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ABSTRACT 
 
The present paper investigates the problem of modified magnetohydrodynamic (MHD) double-diffusive convection 
coupled with cross-diffusions for the Veronis’ and Stern’s type configurations. The nasty behaviour of the governing 
equations of the problem is mollified by the construction of a proper transformation and the relationship between 
various energies is established. The analysis made brings out that total kinetic energy associated with a disturbance 
is greater than the sum of its total magnetic and concentration energies in the parameter regime, 
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1 ≤′+ −−−− kRQ S πστπσ  The results derived herein are valid for quite general nature of 

boundary conditions. 
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INTRODUCTION 
 

Thermohaline convection or more generally double diffusive convection has matured into a subject possessing 
fundamental departure from its counterpart, namely single diffusive convection, and is of direct relevance in the 
fields of oceanography, astrophysics, liminology and chemical engineering etc. For a broad and a recent view of the 
subject one may be referred to [1]. Two fundamental configurations have been studied in the context of 
thermohaline instability problem, the first one by [2] wherein the temperature gradient is stabilizing and the 
concentration gradient is destabilizing and the second one by [3] wherein the gradient is destabilizing and the 
concentration gradient is stabilizing. The main results derived by [2]and [3] for their respective configurations are 
that both allow the occurrence of a stationary pattern of motions or oscillatory motions of growing amplitude 
provided the destabilizing concentration gradient or the temperature gradient is sufficiently large. However, 
stationary pattern of motion is the preferred mode of setting in of instability in case of Stern’s configuration whereas 
oscillatory motions of growing amplitude are preferred in Veronis’ configuration. More complicated double-
diffusive phenomenon appears if the destabilizing thermal/concentration gradient is opposed by the effect of 
magnetic field or rotation. 
 
 [4] presented a modified analysis of thermal and thermohaline instability of a liquid layer heated underside by 
emphasizing and utilizing the point that linear theoretical explanation of the phenomenon of gravity dominated 
thermal instability in a liquid layer heated underside (Be’nard convection) should depend not only upon the 
Rayliegh number which is proportional to the uniform temperature difference maintained across the layer but also 
upon other parameter so that a provision could be made in the theory to recognize the fact that a relatively hotter 
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layer with its heat diffusivity apparently increased/decreased as a consequence of an actual decreased/increased 
(depending on the fluid) in its specific heat at constant volume must exhibit Be’nard convection at a higher/lower 
Rayliegh number than a cooler layer under almost identical condition otherwise and further this qualitative effect is 
not quantitatively insignificant. 
 
The stability properties of binary fluids are quite different from pure fluids because of Soret and Dufour effects [5], 
[6]. An externally imposed temperature gradient produces a chemical potential gradient and the phenomenon known 
as the Soret effect, arises when the mass flux contains a term that depends upon the temperature gradient. The 
analogous effect that arises from a concentration gradient dependent term in the heat flux is called the Dufour effect. 
It is now well established fact that the thermosolutal and Soret-Dufour problems are quite closely related, in fact, 
they are formally identical and identification is done by means of a linear transformation that takes the equations and 
boundary conditions for the latter problem into those for the former. The analysis of double diffusive convection 
becomes complicated in case when the diffusivity of one property is much greater than the other. Further, when two 
transport processes take place simultaneously, they interfere with each other and produce cross diffusion effect 
(Dufour-Soret effects).  The Soret and Dufour coefficients describe the flux of mass caused by temperature gradient 
and the flux of heat caused by concentration gradient respectively. The coupling of the fluxes of the stratifying 
agents is a prevalent feature in multicomponent fluid systems. In general, the stability of such systems is also 
affected by the cross-diffusion terms. Generally, it is assumed that the effect of cross diffusions on the stability 
criteria is negligible. However, there are liquid mixtures for which cross diffusions are of the same order of 
magnitude as the diffusivities. There are only few studies available on the effect of cross diffusion on double 
diffusion convection largely because of the complexity in determining these coefficients. The effect of Soret 
coefficient on the double–diffusive convection has been studied by [7]. They have reported that the magnitude and 
sign of the Soret coefficient were changed by varying the composition of the mixture. [8] has mathematically 
examined the problem of Soret –effect on rotatory thermosolutal convection of the Veronis type and has established 
a condition under which oscillatory motion of growing amplitude cannot manifest. The problem of Dufour-driven 
thermosolutal convection has also been considered by [9] and results concerning the linear growth rate and behavior 
of oscillatory motions have been established. The instability problem of magnetorotatory thermosolutal convection 
of the Veronis and Stern type has been examined by [10] taking in to account the Dufour effect and  semi-circle 
theorems are derived, that prescribe upper limits for complex growth rate of oscillatory motions of  neutral or 
growing amplitude. [11] has studied the effect of rotation on thermosolutal convection in a compressible couple-
stress fluid through porous medium and concluded that the stable salute gradient and rotation introduce oscillatory 
modes in the system, which were non-existent in their absence. The effects of flow parameters on the velocity field, 
temperature field and concentration distribution have been studied by [12] and results are presented graphically and 
discussed quantitatively on the problem of viscous dissipation effects on unsteady free convection and mass transfer 
flow past an accelerated vertical porous plate with suction. [13] have investigated the problem on hydromagnetic 
natural convection flow of an incompressible viscoelastic fluid between two infinite vertical moving and oscillating 
parallel plates. 
 
