and an error 
component remains intuitively valid and worthy of preservation. As 
Embretson concludes upon reviewing psychometric development 
during the 20th century, “… the majority of psychological tests still 
were based on classical test theory” [15]. Operationalism remains 
its dominant philosophy of science with the defining operation 
being the infinite replication of within-subject test scores with 
between trial attempts to control for memory.

It is heretofore the intended purpose to propose a conceptual 
and methodological modernization of the classical true-score 
paradigm. The reform seeks at base to replace operationalism 
with modern latent variable theory, see [16] and to draw upon 
relevant mathematical, statistical, and psychometric thinking, 
concepts, and methods to formulate a unified neo-classical 
theory. The goal is to circumvent the semantic and syntactic 
deficiencies and criticisms associated with classical test theory. A 
major deviation from the classical perspective is the contention 
that psychopathological usage is better served by consideration of 
measurement as continuous rather than discrete. Continuity is an 
essential prerequisite of the scientific consideration of quantity 
[17]. Without addressing the basic question as to whether the 
target construct is quantifiable, measurability rests on an article 
of faith. Furthermore, continuity extends the consideration of 
true score as a quantifiable construct from cognitive abilities 
to feelings and states of mind, where differentiation is better 
conceived as ordered infinite gradations than as discrete 
categories. 

Modernization provides researchers the enhanced capability 
to empirically test a common true-score model. Given an 
acceptable model fit, squared standardized item loadings can be 
interpreted as item reliability estimates, an optimal set of beta 
weights identified for the creation of summated test/scale scores 
with maximum as opposed to lower-bound reliability, expected 
true score predicted for a given profile of observed scores, and 
fanning estimation and prediction confidence bounds computed. 
All capabilities are above and beyond those based upon the 
classical true-score paradigm.

Organization is in three parts. The first details fourteen tenets 
considered to be the foundational statements of a neo-classical 
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intervals are elliptical and expand in width as the distance from 
the mean increases [Tenet #14].

Tenets

1. An observed continuous random variable X is derived as the 
sum of a latent continuous true random variable T and a latent 
continuous error random variable E, expressed as X ≡  T + E. 
The latent random variables T and E are structural and bear a 
precedent relation with X. That is to say, T and E as exogenous 
latent variables exist prior to X.

A prerequisite for psychopathological measurement is that 
there must be something to measure, generally considered to 
be outcomes of an experiment. Experiment is broadly defined 
as an organized activity performed under controlled conditions 
on an infinite population of objects so as to produce designated 
outcomes. An experiment may be conducted under actual 
or imaginary conditions. Psychopathological experiments are 
designed to measure quantifiable attributes of living objects 
referred to as constructs. An experiment designed to measure a 
single construct is referred to as a simple experiment. An instance 
of a psychopathological construct is postulated to exist in some 
naturally occurring amount [18]. This precludes consideration of 
quantitative attributes admitting to an absolute zero. Amounts 
are subject to Hölder’s axioms of quantity with the caveat that 
“+” refers to concatenation rather than numeric addition [17]. 
For those constructs defined by a mass noun, the balance scale 
serves as a well-defined concatenation operator with balance 
corresponding to amount equality and imbalance to amount 
inequality. Summation corresponds to the placement of amounts 
a and b on one scale pan and placing another amount c on 
the other pan such that the scale balances. By suitable choice, 
sequence, and placement of amounts, operations corresponding 
to each of Hölder’s seven axioms of quantity can be defined. This 
ensures that amounts are related to each other both ordinally 
and additively and can therefore be said to possess a quantitative 
structure. Amount of the target construct corresponding to each 
and every object in the experimental population constitutes 
the experimental true outcomes. The set of all outcomes, Ω, is 
termed the true sample space of the experiment. True in this 
context is used to denote the antithesis of error and carries no 
platonic implications [19].

An event is defined as the occurrence of a subset of outcomes 
contained in Ω. An event is said to occur if an outcome resulting 
from a replication of the experiment is a member of the event 
set. A simple event is a disjoint subset containing one or more 
experimental outcomes with equal construct amounts. A 
collection of events, ℑ, is deemed to satisfy three axioms: (i) 
the sample space Ω and the empty set ∅ are events; (ii) the 
complement of any event is also an event; and (iii) the union of a 
countable sequence of events is also an event. Let a probability 
measure, P, be defined on ℑ such that the probability P(A) of 
each event A in ℑ satisfies three conditions: (i) 0 ≤ P(A) ≤ 1 for 
all A in ℑ; (ii) P(∅) = 0 and; P(Ω) = 1 (iii) if A1, A2, A3, . . . are 

simple true events, then
11
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conditions allows a probability measure to be assigned to every 

event A∈ℑ. The triplet (Ω,ℑ,P) is said to define the true probability 
space for the experiment. Probability is considered a theoretic 
measure defined on the interval (0, 1) and consequently has or 
needs no frequency or propensity interpretation. For a more 
formal treatment of probability spaces, the reader is referred to 
Zimmerman [9]. 

