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ABSTRACT 
 
This study is concerned with the understanding of the free flexural vibrations of a box-type satellite structure. 
Specifically, an equation of motion for the determination of the fundamental natural frequency of the box satellite 
was formulated using Bubnov-Galerkin’s Method as a tool. The box satellite structure is considered to be built up 
from six rectangular plates, each of which is assumed to be perfectly elastic, homogeneous, and isotropic and of 
uniform thickness. By using the properties of symmetric boundary conditions, only one-eighth of the box was 
idealized and analyzed using the Galerkin’s method. The formulated equation of motion for the fundamental natural 
frequency of the box was then tested with the data used by Lin and Pan (2009) in their box structure analyses. The 
outcome of the result shows a good agreement between the present study and the works of Lin and Pan using 
Displacement Finite Element Method software package.  
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INTRODUCTION 
 

Satellite technology is very important for rapid national development. Both geostationary and non-geostationary 
satellites are used for earth observation and communication applications. For Nigeria to join the league of space 
explorers, indigenous expertise in satellite technology is indispensible.  
 
Usually, satellite structure support parts of any spacecraft and accommodates units, instruments and deployable 
components such as solar array and booms. In designing and building engineering and flight models of satellites, 
there is need to guarantee structural stability and check the decoupling of mounted gadgets, instruments and 
attachments during the launching and operation of the satellite. 
 
Launching of satellite into space generates vibration of the satellite structure in question. During such launching of 
the satellite, the vibration of the satellite structure may build up to dangerous magnitude with severe consequences. 
In general, the consequences of structural vibration include stressing and collapse of structures, cracking, damage to 
safety-related equipment, fatigue and adverse human responses (Smith, 1988). These are likely to occur when a 
satellite structure vibrates at natural frequency, leading to structural resonance. At this point, the satellite structure 
may become unstable and mounted gadgets and instruments become decoupled. It is therefore necessary to 
determine the natural frequency at which a satellite structure can vibrate during its launching and operation.        
 
However, the core subject matter of this study on “Frequency Analysis of a Box-Type Satellite Structure” does not 
appear to have been studied. Previous work on vibration of box type structures focused on establishing analytical 
methods to obtain the natural frequencies and mode shapes. Dickson and Warburton (1967) developed a series 
solution and also gave a comprehensive survey of the possible analytical approaches. However, the series approach 
becomes impracticable for the analysis of complex structures, whereas, the introduction of structural discontinuities 
presents no inherent difficulty with the finite element method.  
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Popplewell (1971) was able to overcome the shortcomings encountered by Dickson and Warburton when he applied 
the use of displacement based finite element method to analyze the same box structure used by Dickson and 
Warburton. However, Popplewell relied on the already existing finite element software’s and could not develop a 
handy equation for easy evaluation of natural frequency. The present study however employed the Galerkin’s 
Method to develop a handy equation for the determination of the fundamental natural frequency of the box-type 
satellite structure.  
 

MATERIALS AND METHODS 
 

2.1 System Description 
Equipment on board satellites are very often mounted on light weight panels. This study considers one such mass 
loaded panel in the form of a box structure. The equipment mounted inside the box panels will be modeled as a set 
of distributed masses and like any other box structure, there is need to determine the fundamental natural frequency 
at which the entire box structure vibrates at the absence of external loads. The box structure whose geometry is 
shown in Fig. 1 is assumed to be made of rectangular plates and its vibrational analysis will be carried out using 
Bubnov-Galerkin’s Method. 
 

 
Fig. 1 Geometry of the Box Structure 

 
2.2. Idealization of the Box-Type Satellite Structure  
The basic assumption in the frequency analysis of this box, is that the box is assumed to be built up from six 
rectangular plates folded together to form a box. Each folded plate is considered to be perfectly elastic, 
homogeneous, isotropic and of uniform thickness. The displacement of each plate is assumed small compared with 
the wavelength of flexural vibrations. Also, the membrane displacements of a box structure are assumed to be much 
smaller than the bending displacements. Therefore, they may be neglected. This means that lines of intersection of 
two faces cannot deform and only rotation about such a line is possible. In addition neither displacements nor 
rotations are possible at corners. 
 