In his investigation of magneto hydrodynamic simple Be’nard convection problem [14] has sought unsuccessfully 
the regime in terms of the parameters of the system alone, in which the total kinetic energy associated with a 
disturbance exceeds the total magnetic energy associated with it, since these considerations are of decisive 
significance in deciding the validity of the principle of exchange of stabilities. However, the solution for w 
( ))(sintan ztcons π= is not correct mathematically (and Chandrasekhar was aware of it).Banerjee et. al. until 

1985 did not pursue their investigation in this direction and consequently did not see this connection. This gap in the 
literature on magnetoconvection has been completed by [15] who presented a simple mathematical proof to establish 

that Chandrasekhar’s conjecture is valid in the regime 2
1 πσ ≤Q  and further this result is uniformly applicable for 

any combination of a dynamically free or rigid boundary when the region outside the liquid are perfectly conducting 

or insulating. They showed that in the parameter regime 1
2

1 ≤
π
σQ

 the total kinetic energy associated with a 

disturbance is greater than the total magnetic energy associated with it. 
 
The present analysis extends this energy consideration to the problem of hydromagnetic modified double diffusive 
convection coupled with cross-diffusions to the type described by [2]. It is establish that in the parameter regime 
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1 ≤′+ −−−− kRQ S πστπσ the total kinetic energy associated with a disturbance is greater than the 

sum of its total magnetic and concentration energies. A similar characterization theorem for hydromagnetic double 
diffusive convection problem coupled with cross- diffusions of the type described by [3] is also established. 
 
2. Mathematical formulation of the Problem 
The relevant governing equations and boundary conditions for the modified hydromagnetic double-diffusive 
instability problem coupled with cross-diffusions in their non-dimensional linearized form are easily seen to be 
given by [4, 8, 9]  
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with 
φθ === 0w                     on both the boundaries, 

02 =wD                               on a tangent stress–free boundary everywhere, 

0=Dw                                 on a rigid boundary, 

0=zh                                    on both the boundaries if the regions outside 

 
the fluid are perfectly conducting, 





==
=−=
0

1

zatahDh

zatahDh

zz

zz
          if the regions outside the fluid are insulating. 
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Now using equation (2.3) in equation (2.2), we have 
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The meanings of symbols from physical point of view are as follows; 
 
z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a2 is square of horizontal  wave 

number, σ 
κ
υ=  is the thermal Prandtl number, σ1

η
υ=  is the magnetic Prandtl number, τ

κ
η1=  is the Lewis 

number, 
κυ

αβ 4
1dg

RT =  is the thermal Rayleigh number, 
κυ

αβ 4
2dg

RS = is the concentration Rayleigh number, 



Hari Mohan                                                              Adv. Appl. Sci. Res., 2012, 3(3):1589-1597     
 _____________________________________________________________________________ 

1592 
Pelagia Research Library 

Q =
υηπρ

µ
o

e dH

4

222

 is the Chandrasekhar number ,
κβ

β

1

2 f
T

D
D =  is the Dufour number, 

12

1

ηβ
β f

T

S
S =  is the Soret 

number, 2α  is the coefficient of specific heat due to variation in temperature, 2α̂  is the analogous coefficient due to 

variation in concentration,
1

2
3 β

β
=R  is the ratio of concentration gradient to thermal gradient, 0T  is the temperature 

at the lower boundary,φ  is the concentration, θ  is the temperature, p is the complex growth rate, w is the vertical 

velocity, hz is the vertical magnetic field.  
 