The symbol T denotes a real random variable defined as a many-
to-one transformation that maps the experiment true probability 
space onto the real line ℜ, rather than examinee expected values 
as in the classical model. The domain of T is the true construct 
probability space of the experiment. Following from Hölder’s 
axioms, there exists a single positive real number r corresponding 
to the ratio of a chosen construct amount a to a unit construct 
amount b such that a = r·b [18]. As r is the ratio of two amounts 
of the same kind, r is free of a unit of measurement and thus 
qualifies as a pure number. The set of all positive pure numbers 
so constructed on the set of object amounts Ω constitutes the 
range of the true random variable. The true random variable 
T is considered fundamental or primitive in that it meets Mill’s 
precedent condition for causality [20] and cannot be derived 
from or replaced by any other random variable. This construction 
differs from the classical definition wherein true score is defined 
to be the average of an infinite number of observed scores for 
a single individual. Thus, true score in the classical tradition 
cannot be a primitive, as it is defined as the mean of pre-existent 
observed scores.

In recognition of the presence of uncertainty associated 
with measurement, the same argument is put forth with the 
understanding that amount is a quantification of unsystematic 
measurement error. The resultant primitive random variable 
defined on the error probability space is termed E. Both T and 
E are unobserved and are ascribed the status of latent random 
variables. An observed random variable, X, is derived as the sum 
of the latent random variables T and E, denoted as X ≡ T + E, 
where “≡” signifies entity identity by definition. Although similar 
in appearance, the identity declaration cannot be regarded as a 
predictive regression equation, as X does not exist independently 
of T and E. This is analogous to signal theory, where the received 
signal is considered to be a summation of sent signal and channel 
noise. Intuitively, sending must always precede receipt of a 
signal. The operation of random variable addition is defined on 
real pure numbers and not on construct amounts. The singular 
requirement is that construct amounts be continuous and adhere 
to Hölder’s quantity axioms [17]. This ensures a proportionate 
relation between construct amounts and numeric scores. The 
latent random variables T and E are considered to be causal in 
that by functional numeric summation, they create the derived 
observed random variable X, referred in classical test theory as 
an item. 

2. The error random variable E is uncorrelated with the true 
random variable T in accordance with Mill’s third condition for 
causality. Being defined as unsystematic error, the expected value 
is 0, expressed as E(E) = 0. It is, however, illogical to conclude that 
because E(X | T = t) = t + E(E) = t that true score can be defined as 
simply the expectation of X, as is done in classical test theory. To 
do so would imply that T is derived from X, which violates Mill’s 
precedence condition.



4© Under License of Creative Commons Attribution 3.0 License         

2017
Vol. 3 No. 5: 68

ACTA PSYCHOPATHOLOGICA
ISSN 2469-6676

The true random variable T is considered to be continuous 
over the real lineℜ rather than discrete. Consequently, event 
probabilities cannot simply be added as in the discrete case. 
What is required is a bounded probability density function f 
(t) defined on the set of real true scores. Let an interval [a, b] 
be selected on the real line. The problem is to ascertain how 
much probability mass accrues over the interval. As a first step 
in formulating an answer, the interval can be divided into n 
subintervals [a = t0, t1), [t1, t2), [t2, t3), …, [tn-2, tn-1), [tn-1, tn = b]. 
For each of the n subintervals, the probability measure iLm  
corresponding to the minimum probability measure contained in 
the subinterval is selected. The integral over the entire interval 

can now be defined as 1
1

( )
j i

nb

L i ia
i

m t tϕ∆ −
=

= −∑∫ , which is nothing 

more than the area under a step function with constant interval 

width ∆j. Now suppose that instead of the minimum value, 
the probability measure 

iUm corresponding to the maximum 
measure in the subinterval is used instead. The integral over 

the interval is defined as 1
1

( )
j i

nb

U i ia
i

m t tψ ∆ −
=

= −∑∫ . The integral 

( )
b

ja
f t ∆∫  is bounded below by 

j

b

a
ϕ∆∫  and above by 

j

b

a
ψ ∆∫  

due to the selection procedure used. Both integrals are a function 
of the interval width ∆j which can be made infinitesimally small 

but not zero. Thus, the lower integral bound can be expressed as 

0
lim

b

a
ϕ∆∆→ ∫ and the upper integer bound as 

0
lim

b

a
ψ ∆∆→ ∫ . If the lower 

and upper integral bounds converge to the same value, then

0
lim

b

a
ϕ∆∆→ ∫  = 

0
lim

b

a
ψ ∆∆→ ∫  = ( )

b

a
f t dt∫  is said to be integrable, where f(t) 

is the true probability density function and dt is an infinitesimally 

small true score interval width. The true score interval [a, b] can 
be extended to encompass the entire real line. The assumption 
that T is everywhere continuous ensures that all intervals over 
the real number line are integrable. By a similar argument, the 
probability density function f (e) can be constructed for the error 
random variable E. 

The random variables T and E have expectations defined as

E( ) ( )T t f t dt
+∞

−∞
= ⋅∫  and E( ) ( )E e f e de

+∞

−∞
= ⋅∫ , where t and 

e are points on the real number line. Given that real finite 
E(T) and E(E) exist, the variance of T and E can be defined as

2Var( ) ( E( )) ( )T t T f t dt
+∞

−∞
= − ⋅∫  

and 2Var( ) ( E( )) ( )E e E f e de
+∞

−∞
= − ⋅∫ . The 

standard deviations for random variables T and E are defined as 
Var( )T Tσ = +  and Var( )E Eσ = + , under the assumption that 

finite positive variances exist.