The box structure is idealized in such a way that the symmetrical properties of a freely vibrating uniform box are 
adopted. Thus if the box in Fig. 2 has three planes of symmetry, then only one- eighth of the box need to be 
idealized (Petyt, 1990). The idealized box structure is shown in Fig.2. 
 

 
Fig. 2: An idealized box structure. 

 
As a consequence of the above assumptions the box may be treated as a flat plate in 2D as shown in Fig. 3, where X-
and Y- axes are lines of symmetry, as are the lines GF and CF. 
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Fig.3: Flat plate idealization of one-eighth of a box (shown in Fig. 2.) 

 
2.3. Governing Dynamic Differential Equations 
It will be recalled that the static equilibrium equation of plate is given by:     ���� �� + 2 �������	� + ����	�  = ��                                                                                                                                                 (1) 

 
Where  q = External Load. 
w = deflection; and x and y are the co-ordinate axes of the plate 
D = Bending rigidity /flexural rigidity 
 
However Bezukhov and others (1990) noted that the equations of vibration can be derived by adding the inertia 
forces of a given system to the external forces appearing in applicable equilibrium equation. 
 
For plate this inertia force is given by Rao (1992) as 

Z= −�ℎ ���
���                                                                                                                                                                   (2) 

 
Thus adding Eqn. (2) to Eqn. (1) gives the basic equation for the vibrations performed by a plate as: 

D∇� �(�,�,�)  + �h 
���(�,�,�)���     - qsin ωt    =   0                                                                                                              (3) 

 
Now for a free vibration case, , qsin ωt = 0 and Eqn. (3) reduces to 

D∇� �(�,�,�)  + �h 
���(�,�,�)���         =   0                                                                                                                            (4) 

 
Eqn. (4) is the governing differential equation of the undamped free linear vibrations of plate. A general solution of 
Eqn.(4) can be obtained by assuming the following solution for the deflection, w (x,y,t). 
 
Let, 
w(x,y,t) = (Acosωt + Bsinωt) W (x, y)                                                                                                                         (5) 
where    ω =  natural frequency 
 
W(x, y) = the shape function which describes the modes of vibration and some harmonic function of a time, 
and A and B are constants 
 
Thus, substituting Eqn. (5) into Eqn. (4) and simplifying yields: ����(�, 	) −  �ℎω� �(�, 	) = 0                                                                                                                             (6) 
 
Dividing through by D, gives 

 ���(�, 	) −  !"ω�
# �(�, 	) = 0                                                                                                                                (7) 

Let  λ = !"ω�
#                                                                                                                                   (8) 
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Thus Eqn. (7) can be rewritten as:   ���(�, 	) −  & �(�, 	)     = 0                                                                                                                                  (9) 
 
Eqn. (9) is the governing dynamic differential equation for each plate in this present work. 
 
where  �4 = Bi harmonic differential operator 

= �'
��' + 2 �'

��� ��� + �'
��'                                                                                                                                                 (10) 

 
W(x,y )  =  shape function /displacement of plate. 

D = 
()*

+�(+,µ�)                                                                                                                                                                 (11) 

 
where  E, µ, ω, ρ, and h are the young’s modulus, poison’s ratio, natural frequency, mass density and thickness of 
the plate respectively. 
 
2.4. Method of Analysis  
In this present work, the Bubnov-Galerkin’s Method is adopted in the vibration analysis of the idealized flat plate 
(Fig. 3). Before the applicability of the method, the support and symmetric boundary conditions are discussed 
below. 
 
2.4.1. Support and Symmetric Boundary Conditions  
The use of symmetry has enabled the box structure to be idealized as a flat plate shown in Fig. 3. Thus, the 
following symmetric boundary conditions would ensure that the plate has a behavior of the box structure. Fig. 3 can 
be assumed to consist of three main plates viz; plate 1 (with Node 2,3,6,5); plate 2 (with Nodes 1,2,5,6,) and plate 3 
(with Nodes 4, 5,8,7). 
 
