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ABSTRACT

This study is concerned with the understandinghef free flexural vibrations of a box-type satellg&gucture.
Specifically, an equation of motion for the deteration of the fundamental natural frequency of o satellite
was formulated using Bubnov-Galerkin’s Method a@s@. The box satellite structure is considered&built up
from six rectangular plates, each of which is assdrto be perfectly elastic, homogeneous, and ipatrand of
uniform thickness. By using the properties of symm&oundary conditions, only one-eighth of thexbwmas
idealized and analyzed using the Galerkin's metfidak formulated equation of motion for the fundatalematural
frequency of the box was then tested with the ds¢a by Lin and Pan (2009) in their box structunalgses. The
outcome of the result shows a good agreement betiex present study and the works of Lin and Pangus
Displacement Finite Element Method software package
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INTRODUCTION

Satellite technology is very important for rapidtional development. Both geostationary and non-gegionary
satellites are used for earth observation and camwation applications. For Nigeria to join the leagof space
explorers, indigenous expertise in satellite tetbgyis indispensible.

Usually, satellite structure support parts of apacecraft and accommodates units, instruments aptbyhble
components such as solar array and booms. In degigmd building engineering and flight models afedlites,
there is need to guarantee structural stability ehdck the decoupling of mounted gadgets, instrasnand
attachments during the launching and operatioh@tatellite.

Launching of satellite into space generates vibratif the satellite structure in question. Duringls launching of

the satellite, the vibration of the satellite stawe may build up to dangerous magnitude with segensequences.

In general, the consequences of structural vibmatiolude stressing and collapse of structuregkang, damage to
safety-related equipment, fatigue and adverse humgponses (Smith, 1988). These are likely to oeduen a
satellite structure vibrates at natural frequenesding to structural resonance. At this point, sheellite structure
may become unstable and mounted gadgets and irsitsinbecome decoupled. It is therefore necessary to
determine the natural frequency at which a sagedlitucture can vibrate during its launching anerafion.

However, the core subject matter of this study Bretjuency Analysis of a Box-Type Satellite Struetudoes not
appear to have been studied. Previous work on tidloraf box type structures focused on establistanglytical
methods to obtain the natural frequencies and nsbdges. Dickson and Warburton (1967) developedriasse
solution and also gave a comprehensive surveyeopdissible analytical approaches. However, thesapproach
becomes impracticable for the analysis of comptaxctures, whereas, the introduction of structdiatontinuities
presents no inherent difficulty with the finite mlent method.
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Popplewell (1971) was able to overcome the shoritegsrencountered by Dickson and Warburton whenpipdiexd
the use of displacement based finite element metbodnalyze the same box structure used by Dickswh
Warburton. However, Popplewell relied on the alseadisting finite element software’s and could detelop a
handy equation for easy evaluation of natural feemy. The present study however employed the Galsrk
Method to develop a handy equation for the deteation of the fundamental natural frequency of ta-type
satellite structure.

MATERIALS AND METHODS

2.1 System Description

Equipment on board satellites are very often malate light weight panels. This study considers sneh mass
loaded panel in the form of a box structure. Thei@gent mounted inside the box panels will be medels a set
of distributed masses and like any other box stirectthere is need to determine the fundamentatalarequency
at which the entire box structure vibrates at theeace of external loads. The box structure whesengtry is
shown in Fig. 1 is assumed to be made of rectanglédes and its vibrational analysis will be cadriout using
Bubnov-Galerkin's Method.

Fig. 1 Geometry of the Box Structure

2.2. Idealization of the Box-Type Satellite Structte

The basic assumption in the frequency analysishisf box, is that the box is assumed to be builtfropn six
rectangular plates folded together to form a boactE folded plate is considered to be perfectly tielas
homogeneous, isotropic and of uniform thickness dlisplacement of each plate is assumed small amahpeth
the wavelength of flexural vibrations. Also, themiwane displacements of a box structure are asstortegl much
smaller than the bending displacements. Therethey, may be neglected. This means that lines efsettion of
two faces cannot deform and only rotation abouhsadine is possible. In addition neither displaeats nor
rotations are possible at corners.

The box structure is idealized in such a way thatdymmetrical properties of a freely vibratingfarmn box are
adopted. Thus if the box in Fig. 2 has three plasfesymmetry, then only one- eighth of the box néede
idealized Petyt, 1990. The idealized box structure is shown in Fig.2.