Correlation between random variables T and E, however, requires 
analysis of joint outcome occurrences resulting from the conduct 
of a compound experiment. The outcomes of a compound 
experiment can be regarded as a set Ωc of ordered pairs ( , )

i iT Eo o , 
where 

iTo  is the true construct amount and 
iEo  the error amount 

assigned the ith individual in the population. The set of ordered 
amount pairs can be equivalently represented as Ωc=ΩTxΩE, 

where T ExΩ Ω is the Cartesian product defined as{ ( , )
i iT Eo o

| iE Eo ∈Ω and iE Eo ∈Ω }. Similarly, C T Exℑ = ℑ ℑ  and C T EP P xP= . 

Thus, the probability space for the compound experiment can be 
defined by the triplet ( , , )C C CPΩ ℑ  . The probability function for 
the compound experiment can be constructed by first integrating 
over an interval of error scores E∆ for a given true score and 
then integrating over the interval of true scores. The function is 
referred to as a joint probability density function and is denoted

( , )
T E

f e t dedt
∆ ∆∫ ∫ . 

The covariance between random variables T and E is defined as  

[ ]E ( E( ))( E( ))T T E E− − = ( E( ))( E( )) ( , ) Cov( , )t T e E f e t dedt T E
+∞ +∞

−∞ −∞
− − ⋅ =∫ ∫

. Given that Cov(T, E) exists, the correlation between T and E is  
Cov( , )Corr( , )

T E

T ET E
σ σ

= . The requirement that Corr(T, E) = 0 requires 

that Cov(T, E) = 0, as σTσE must be positive. The presence of true 
and error variation is a necessary condition in order for a causal 
relation to exist.

3. The true random variable T can be expressed as T = μ + λf, 
where μ = E(T), 

Tσλ = , and f is the standardized true random 
variable. The classical true score equation can, by substitution, 
be expressed as X ≡ μ + λf + E. As standardization does not alter 
correlation, Corr(f, E) = 0 by assumption. The random variable f 
being a standardized variable has E(f) = 0 and Var(f) = 1. From 
this, it follows that E(X ) ≡ μ + λE(f) + E(E)= μ and Var(X) ≡ λ2 Var(f) 
+ Var(E) = λ2 + Var(E).

As T is a random variable with assumed existent mean µT and finite 

standard deviation σT>0, the standardized true random variable f 

exists and is defined by T

T

Tf − µ
=

σ
. Consequently, it follows that T 

= μT +σT·f. This is equivalent to Raykov and Marcoulides Equation 
4, where aj = μT , bj = σT , and T = f [21]. As f is a standardized 
variable, Var(f) = 1 by definition as opposed to by assertion as 
per the Raykov and Marcoulides formulation. Thus, the derived 
random variable X ≡ T + E can be equivalently expressed as 
X ≡ μT +σT·f + E, which is a single latent variable model. In that 
the standardized true random variable f is a latent variable, 
neo-classical test theory can be considered a latent variable 
measurement model. The converse does not necessarily follow. 
For an extended discussion of latent variable models, see [11].

4. Let X* be a standardized observed variable. Then X* ≡ λ/
(Var(X))1/2f + E/(Var(X))1/2; X* ≡ (Var(T))1/2/(Var(X))1/2f + E*; X* ≡ 
(Var(T)/Var(X))1/2f +E*; and X* ≡ (Var(T)/(Var(T) + Var(E)))1/2f +E*. 
But Var(T)/((Var(T) + Var(E)) is defined as the reliability of X, 
denoted as XXρ in classical test score theory [1]. Therefore, X* ≡ 
λ*f + E*, where λ* = 1/2

XXρ , , referred to as the index of reliability. The 
implication is that reliability can be derived without reliance on 
the stipulation of equivalence of test-retest or parallel forms as in 
the classical theory.

By axiomatic assertion, an observed random variable X is defined 
as X ≡ T + E. From the algebra of expected values, it follows that E(X) 
≡ E(T) + E(E) ≡ E(T) as E(E) = 0 by definition and Var(X) ≡ Var(T) + 
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Var(E) + 2 Cov(T, E). From the premise that random variables T and E 
are uncorrelated, it follows that Cov(T, E) = 0, so that Var(X) ≡ Var(T) 

+ Var(E) and ( ) ( )X Var T Var Eσ ≡ + + . The standardized coefficient 
1/2

Var( ) Var( )
T

XX
X T E

σ
σ
λ

= = ρ
+ + , where ρXX is the reliability of item X.

5. For the multivariate case of p observed items, define a p x 1 
random vector X with elements Xi, i=1, 2, …, p, where Xi ≡ μi + 
λifi + Ei. Suppose that all pairs fi and fj are perfectly correlated, 
i.e., Corr(fi, fj)=1. This is equivalent to requiring that fi=f, i=1, 2, …, 
p, where f is referred to as a common standardized true random 
variable. The implication is that although the unstandardized true 
latent variable Ti may differ in location (expected value) and scale 
(standard deviation) across the p observed items contrary to the 
requirement of item equivalency in classical true-score theory, 
each observed item must assign an identical standardized true 
score to an individual subject.