Therefore the symmetric boundary conditions are: 
 
             (θx)1 = (θx)2 = (θx)3 = (θx)7 = (θx)8 = (θx)5 =0  

             (θy)1 = (θy)4 = (θy)7 = (θy)3 = (θy)6 = (θy)5    =0                                                                                            (12a) 

where θx and θy are rotation in x- and y- directions respectively 
  
Because the edges of the box cannot deform, then, we have that  
w4 = w5 = w6 = w2 = w8 = 0                                                                                                                                        (12b) 
 
Now for this flat plate to represent the behavior of a box, the displacement at node 6 will be constrained to have the 
same displacement as node 8 
i.e             (θy)8    = ( θx)6                                                                                                                                                                                  (13) 
 
Plate Support Conditions 
The idealization of one-eighth of the box in Fig. 3 resulted into three finite plates namely, plates 1, 2 and 3. And 
from the Fig.3, the following support conditions will be employed in the determination of the natural frequency of 
the system. 
 
i.  Plate  1 . 
The assumed support condition is that of two opposite sides being clamped and the other two, simply supported. See 
Fig.4 

 
Fig. 4 Assumed support condition for plate 1 
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 i.e Simply Supported at y= 0 and y=c/2                                                                

                   clamped at x = 0 and x= b/2                                                                     (14) 

ii  Plate 2 
A clamped support is assumed for this plate element so that the symmetric boundary conditions stated in Eqn. (12) 
will be met. See Fig. 5 
 

 
Fig. 5: Assumed Support Condition for Plate  2 

 
iii.  Plate 3  
The assumed support condition for plate 3 is the same as that of plate 1, and this is shown in Fig.6 
 

 
Fig. 6: Assumed Support Condition for Plate  3 

 
       i.e       Clamped at y = o and y =b/2 

                   Simply supported at x = o and x = a/2                                                             (15) 

2.4.2. Bubnov-Galerkin’s Method 
The governing differential equation (Eqn. 9) can be solved using Bubnov-Galerkin’s Method. The preambles to this 
method have been outlined by Nwaogazie (2004). In this present work, the Galerkin’s method as applicable to plates 
is presented by Szilard (2004) as: 
 

- . / ��01�(�, 	) − & / 01�(�, 	)∞

12+

∞

12+
34 �(�, 	) 5�5	 = 0                                                                                     (16) 

 
Eqn. (16) when compared with Eqn. (9) shows that the shape function is given as: 

       �(�,�)     2 / 789(:, ;)∞

12<
                                                                                                                                                      (17)       

 
And for a rectangular plate, this shape function can be presented as: 
 

�(�, 	) = / / 01>�1>(�, 	)                                                                         
>1

                                                                    (18) 

 
Where cmn are unknown coefficients representing the amplitudes of the free vibration modes and Wmn(x, y) is the 

   ∞  ∞ 
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product of the pertinent Eigen functions of lateral beam vibrations, i.e  
 
Wmn (x,y) = Fm(x)Fn(y)                                                                           (19) 
 
A shape function W(x,y) that will satisfy the prescribed boundary and support conditions will be selected for each 
plate. Then the results (i.e natural frequencies) of the plates will be super imposed to obtain the overall fundamental 
natural frequency of the box structure. 
 
Eqn. (16) can be presented in a more compact form for onward derivation of the needed equation of motion in the 
subsequent section. 
 

  ∬ B�� �(�, 	) − &�(�, 	)C�(�, 	)5�5	 = D4                                                                                                      (20) 
 
3. Frequency Analysis of the Box-Type Satellite Structure 
In this section, the required vibration equation for the box satellite structure is developed. This is followed by 
numerical application, which compares the results obtained with similar works done by other researchers. 
 
It has been established that the vibration problem of the box satellite can be solved by superimposing the results 
obtained for natural frequency of the individual plate elements of Figs. 4, 5 and 6. Let ω1, ω2 and ω3 represent the 
natural frequencies of plates 1, 2 and 3 respectively, and then the fundamental natural frequency of the box can be 
expressed as: 
 
ωmn = ω1 + ω2 + ω3                                                                         (21) 
 
Each plate will now be analyzed as follow: 
 
3.1. Frequency Analysis of Plate 1 
 Let us take the shape function for Fig.4 as 

        �(�, 	)    =   / / E1>F(�)G(�)
∞

>2+

∞

12+
                                                                                                                                   (22) 

 
where        X(x)= sin λnx -sinh H� I⁄  - b (cosλnx– cosh λnx)                                                                                       (23) 
 