In equations (1)–(6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D =  is differentiation w.r.t z , a2 is a 

constant, σ > 0 is a constant,1σ >0 is a constant, τ  > 0 is a constant, TR and RS are positive constants for the 

Veronis' configuration and negative constant for Stern's configuration, p = pr + ipi is complex constant in general 
such that pr and pi are real constants and as a consequence the dependent variables w(z) = wr(z) + iwi(z), θ (z) = 

rθ (z) + iiθ (z) ,φ (z) = rφ (z) + iiφ (z)  and 
ir zzz hihh += are complex valued functions(and their real and 

imaginary parts are real valued).  
 
3. Linear Transformation and Mathematical Analysis 
The nature of the system (2.1)-(2.6) is clearly qualitatively different from those of double-diffusive convection 

problems ( TT SD == 0 ) as now we have coupling between all the three eigen- functions φθ andw ,,  in all the 

three equations. Consequently, they behave nastily and obstruct any attempt for the elegant extension of the earlier 
results for the double-diffusive convection problems to the present generalized set up. The nasty behavior of these 
equations is mollified by the linear transformations given by: 
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and A is a positive root of the equation 
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The system of equations (2.1), (2.3), (2.4) and (2.6) together with boundary conditions (2.5), upon using the 
transformations (3.1) and omitting the tilde sign for simplicity, assumes the following form: 
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We now prove the following theorems:  
Theorem 1: If (p, w,θ ,φ , hz), p = pr + ipi, pr ≥ 0 is a solution of equations (3.2) – (3.5) together with boundary 

conditions (3.6) with, 0>TR  SR  > 0 and 1
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Proof: Multiplying equation (3.5) by 
*
zh  (the complex conjugate of hz), integrating the resulting equation over the 

range of z by parts a suitable number of times, and making use of the boundary conditions (3.6) we get 
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Equating the real part of equation (3.8), we get 
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Using inequality (3.10), it follows from inequality (3.9) that 
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It follows from inequalities (3.11) and (3.12) that 

( ) dzDw
1

dzhaDh
1

0

2

2

1

0

2

z
22

z ∫∫ π
<+  

( )∫ +
π

<
1

0

222

2
dzwaDw

1
 

or  

( ) ∫∫ ++
1

0

22/
1

0

222

1 dzaRdzhaDhQ szz φσσ  

( ) ∫∫ ++<
1

0

22/
1

0

222

2
1 dzaRdzwaDw

Q
s φσ

π
σ

  . (3.13) 

 
Multiplying equation (3.4) by the complex conjugate of the equation (3.4) and integrating by parts over the vertical 
range of z for an appropriate number of times and making use of the boundary conditions (3.6) we get 
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Since, rp  ≥ 0, therefore from equation (3.14), we get 
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Since φ (0) = 0 = φ  (1), therefore using [16], we get 
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Now from inequalities (3.13) and (3.17), we get 
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and this completes the proof of the theorem.  
 
We note that the left hand side of equation (3.18) represents the total kinetic energy associated with a disturbance 
while the right hand side represents the sum of its total magnetic and concentration energies, and Theorem 1 may be 
stated in the following equivalent form: 
 
At the neutral or unstable state in the hydromagnetic double diffusive convection problem of the Veronis' type 
coupled with cross-diffusions, the total kinetic energy associated with a disturbance is greater than the sum of its 

total magnetic and concentration energies in the parameter regime 1
4

27
/2

2
422

1 ≤′+ −−−− kRQ S πστπσ  and 

this result is uniformly valid for any combination of dynamically free or rigid boundaries that are either perfectly 
conducting or insulating. 
 

Theorem 2:  If (p, w, zh,, φθ ), p = pr + ipi, pr ≥ 0 is a solution of equation (3.2) –(3.5) together with boundary 

conditions (3.6) with TR < 0, SR  < 0, and                      1
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Proof: Similar to that of Theorem1. 
 
We note that the left hand side of equation (3.20) represents the total kinetic energy associated with a disturbance 
while the right hand side represents the sum of its total magnetic and thermal energies, and Theorem 2 may be stated 
in the following equivalent form: 
 
At the neutral or unstable state in the hydromagnetic double diffusive convection problem of the Stern's type 
coupled with cross-diffusions, the total kinetic energy associated with a disturbance is greater than sum of its total 

magnetic and thermal energies in the parameter regime 1

4

27 2
1

4

/

2
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k
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π
σ

 and this result is uniformly valid for 

any combination of dynamically free or rigid boundaries that are either perfectly conducting or insulating. 
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