The requirement that all observed items must manifest a common 
standardized true latent variable is the essence of the meaning 
of unidimensionality. Dimensionality refers to the number of 
constructs manifested by p items. If observed items are to be 
regarded as multivariate manifestations of a single construct, 
then it is imperative that all items assign the same standardized 
true score to a single subject, i.e., are unidimensional. Contrary 
to classical prescription, unidimensional observed items need 
not have equal true variance nor are they required to have 
equal error variance. All that is required is that item true 
scores be linearly related. The recognition that unstandardized 
item true scores need only be linearly related to maintain 
unidimensionality is credited to Phillip Rulon, and the condition 
referred to as essentially tau-equivalent [22,23]. Jöreskog termed 
models with a linear relation between true scores as congeneric 
[24]. Congeneric and essentially tau-equivalent models allow for 
any of the p unstandardized true random variables to serve as a 
comparative base. As a result, item loadings and true variance 
vary depending upon the base chosen. In contrast, designation 
of the standardized true variable as the common latent variable 
results in unit variance and item true standard deviations serving 
as item loadings, thereby allowing individual item reliabilities to 
be computed (see Tenet 4).

Linearly related true scores do not preclude the p items from 
varying in reliability. Those items with relatively high reliabilities 
can be regarded as markers of the true construct in that their 
observed variance is composed of a relative high proportion of 
true variance. Items can be ranked in order of quality according 
to their reliabilities computed as the square of their standardized 
latent variable loading.

It is easily shown that the presence of a common standardized 
true variable is sufficient to establish local independence. For all 
experimental subjects with a fixed standardized true score, f = k, 
as the only source of observed item variability is measurement 
error. But by assumption, error is uncorrelated across items and 
subjects. Thus, items are independent of each other for all subjects 
having equal common standardized true score, provided that 
the p item error variables are multivariate normally distributed. 
Furthermore, the unidimensional model with centered observed 
item variables meets the Rasch criterion of ratio invariance 
of items and experimental subjects. The conditional item 

expectation E( )i iX f k k= = λ ⋅  maintains a constant ratio for any 

two items over all subjects having equal score, as i i

j j

k
k

λ ⋅ λ
=

λ ⋅ λ
. Similarly, 

the ratio for any two subjects remains constant over all p items, 

as i

i

k k
l l

λ ⋅
=

λ ⋅
, which does not depend upon the item chosen.

6. Under the assumption that p latent unstandardized true 
variables Ti , i = 1, 2, …, p are perfectly correlated, the p x p 
population covariance matrix of observed items is : Σ = λλ` + ψ, 
where λ is a p x 1 vector of unstandardized true variable standard 
deviations and ψ is a p x p diagonal matrix of unstandardized 
error variances Var(Ei).

An element in the ith row and jth column of Σ is defined as 
Cov( , ) E ( )( )

i ji j i X j XX X X X = − µ − µ  . Substituting the posited true 

and error composition for each observed random variable 
gives 2E( ) E( ) E( ) E( )i j i j j i i jf f E f E E Eλ λ + λ ⋅ + λ ⋅ + . Simplifying 
and taking advantage of the distributive property of 
expected values allows the covariance to be expressed as 

2E( ) E( ) E( ) E( )i j i j j i i jf f E f E E Eλ λ + λ ⋅ + λ ⋅ + . But 2E( ) Var( ) 1f f= =  

and E( ) E( ) E( ) 0j i i jf E f E E E⋅ = ⋅ = = , as by definition, random error 

variables do not correlate with the common true score random 
variable nor with other random error variables. Thus, λλ` is a 
pseudo-covariance matrix of the p observed items. The term 
pseudo reflects that the diagonals contain only Var(T), whereas 
the off-diagonal entries are Cov( , )

i ji j i j T TX X σ σ= λ λ = ⋅ . The 
requirement that all true variables have nonzero finite variance 
ensures the presence of positive population item covariance. The 
error matrix ψ is diagonal to reflect the assumption that error 
random variables do not correlate with any other random variable 
except themselves. It is worth noting that all these model-implied 
structural relations hold only at the level of expected value due to 
defined error cancelation.

7. Designate xα as a p x 1 vector of observed item scores for the αth 
individual in a sample of size N randomly drawn from an infinite 
population. Assume that xα ≡  μ + λfα + εα, where μ is a p x 1 
vector of item expected values, λ is a p x 1 vector of item latent 
coefficients, fα is an unobserved true score randomly drawn from 
a normal distribution with E(f) = 0 and Var(f) = 1, and εα is a 
p x 1 vector of unobserved error scores randomly drawn from a 
multivariate normal distribution with E(ε) = 0 and Cov(ε) = ψ. 
Furthermore, let all xα be independently and identically distributed 
between as well as within individual subjects. This has the effect 
of ensuring that trial subpopulation distributions are identical to 
subject subpopulation distributions for a given item.

The random vector xα is a specific instance of the vector X 
of random variables Xi, i = 1, 2, …, p, generally denoted by a 
lower case letter. The individual subject observed score model 
is a mixture of item and individual subject components, with 
individual components denoted by the subscript α. Each of the 
p items possesses an item mean and an item loading defined as 
the item true variable standard deviation. Each item assigns a 
fixed mean and loading to each individual sampled. Each sampled 
subject is randomly assigned a score on a common standardized 
true random variable as well as p measurement error scores. 
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Item and individual subject components are regarded to be 
independently determined. The experimental treatment process 
is assumed to be identical across subjects and replicated trials. 