Y(y) = sin µmy                                                                        (24) 
 
and      λn  = 

>K
L   ;    µm = 

1K
N                                           (25) 

 
Substituting Eqns. (23), (24) and (25) into Eqn. (22),  
 

�(�, 	) =  / / E1> OPQR RH�S  
∞

>2+

∞

12+ − sinh RH�S − S0DX RH�S + S0DXℎ RH�S Y XQR ZH	0                                                                               (26)    
 
Since we are interested in the fundamental natural frequency, i.e. at 
m = n = 1, Eqn. (26) becomes: 

�(�, 	)    =   / / E++ OPQR H�S
∞

>2+

∞

12+− sinh H�S − S0DX H�S + S0DXℎ H�S Y XQR H	0                                                                                          (27) 

 
This shape function given by Eqn. (27) satisfies the boundary and support conditions specified in Eqns. (12), (13) 
and (14). 
 
Thus, substituting Eqn. (27) into the Bubnov–Galerkin’s equation i.e. Eqn. (20) yields; 
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∬ O∇� [Sin π]
^ sin π_

` − sinh π]
^ sin π_

` − bcos π]
^ sin π_

` + bcosh π]
^ sin π_

` d − λ [sin π]
^ sin π_

` − sinh π]
^ sin π_

` −ebcos π]
^ sin π_

` +    bcosh π]
^ sin π_

` fY Osin π]
^ sin π_

` −  sinh π]
^ sin π_

` − bcos π]
^ sin π_

` +  bcosh π]
^ sin π_

` Y dxdy  = 0        (28) 

 
Simplifying Eqn.(28) gives the natural frequency for plate 1 as :      
                                       

ω1 = j+klK'
!" ∗ n +

L' + �
N' + oK

γpq^�`�rs+ �t
                                                                                              (29a) 

�ℎuvu w1q    =  -2.98E 78b2 + 2.98E78b – 5.215E78                                                                         (29b) 
 
3.2. Frequency  Analysis of Plate 2 
 For Plate 2, the shape function that will satisfy the boundary conditions can be assumed to be  

�(�, 	) =  / / E1>(�� − I�)�(	� − 0�
∞

>2+
)�  

∞

12+ + ⋯                                                                                                                                                                (30) 
Since we are interested in the fundamental natural frequency, Eqn. (30) can be taken as : 
 
W(x,y) = C11 (x

2 – a2)2 (y2 – c2)2                                                                                                  (31) 
 
Now, substituting Eqn. (31) into Eqn. (20) yields: 
 

∬ z∇�B(�� − I�)�(	� − 0�)�C − λ(�� − I�)�(	� − 0�)�{(��−I�)�(	� − 0�)�4 5�5	 = 0                                 (32) 
 Simplifying Eqn. (32) gives the final expression of natural frequency of plate 2 as: 

|� = j �256�ℎI�0� (31.5I� + 18I�0� + 31.50�)s+ �t                                                                                                          (33) 

                              
3.3. Frequency Analysis of plate 3 
This plate element has the same boundary conditions as plate element 1, though with different nomenclature of 
dimensions. Thus, the expression for natural frequency of plate 3  |�  can be obtained by substituting a for b and b 
for c in the expression for natural frequency of plate 1(i.e. Eqn. (29a)). 
Then,  

                   ω� = �16Dπ�
ρh ∗ � 1a� + 2b� + 8π

γ��a�b���
+ �t                                                                                                           (34) 

where,                  γ�� = -2.98E78a2 + 2.98E78a – 5.215E78                                                                                  (35) 

               
3.4. Expression for Fundamental Natural Frequency of the Box –Type Satellite Structure 
By considering Eqn. (21), the expression for fundamental natural frequency of the box satellite structure is obtained 
by superposition of Eqns. (29), (33) and (34). 
i.e.          ω++  =   ω+ + ω� + ω� 

             ω++ =  �16Dπ�
ρh � 1b� + 2c� + 8π

γ�qb�c���
+ �t

 

 

+ j �256�ℎI�0� (31.5I� + 18I�0� + 31.50�)s+ �t
 

                  