Fig. 2: An idealized box structure

As a consequence of the above assumptions the gbentreated as a flat plate in 2D as shown inFigvhere X-
and Y- axes are lines of symmetry, as are the Biesnd CF.
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Fig.3: Flat plate idealization of one-eighth of a bx (shown in Fig. 2.)
2.3. Governing Dynamic Differential Equations
It will be recalled that the static equilibrium eqion of plate is given by:
64W+2 o*w +64w_q 1
a x* dx2dy? ' dy* D M

Where q = External Load.
w = deflection; and x and y are the co-ordinatesaxdethe plate
D = Bending rigidity /flexural rigidity

However Bezukhov and others (1990) noted that theatons of vibration can be derived by adding itrertia
forces of a given system to the external forcegappg in applicable equilibrium equation.

For plate this inertia force is given by Rao (1988)

%w

Thus adding Eqgn. (2) to Egn. (1) gives the basia#qgn for the vibrations performed by a plate as:
Wiy

DV* Wxy0) +ph—>=2= - gsinwt = 0 (3)

Now for a free vibration case, , ggit = 0 and Eqgn. (3) reduces to

Zw(xy,
DV* Weryn +phﬁ =0 (4)

Eqn. (4) is the governing differential equationtleé undamped free linear vibrations of plate. Aegahsolution of
Eqn.(4) can be obtained by assuming the followmlgtfon for the deflection, w (x,y,t).

Let,
w(X,y,t) = (Acosot + Bsinot) W (X, y) (5)
where ® = natural frequency

W(x, y) = the shape function which describes thel@soof vibration and some harmonic function ofeti
and A and B are constants

Thus, substituting Eqn. (5) into Eqn. (4) and sifgpig yields:

DV*W (x,y) — pho* W(x,y) =0 (6)
Dividing through by D, gives
2
VW (x,y) — PEEW(xy) =0 (7)
Let ) = 21’ 8
et A== )]
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Thus Eqgn. (7) can be rewritten as:
VW (x,y) — AW(x,y) =0 9)

Eqgn. (9) is the governing dynamic differential etipra for each plate in this present work.

where 7* = Bi harmonic differential operator

a* ao* a*
@ : (10)

T axt 0x2 0y? + dy

W(x,y ) = shape function /displacement of plate.
_  Eh3
T 12(1-p2)

(11)

where E, uw, p, and h are the young’'s modulus, poison’s ratidunad frequency, mass density and thickness of
the plate respectively.

2.4. Method of Analysis

In this present work, the Bubnov-Galerkin's Methedadopted in the vibration analysis of the idesdiflat plate
(Fig. 3). Before the applicability of the methotietsupport and symmetric boundary conditions aseudised
below.

2.4.1. Support and Symmetric Boundary Conditions

The use of symmetry has enabled the box structureetidealized as a flat plate shown in Fig. 3. SThthe
following symmetric boundary conditions would erestinat the plate has a behavior of the box stractig. 3 can
be assumed to consist of three main plates vire dlgwith Node 2,3,6,5); plate 2 (with Nodes 1@ pand plate 3
(with Nodes 4, 5,8,7).

Therefore the symmetric boundary conditions are:

0x)1= (0X)2= (0X)3= (6X)7= (0X)s= (0X)5=0 }

0y)1= (Oy)a= 0Oy)7= (y)3= (Oy)s= (Oy)s =0 (12a)
wherefx andfy are rotation in x- and y- directions respectively
Because the edges of the box cannot deform, thehawe that
W4:W5:W6:W2:W8:0 (12b)

Now for this flat plate to represent the behaviba dox, the displacement at node 6 will be coimstichto have the
same displacement as node 8

ie @y)s = (6x)s (13)

Plate Support Conditions

The idealization of one-eighth of the box in Figré3ulted into three finite plates namely, plate? Bnd 3. And
from the Fig.3, the following support conditionslividie employed in the determination of the natdrafuency of
the system.

i. Plate 1.
The assumed support condition is that of two ofgpasdes being clamped and the other two, simpghpsued. See
Fig.4

c/2 Plate 1

= 3

Fig. 4 Assumed support condition for plate 1
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i.e Simply Supported at y= 0 and y=c/2 }

clamped at x = 0 and x= b/2 (14)
i Plate 2

A clamped support is assumed for this plate elersemibat the symmetric boundary conditions stateelgn. (12)
will be met. See Fig. 5

a /2
4 >
Plate 2
= 0 o /4 X
c /4
1 2
Y

Fig. 5: Assumed Support Condition for Plate 2

ii. Plate 3
The assumed support condition for plate 3 is tineesas that of plate 1, and this is shown in Fig.6

| o/ 2 }
7 ‘ ‘ 3 %
\ \
\ \
\ \
= | FPlate 33 |
\ \
\ \
\ \
P \ L=
Y
Fig. 6: Assumed Support Condition for Plate 3
i.e Clamped aty = 0 and y =b/2
Simply supported at x = 0 and &/2 (15)