In order for a sample of size N to be considered as randomly 
drawn, not only must individuals be drawn from the same 
subject pool, but each draw must be independent of all other 
draws. Thus, replication across separate individuals in the 
experimental pool qualifies intuitively as a random sample. But 
replication by repeated draws of the same individual does not 
carry the same intuitive assurance. In order for the longitudinal 
draws to be considered as randomly drawn, each replication for 
a given subject is assumed to be independently sampled with 
replacement from the same population.

Independence across longitudinal within-subject replications 
is not a problem for error scores. The same cannot be said for 
individual true scores. Two conflicting true score interpretations 
are possible. One is that replications are each regarded as an 
independent random variable creating a within-subject time series 
over the replication domain. The requirement that item random 
variables at each time point be identically and independently 
distributed ensures that within-subject true scores fluctuate 
around a fixed item mean with common item variance. Time 
series with these characteristics are referred to as white noise. 
Then by the pointwise ergodic theorem, the between-subject true 
score distribution is identical to the within-subject distribution 
[25]. Between-subject distributional equivalence allows latent 
model parameters to be estimated cross-sectionally rather than 
longitudinally. The alternative interpretation as propounded by 
classical measurement theory is that individual true scores are 
fixed across replications, with only error scores allowed to vary. 
Statistically, this has the effect of treating individual true scores as 
incidental parameters, often referred to as nuisance parameters 
in that they cannot be independently estimated in the absence of 
a specified distributional form.

8. Let X and f have a joint multivariate normal distribution with 
mean vector (μ, 0)` and (p + 1) x ( p + 1) covariance matrix

'

+
1

′ 
 
 

λλ Ψ λ
λ

.

The above consideration treats both the p observed item scores 
and the single standardized true variable f as random variables 
with means and covariance defined by existent expected values. 
The covariance between observed items and f is defined by the 
p x 1 vector λ, with entities being item true standard deviations. 
Covariance so defined satisfies Mill’s second condition for 
causality. Cross-sectional replication is equivalent to longitudinal 
replication. The measurement implication is that the causal 
process linking latent common true score to observed score is the 
same within individuals as between individuals. Constructs with 
this property are referred to as locally homogenous, where locally 
refers to the individual level of explanation and homogenous 
implies sameness across individual subjects [11].

9. The regression of the standardized common true variable f 

on X is E(f |X)  = λ`( λλ` + ψ)-1(x – μ) = (1 + Γ)-1 λ` ψ-1(x – μ), 

where Γ = λ` ψ-1λ. Consequently, the estimator of an individual 
common true score fα is 1 ' 1(1 ) ( )fα α

− −µ = + Γ −xλ Ψ µ  [26]. It should 

be noted that fα
µ  is a Bayes estimator and that 1 ' 1(1 )− −+ Γ λ Ψ  

is a 1 x p vector of unstandardized beta coefficients. Then the 

square of the multiple regression coefficient R2
f.X = 1 ' 1(1 )− −+ Γ λ Ψ λ

=

2 * 2 * 2

* 2 * 2
1 1 1

2 * 2 * 2

* 2 * 2
1 1 1

( ) Var( ) ( )
Var( ) (1 ( ) )Var( ) 1 ( ) .

( ) Var( ) ( )1 1 1
Var( ) (1 ( ) )Var( ) 1 ( )

p p p
i i i i

i i ii i i i
p p p

i i i i

i i ii i i i

X
X

X
X

ε

ε

= = =

= = =

λ λ λ
− λ − λ

= =
λ λ λ

+ + +
− λ − λ

∑ ∑ ∑

∑ ∑ ∑
 

The squared multiple regression coefficient is termed RMax and 
is equivalent to the squared canonical correlation between 
a weighted sum of p observed items and the standardized 
random true variable f [27]. Therefore, RMax can be considered 
the maximum reliability that can be attained by an optimally 
weighted sum of p observed variables.

The regression true score estimator is Bayesian in that the estimate 
is conditional on knowing the observed score profile of an individual. 
The true score predictor provides a semantic connector between 
observed scores and the latent variable. If * 2 * 2( ) ( )i j XXλ = λ = ρ  

for all p items, then 
1 ( 1)

XX
Max

XX

pR
p

⋅ρ
=

+ − ⋅ρ
. In classical test theory, 

this is known as the Spearman-Brown prophecy formula. Thus, 
Spearman-Brown is but a special case of RMax, where all items 
have equal reliabilities. The prophetic element follows from the 
use of multiple regression to predict the increase in R2 resulting 
from the addition of equivalent item regressors. The origin of RMax 
can be traced to Charles Spearman who derived the formulation 
as the maximum correlation between an optimally weighted 
sum of observed items and a common true score [28]. There is 
no reported evidence, however, that Spearman interpreted the 
multiple correlation in a maximum reliability context. 

As RMax is a squared multiple regression coefficient, the item with 
the highest reliability makes the greatest contribution to the 
reliability of the optimally weighted collection of items. Addition 
of items with lower reliabilities increases maximum reliability by 
decreasing increments. The decision as to whether to keep or 
delete items with lower reliability is at the researcher’s discretion.

10. The conditional expected value of the true score estimator is 
E( | )f Maxf k R k

α αµ = = . Thus, fα is an attenuated estimator of the 

latent standardized true score fα An RMax of near zero results in 

a true score estimate of near zero. Hence, the effect of lowered 
maximal reliability is regression toward the item mean. The 

attenuation, however, diminishes as RMax→1. The mean square 
error in the estimate of the individual standardized true score fα 
is 2 1E( ) (1 ) 1f Maxf R

αα
−− µ = + Γ = − [26]. As might be anticipated, 

maximization of the reliability of a weighed sum of observed 
items results in minimization of the mean square error in true 
score estimation and should be taken into consideration in the 
decision to drop or retain low reliability items.