                             + �16Dπ�
ρh � 1a� + 2b� + 8π

γ��a�b���
+ �t                                                                                                      (36) 

 

             Let � 1b� + 2c� + 8π
γ�qb�c��

+ �t

=  γ�*                                                                                                                                              (37) 
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 Let  (31.5I� + 18I�0� + 31.50�)+ �t =  γ�'                                                                                                                                    (38) 
      

               Let � 1a� + 2b� + 8π
γ��a�b��

+ �t

=  γ��                                                                                                                                                             (39) 

 
Substituting Eqns. (37) – (39) into Eqn. (36) gives: 
 

ω++ =  � l
!"  * [4π2 (γm3   + γm5) + +

+k��N� w1�  ]                                                                                                          (40) 

 
Eqn. (40) is the formulated equation for determining fundamental natural frequency of a box-type satellite structure. 
where: 
a, b, c are the dimensions of the box structure; 
D, ρ and h are as defined before. 
 
4. Numerical Example 
As a way of demonstrating the applicability of the derived Equation, a numerical study is conducted using the data 
outlined by Lin and Pan (2009).The aim is to determine the fundamental frequency of a box structure which is as a 
rectangular parallelepiped box whose dimension is as shown in Fig.7  

 
Fig. 7: Data for the Numerical Example 

 
Lin and Pan (2009) assumed that all the plate panels have the uniform thickness of 2.5mm, and are made of 
aluminum (with Young Modulus E = 7.1 x 1010 N/m2, density ρ = 2700Kg/m3 Poison’s ratio, µ = 0.3.)  
Solving the problem by Eqn. (40), yields 
         ω++  =   19.25Hz 
This result obtained is compared with that obtained by Lin and Pan (2009) in Table 1. 
 

Table 1. Comparison of Predicted and Existing fundamental natural frequencies of a box structure 
 

Mode No: Existing Predicted % Difference 
1 18.0Hz 19.25Hz 5.3 

 
DISCUSSION 

 
From the numerical studies conducted, there is a slight difference (though insignificant) between the fundamental 
frequency evaluated using the equations for natural frequency formulated in this work and that by Lin and Pan 
(2009). This difference could result from the assumed support conditions. For instance, Lin and Pan (2009) assumed 
clamped support conditions all round the edges, whereas in the present study, the satellite box considered has one of 

C = 1.0m 

a = 1.15m 

b = 0.868m 
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the plate element (i.e. plate 2) fully clamped, while the other two plate elements (I.e. plate 1 and 3) are partially 
fixed and partially simply supported. However, the derived equation would facilitate the evaluation of the needed 
fundamental natural frequency without resort to determining the natural frequencies at other modes. The result can 
be accepted within the limit range of 5.5%. 
 

CONCLUSION 
 

The Bubnov-Galerkin’s Method is presented and used to obtain the solution of the undamped free flexural vibration 
analysis of a box-type satellite structure. Using the symmetric boundary conditions in the three planes of symmetry 
of the box structure, the finite element solution of the box satellite vibrations was simplified by idealizing only the 
one-eighth of the box structure, which represents three finite plates. Two of the plates were assumed to be simply 
supported at opposite edges and the other two clamped while one was assumed to be clamped all round to reflect the 
symmetric boundary conditions.  
 
Thus, the study was able to formulate expression which is found handy in determining fundamental natural 
frequency of the box- type satellite structure. The formulated expression, i.e. Eqn. (40) enables the fundamental 
frequency of the box satellite structure to be effectively determined without using commercial finite element 
software. Therefore the formulated equation can be used to verify other free vibration analyses and to evaluate the 
precision of commercial software.  
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     Appendix A 
                              List of Symbols 
a,b,c   Dimension of box 

D      Flexural Rigidity = Eh 3 12(1 − μ�)t  

h                         Thickness of plate and uniform box 
E                         Young modulus 
µ                     Poison ratio 
ω                        Natural frequency 
ω11                  Fundamental natural frequency 
λ                          Frequency parameter = ρhω2/D 
dw/dx  =θy            Slope in the y- direction 
dw/dx = θx            Slope in the x- direction 
ρ                         Mass density 
w(x,y)    Shape function/displacement function 
π                          22/7 
Sin π    Sines of 180o 