2.4.2. Bubnov-Galerkin's Method

The governing differential equation (Egn. 9) carsblved using Bubnov-Galerkin’s Method. The preaslib this
method have been outlined by Nwaogazie (2004 hithgresent work, the Galerkin’s method as apple#bplates
is presented by Szilard (2004) as:

I [Z VW y) ~1 Y cmW(x.y)l W(x,y) dxdy = 0 (16)
A m=1 m=1
Eqn. (16) when compared with Eqgn. (9) shows thatstiape function is given as:
Wiy = Z W (x,y) a7
m=0

And for a rectangular plate, this shape functiom lsa presented as:
00 00
W(x,y) ZZZCmnWmn(X,Y) (18)
m n

Where @, are unknown coefficients representing the ampdisudf the free vibration modes and,\¥, y) is the
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product of the pertinent Eigen functions of latdy@am vibrations, i.e

Wi (X,Y) = Fa(X)F(y) (19)

A shape function W(x,y) that will satisfy the prebed boundary and support conditions will be seledor each
plate. Then the results (i.e natural frequenciésh® plates will be super imposed to obtain therall fundamental
natural frequency of the box structure.

Eqgn. (16) can be presented in a more compact forreriward derivation of the needed equation of amtn the
subsequent section.

I, 74 W (x,y) = AW (x, »)IW (x, y)dxdy = o 20}

3. Frequency Analysis of the Box-Type Satellite Sticture
In this section, the required vibration equation floe box satellite structure is developed. Thidoifowed by
numerical application, which compares the resuitained with similar works done by other researsher

It has been established that the vibration probdérithe box satellite can be solved by superimpositrggresults
obtained for natural frequency of the individuatgl elements of Figs. 4, 5 and 6. Lgf ), and w; represent the
natural frequencies of plates 1, 2 and 3 respdytiamd then the fundamental natural frequencyhefliox can be
expressed as:

Wnn = 0+ W+ 0 (21)
Each plate will now be analyzed as follow:

3.1. Frequency Analysis of Plate 1
Let us take the shape function for Fig.4 as

Wx,y) = z z CmnX(x)Y(J/) (22)
m=1n=1
where Xo= SinApx -sinh™X/ - b (Codx— coshhnx) (23)
Y ) =Sinpmy (24)
and A, = n?” ; Um = % (25)

Substituting Eqns. (23), (24) and (25) into Eq2)(2

i nmx
Wx,y) = ZZC Sm—

m=1n=1

nmx nmx nmxy . mmy

— sinh—— — bcos — + bcosh——| sin (26)

b b b
Since we are interested in the fundamental naftgquiency, i.e. at
m=n =1, Eqn. (26) becomes:
W(x,y) = Z Z C11 Sin —
m=1n=1 Ty
- sth - bC057 + bcosh —] sm— 27

This shape function given by Eqgn. (27) satisfieslibundary and support conditions specified in E¢), (13)
and (14).

Thus, substituting Eqn. (27) into the Bubnov—Galeskequation i.e. Eqn. (20) yields;
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L TX LT . X . T X . T X . T . X . T . X . T
I [V”‘ {Sm Zsin™ — sinh=sin 2 — bcos ~sin 2 + bcosh = sin —y} A {sm Zsin@ — sinh =sin 2 —
A b c b c b c b c b c b c

X . T X . T . X . T . X . T T . T X . T
bcos 5 Sin ?y + bcosh 5 Sin ?y}] [sm 4 Sin ?y — sinh 5 sin ?y — bcos + Sin ?y + bcosh 4 Sin ?y] dxdy =0 (28)

Simplifying Eqn.(28) gives the natural frequency [idate 1 as :

Y

_|16Dm* 1 2 8m 2
“L= [ on (b‘* et vmlbzcz)] &
where Ym, = -2.98E 78H+ 2.98E78b — 5.215E78 (29b)

3.2. Frequency Analysis of Plate 2
For Plate 2, the shape function that will sattsky boundary conditions can be assumed to be

W, y) = Z Z Con (6 = a2)2(y% = ¢2)?

m=1n=1
+ (30)

Since we are interested in the fundamental naftequency, Eqn. (30) can be taken as :
W(x,y) = Cy (x* = &)* (y* - ©)° (31)
Now, substituting Eqn. (31) into Eqn. (20) yields:
I, [V = @) (v = €3)?] = Ax* — a®)?(y* = ¢*)?] (x*=a®)* (y* — ¢*)* dxdy = 0 (32)
Simplifying Eqgn. (32) gives the final expressidmatural frequency of plate 2 as:

D 4 2.2 4 1/2
w, = [WBlSa + 18a“c” + 31.5¢ )] (33)

3.3. Frequency Analysis of plate 3

This plate element has the same boundary conditisnplate element 1, though with different nomemecéa of
dimensions. Thus, the expression for natural fraguef plate 3w; can be obtained by substituting a for b and b
for c in the expression for natural frequency aftpll(i.e. Egn. (29a)).