Mean square error in the estimate of an individual true score is 
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valid only in the context of true scores being defined as random 
rather than fixed effects. Consequently, true scores may vary 
across samples even though observed scores remain constant.

11. Common true score model parameters are estimated 
by confirmatory factor analysis using maximum likelihood 
estimation. All parameter estimates are consistent estimators and 

are designated by by ” 
^
⋅ ” . Parametric functions are estimated 

by replacing parameters with their sample estimates.

Maximum likelihood (ML) estimation renders unnecessary the 
core classical requirements of equivalent items and parallel 
forms. Instead, item true and error variances are uniquely 
estimated so as to minimize a ML fit function defined as

'
' 1( ) ( ( ) )

( )ML
detf log trace p

det
− +

= + ⋅ + − 
 

S
S

λλ Ψ
λλ Ψ , where log 

is the natural logarithm, ' +λλ Ψ  is the covariance structure 
generated by the common true score model, S is a sample item 
variance-covariance matrix, det is the determinant of a matrix, 
and trace is the sum of the main diagonal entries of a matrix 
[29]. All other parameters are as previously defined. Under the 
null hypothesis that S = ' +λλ Ψ , fML = 0. As the disparity between 
observed sample and expected covariance structure increases, 
fML takes on ever larger positive values. Under the assumption 
that common true and error scores are multivariate normally 
distributed, (N – 1) fML is asymptotically distributed as chi square 
with p (p - 3)/2 dfs. Thus, rather than accept the common true 
score model as valid by definition, the null hypothesis of model 
fit can be empirically tested. Fit of the common true score model 
is considered empirical evidence that multiple items triangulate 
on the same construct and hence measure the same thing [30]. 

The fit function for testing the hypothesis of a common 
true score model can be equivalently expressed as

' 1( ) ( ( ) )
( )(1 )ML

Max

detf log trace p
det R

− 
= + ⋅ + − − 

S
S

Ψ
λλ Ψ , where all 

terms are as previously defined. The determinant of the sample 
covariance matrix, det(S), can be regarded as a generalized 
variance, thereby lending credence to the interpretation of 
det(S)(1 - RMax) as a generalized coefficient of alienation. As 
the determinant of the error matrix det(ψ) deviates from that 
expected from the true score model, model fit becomes ever more 

problematic. The fact that RMax can be equivalently expressed as 
2

2
1

2

2
1

1

1
1

i

i

i

i

p

i
Max p

i

R

ε

ε

ε

ε

σ
σ

σ
σ

=

=

−

=
−

+

∑

∑
, where 2

iεσ  is the standardized error variance 

for the ith item, emphasizes that RMax is maximized by minimization 
of item error variance and that model fit is a function of the 
interplay between minimized item error variance and the 
observed covariance matrix. If the null hypothesis of model fit is 
rejected, RMax is not interpretable, as its meaning is derived from 
the premise of common true score unidimensionality.

Acceptance of the null hypothesis is empirical evidence for the 
existence of a common standardized true variable. If the null 

hypothesis is true, then ( −Σ Ψ ) is of unitary rank and all second-
order determinants must equal 0. As tetrads defined by Spearman 
as ik jl jk ilρ ⋅ρ − ρ ⋅ρ , where ijρ is an element in the ith row and 
jth column of the pseudo-correlation population matrix * *−Σ Ψ  
and i k≠ and j l≠ , are second order determinants, they must 
vanish, e.g., equal 0 under the condition that * *−Σ Ψ  is of unitary 
rank [31]. A corollary is that the elements of * *−Σ Ψ  are subject 

to the ratio equality ik il

jk jl

ρ ρ
=

ρ ρ
, a condition denoted by Hart and 

Spearman and Spearman as internal consistency [32,33]. From 
this, one can conclude that the presence of a common true 
variable implies unitary rank and internal consistency. However, 
it does not follow that unitary rank necessarily implies a common 
true variable. If the null hypothesis of a common true variable 
is supported by the data, the implication is that the set of p 
observed items can be combined to create a test or a clinical 
scale, depending upon the nature of the constituent items. As 
all items can be assumed to measure an identical standardized 
latent true variable, item scores can be meaningfully combined 
into a weighted summated test or rating.

12. A distinction is drawn between statistical estimation and 
statistical prediction. Statistical estimation refers to the process 
of presently deriving parameter values based on observed sample 
scores. Statistical prediction refers to the use of point estimates 
to predict a score, usually based on an individual observed score 
profile not included in the original sample.

Maximum likelihood under the assumption of a multivariate 
joint distribution of p observed items and a single common true 
score affords a statistical method for estimation of minimized 
item error variances for a given sample. If the null hypothesis 
of unidimensionality is accepted, then a statistical estimation 
of individual true scores can be meaningfully derived using 
estimated model parameters. Under the assumption that a newly 
sampled individual not included in the original sample is drawn 
from the same multivariate population, the score profile of that 
individual can be used to predict what true score would have 
been assigned even though the individual was not in the original 
sample. The generative experiment is assumed to be comprised 
of a fixed set of p items potentially administrated to every subject 
in the population. This differs substantially from classical theory, 
which assumes that test items are drawn from a large domain set 
wherein all items are equivalent. Under classic test theory, this 
assumption is treated as an axiom and not subject to empirical 
test. 