Then,
16Dn* (1 2 gr \]72
where, ’
T, = -2.98E784+ 2.98E78a — 5.215E78 (35)

3.4. Expression for Fundamental Natural Frequency fothe Box —Type Satellite Structure
By considering Eqgn. (21), the expression for fundatal natural frequency of the box satellite suuets obtained
by superposition of Egns. (29), (33) and (34).

|e (,011 = (,01 + (,02 + (,03
1
[16Dn4<1 L2, 6 >] /2
('011 =1\ 4 12 .2
ph \b* c* ymlbzc2
D 4 2.2 4 2
— (315 18 31.5
+[256pha4c4( a* + 18ac?* + c®)
1

J[reprt(1 2 en /2 .
ph \a* b* «ymzazb2 (36)

1
Let 1+2-+- S i
bt T ¥, b2
1

(37)

Vg
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Let
(31.5a* +18a2c? +31.5¢%) /2 = v, (38)
(L, 2, ®n 2
*\ar " e ymzazb2
= 7. (39)

Substituting Eqns. (37) — (39) into Eqn. (36) gives

11 = \/IJT%I * [47]:2 (Ymz + Yms) +;Ym4 ] (40)

16a2c?

Eqn. (40) is the formulated equation for deterngritindamental natural frequency of a box-type Begedtructure.
where:

a, b, c are the dimensions of the box structure;

D, p and h are as defined before.

4. Numerical Example

As a way of demonstrating the applicability of tlerived Equation, a numerical studyonducted using the data
outlined by Lin and Pan (2009).The aim is to detaenthe fundamental frequency of a box structurekvis as a
rectangular parallelepiped box whose dimensios ish@wn in Fig.7

I

|

| C=1.0m

|

|

|

|

R — I BN
7 = 0.868m

a=1.15m

Fig. 7: Data for the Numerical Example

Lin and Pan (2009) assumed that all the plate pahaVe the uniform thickness of 2.5mm, and are nadde
aluminum (with Young Modulus E = 7.1 x fON/n?, densityp = 2700Kg/mi Poison’s ratiop = 0.3.)
Solving the problem by Eqn. (40), yields
®;; = 19.25Hz
This result obtained is compared with that obtaibgdin and Pan (2009) in Table 1.

Table 1. Comparison of Predicted and Existing fundmental natural frequencies of a box structure

Mode No: | Existing| Predicted % Differenge
1 18.0Hz 19.25Hz 5.3

DISCUSSION

From the numerical studies conducted, there isghtstlifference (though insignificant) between fli@damental
frequency evaluated using the equations for natinegluency formulated in this work and that by land Pan
(2009). This difference could result from the assdraupport conditions. For instance, Lin and P&3%2 assumed
clamped support conditions all round the edgesredwin the present study, the satellite box censiihas one of
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the plate element (i.e. plate 2) fully clamped, latihe other two plate elements (l.e. plate 1 andr8 partially
fixed and partially simply supported. However, tterived equation would facilitate the evaluationtlod needed
fundamental natural frequency without resort tcedwetning the natural frequencies at other modes. fESult can
be accepted within the limit range of 5.5%.

CONCLUSION

The Bubnov-Galerkin's Method is presented and dsasbtain the solution of the undamped free flekuitaration

analysis of a box-type satellite structure. Using $ymmetric boundary conditions in the three gaosfesymmetry
of the box structure, the finite element solutidrtte box satellite vibrations was simplified byealizing only the
one-eighth of the box structure, which represemtset finite plates. Two of the plates were assutoede simply
supported at opposite edges and the other two eldmyhile one was assumed to be clamped all rouneflect the
symmetric boundary conditions.

Thus, the study was able to formulate expressioictwiis found handy in determining fundamental naitur
frequency of the box- type satellite structure. Thenulated expression, i.e. Egn. (40) enablesftimelamental

frequency of the box satellite structure to be ctifely determined without using commercial finigdement

software. Therefore the formulated equation camigesl to verify other free vibration analyses andualuate the

precision of commercial software.
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Appendix A
List of Symbols
Dimension of box

Flexural Rigidity = ER/; 1 _ 2y

o
(@]

Thickness of plate andarm box
Young modulus

Poison ratio

Natural frequency
Fundamental natural frequency
Frequency parametepheo?/D

g eTEm> U

dw/dx =, Slope in the y- direction

dw/dx =6, Slope in the x- direction

p Mass density

Wixy) Shape function/displacement function
T 22[7

Sinz Sines of 180
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