13. Both true score estimation and prediction are defined as 
' 1^ ^ ^

1(1 ) ( )f αα

−− −
−= + Γ −λ Ψ x x  . The distinction lies in the definition of 

the standard errors. If the true score estimator is a random effects 
model, the standard error of estimation of the mean standardized 

true score at ( )α −x x  is 
^

' 1( ) [( )`( ) ( )](1 )MaxC CSE f Rα αα

− − −
−= − − −x x X X x x , 

where xα is an individual score vector, XC is a N x p matrix of sample-

centered observed individual score profiles, and 
^

MaxR  is a sample 
estimate obtained by substituting estimated parameter values. 
The standard error of prediction of an individual common true 
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score at ( )α −x x  is 
^ ^

' 1( ) [1 ( )`( ) ( )](1 )MaxC CSE f Rα αα

− −
−= + − − −x x X X x x  

with all terms similarly defined with the exception of an added 
unity [34].

The estimated common true score is the conditional mean on 
the sample regression line for an observed score profile. The 
same value is used whether the true score is considered to be an 
estimate of the conditional mean or a prediction of an individual 
true score based on the observed score profile. The fact that 
only a conditional mean is estimated introduces an element of 
indeterminacy into true score estimation similar to that of factor 
indeterminacy [35]. A true score estimate can be constructed 
with a mean as a determinate part plus an indeterminate 
disturbance part. What differs between estimation and prediction 
is the interpretation of the standard error. The standard error 
of estimation is an estimate of the variability in the conditional 
mean expected to be introduced by repeated sampling from 
the experimental population. The standard error of prediction, 
in contrast, is an estimate of the variability in the prediction 
of an individual standardized true score based on an observed 
score profile across repeated sampling. As there is increased 
uncertainty introduced by prediction of an individual rather than 
a mean true score, the standard error of prediction is larger than 
the standard error of estimation. In both cases, the standard 
error is a function of estimated maximum reliability. 

14. Confidence intervals are elliptical and increasing in width as 
the distance of the observed score profile from the mean profile 
becomes larger. The large-sample 95% confidence interval 
around the estimated mean true score is 1.96 ( )f SE fα α

− −

± ⋅ . The 
large-sample 95% confidence interval around a predicted true 
score for a given ( )α

−

−x x is 
^

1.96 ( )f SE fα α

−

± ⋅  and is larger than 
the confidence interval around the estimated conditional mean 
true score, as would be expected. The probability (1 – α) that the 
confidence interval contains the estimated or predicted value can 
be altered by appropriate choice of the (1 - α/2) point on the unit 
normal curve.

Both confidence intervals are the narrowest at the sample 
mean vector and fan out as the distances of the observed from 
the sample mean vector increases. The fan effect results from 
greater leverage being exerted by sample-induced variation in 
slope estimates at farther distances from the mean. Allowance 
for fanning confidence intervals circumvents one of the most 
damning criticisms of classic test theory.

Variable confidence intervals for future prediction of individual 
true scores are especially useful in psychopathological diagnosis 
and assessment where deviant scores are of special interest. 
Unlike the classical model, prediction error is greater for these 
individuals. The tradeoff is that more information is required 
regarding point estimates of model parameters. Computation of 
reliability from item correlations will no longer suffice. Covariance 
structure modeling needs to replace conventional dependency 
on simple covariance and correlation as intuitive measures. The 
effect will be to shift clinical emphasis from measurement of 
observables to statistical estimation of latent model parameters.

Neo-Classical Test Theory: Benefits and 
Costs
Neo-classical test theory as formalized by the fourteen tenets 

renders existent criticism of the classical model irrelevant. The 
test designation, while maintained, is expanded to include 
clinical scales and assessment instrumentation. The assumption 
of continuity moves the focus of testing from the certitudes of 
cognitive item correctness to the vicissitudes of cognitive thought 
[36]. Definition of random variables as functional transformations 
rather than empirical test scores provides an abstract 
connectivity between experimental outcomes and real numbers. 
Consideration of true and error random variables as primitives 
negates the claim that the theory is tautological. Utilization of 
theoretic concepts of measure theory allows random variable 
domains to be defined as probability spaces leading directly to 
the concept of continuous probability distributions and their use 
in the definitions of continuous variable means, variances, and 
covariance. The stipulation that individual observed and latent 
score profiles are independently and identically distributed 
across sample members eliminates the classical dependency 
on repeated observations on the same individual. Provision for 
testing the structural hypothesis of internal consistency nullifies 
Michell’s charge that classical test theory is pathological [14]. 
Regressing true scores on observed profile scores provides a 
random effects model for estimation of true score standard 
error of estimate. Separate estimation and prediction confidence 
bounds are computable and expand in width as the distance from 
the mean profile increases.

Reliability plays an ever more central role. Rather than test being 
axiomatically defined as in classical theory, unidimensionality of 
a collection of p fixed items is treated as a refutable hypothesis 
subject to empirical test. Fit of a common true-score model is a 
function of three sample statistics: the sample covariance matrix 
of the p items, the minimized estimate of item error variances, 
and an optimal reliability estimate. The optimal reliability, RMax, 
is defined as the square of the canonical correlation between the 
common true score and a weighted sum of the p fixed items. It 
is a known statistical fact that canonical correlation between a 
single variable and a weighted combination of p variables can be 
equivalently represented as a multiple regression equation with 
the single variable being regarded as the dependent variable, in 
this case the common true variable, and the p variables considered 
as regressors. The transition from correlation to regression 
allows item beta weights to be estimated, a multiple regression 
line determined, and fanning confidence bounds computed. 
The standard error of true scores is a function of RMax and is a 
component of the standard errors of estimation and prediction. 
Unlike classical theory, there is always the lurking possibility 
that the set of p items may not admit to a unidimensional true-
score structure. If so, then maximum reliability estimation is a 
meaningless exercise.

A longstanding controversy exists over the extent to which 
operations on real numbers must mirror operations on construct 
amounts. A specific point of contention is the charged failure of 
psychometricians to test the hypothesis that human attributes 
are quantifiable [14,37,38]. The argument is blunted by lack of 
differentiation between hypothesis as a testable proposition and 
axiom as a nontestable assertion. Neo-classical test theory as 
herein articulated ensures quantification by axiomatic assertion. 
Axioms as the building blocks of latent true score model 
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construction cannot be falsified by direct empirical observation. 
Rather, axioms are ideations subject to the logical rules of 
consistency, completeness, and nonredundancy. The test of an 
axiomatic system is not correspondence of individual axioms with 
a descriptive representation of a native reality but the statistical 
fit of model-implied hypotheses with empirically obtained data. 
Model fit is a necessary but not sufficient condition. There is 
always the possibility that equivalent models fit the data equally 
as well or that alternative models may fit even better. The 
putative latent model is or should be the clinician’s best effort at 
constructing a micro worldview consistent with life experience, 
existent theories, and practical expediency. The goal of latent 
modeling is improved forecasting, prediction, and control over a 
felt but ultimately unknowable reality.

The downside is that structural modeling in the social and 
medical sciences is a more complex human activity requiring 
the building and testing of abstract micro-worlds. Unfortunately, 
operationalism and dependency on ANOVA with randomized 
sampling has led to declining awareness of and concern with 
measurement issues [39]. The rise in popularity of menu-driven 
statistical analysis programs has contributed to routinizing 
data analysis and its relegation to an appendant research task. 
Structural modeling, however, is steadily becoming an accepted 
data analytic procedure. Unfortunately, many of the same 
problems still persist, leading to research claims based on flawed 
analysis [40]. The entrenched predilection is to seek rejection 
of the null rather than fit of a proposed model. Connections 
between theoretical constructs and their representation in an 
abstract modeling world are often poorly articulated and the 
importance frequently ignored.

At root is lack of skills to navigate the world of the abstract. 
As Muthén has noted: “Presently, there is not enough done 
in the education of the ultimate users of these new statistical 
techniques for them to learn the methodological part of their 
research trade well” [40]. A recent survey by Aiken and colleagues 
confirms Muthén’s observation by reporting that “About half of 
graduate programs judged that few or none of their students 
were able to apply SEM” [41]. Lack of mathematical exposure 
is a major impediment. Whereas economists are conversant 
with calculus, most psychological researchers are not. Inclusion 
of mathematical topics in doctoral training is rare with the 

exception of mathematical psychology [41]. The armamentarium 
of mathematical topics needed to support sound measurement 
modeling includes set theory, functions and real numbers, matrix 
algebra, linear and characteristic equations, optimization theory 
as used in model estimation, continuous probability theory, and 
expected value algebra.

Not all users require the same degree of exposure. Muthén has 
identified three types: (i) those with substantive research interest 
for whom latent modeling is but another research methodology; 
(ii) those with an interest in latent modeling per se but do not 
envision contributing to the methodology; and (iii) those who 
aspire to contribute to methodological development [40]. The 
first group needs only knowledge of the existence and potential of 
latent variable modeling presented in a nonmathematical format. 
The second group requires knowledge about the procedures that 
move from modeling to statistical analysis. Knowledge about is 
gleaned from introductory math textbooks [42,43]; courses in 
quantitative methods, structural modeling, and applied statistics; 
topically relevant conferences and workshops; professional 
measurement journals and publications with a tutorial 
orientation; and the vast tutorial resources available on the 
Internet. The third group requires knowledge of how to develop 
models that advance the state-of-practice and is comprised 
primarily of advanced graduate and post-doctoral students with 
a Master’s degree in applied mathematics or applied statistics 
seeking substantive exposure to the social sciences.

Conclusion
The neo-classical latent measurement theory as herein 
articulated is offered as a modernization of classical test theory. 
Whereas classical theory is problematic, neo-classical theory 
embodies modern mathematical, statistical, and psychometric 
thinking and practice. Whereas the classical theory is oriented 
to a multiple-choice testing format, neo-classical theory is ideally 
suited for use with self-report questionnaires, scale construction, 
and clinical assessment. Whereas classical theory is weak, neo-
classical theory is strong. But a strong measurement theory is 
no guarantee of strengthened research results. A generation 
of researchers conversant with abstract thinking and statistical 
modeling with latent variables is required. Hopefully, neo-
classical test theory will serve as a catalyst for the improvement 
of measurement literacy.
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