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ABSTRACT

The present paper investigates the problem of neodihagnetohydrodynamic (MHD) double-diffusive emtion
coupled with cross-diffusions for the Veronis’ étern’s type configurations. The nasty behaviouhefgoverning
equations of the problem is mollified by the camsion of a proper transformation and the relatibigs between
various energies is established. The analysis nbaithgs out that total kinetic energy associatedhvatdisturbance

is greater than the sum of its total magnetic andnaentration energies in the parameter regime,

- v o4y, -2 , 27
Qayrr 2 + Rsor 2 4k2 2 ITSL The results derived herein are valid for quite geh nature of
boundary conditions.
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INTRODUCTION

Thermohaline convection or more generally doublusive convection has matured into a subject EmBg
fundamental departure from its counterpart, nansatgle diffusive convection, and is of direct relage in the
fields of oceanography, astrophysics, liminologg ahemical engineering etc. For a broad and a tedew of the
subject one may be referred to [1]. Two fundamemmhfigurations have been studied in the context of
thermohaline instability problem, the first one 8] wherein the temperature gradient is stabiliziewgd the
concentration gradient is destabilizing and theosdcone by [3] wherein the gradient is destabifizand the
concentration gradient is stabilizing. The mairuhssderived by [2]and [3] for their respective fignrations are
that both allow the occurrence of a stationaryguattof motions or oscillatory motions of growing @litude
provided the destabilizing concentration gradienttlee temperature gradient is sufficiently largeowdver,
stationary pattern of motion is the preferred mofisetting in of instability in case of Stern’s digration whereas
oscillatory motions of growing amplitude are preéer in Veronis’ configuration. More complicated ¢t
diffusive phenomenon appears if the destabilizihgrmal/concentration gradient is opposed by thecefbf
magnetic field or rotation.

[4] presented a modified analysis of thermal amefrmhohaline instability of a liquid layer heatedderside by
emphasizing and utilizing the point that lineardtegical explanation of the phenomenon of gravipynihated
thermal instability in a liquid layer heated undées (Be'nard convection) should depend not only rugbe
Rayliegh number which is proportional to the unifiotemperature difference maintained across the layealso
upon other parameter so that a provision could bdenin the theory to recognize the fact that ativelly hotter
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layer with its heat diffusivity apparently incred#gecreased as a consequence of an actual dedmeas=ed
(depending on the fluid) in its specific heat ahstant volume must exhibit Be’nard convection digher/lower
Rayliegh number than a cooler layer under alma=sttidal condition otherwise and further this quailite effect is
not quantitatively insignificant.

The stability properties of binary fluids are quitiéferent from pure fluids because of Soret anddbu effects [5],
[6]. An externally imposed temperature gradientjoices a chemical potential gradient and the phenomknown
as the Soret effect, arises when the mass fluxagmia term that depends upon the temperatureegradihe
analogous effect that arises from a concentratiadignt dependent term in the heat flux is calledDufour effect.
It is now well established fact that the thermosaland Soret-Dufour problems are quite closelgtssl, in fact,
they are formally identical and identification isret by means of a linear transformation that taéfke®quations and
boundary conditions for the latter problem intogbdor the former. The analysis of double diffustgavection
becomes complicated in case when the diffusivitgred property is much greater than the other. Eurtlshen two
transport processes take place simultaneously, ititeyfere with each other and produce cross difueffect
(Dufour-Soret effects). The Soret and Dufour coefhts describe the flux of mass caused by tenpergradient
and the flux of heat caused by concentration gradiespectively. The coupling of the fluxes of thteatifying
agents is a prevalent feature in multicomponernitl faystems. In general, the stability of such systés also
affected by the cross-diffusion terms. Generallyisiassumed that the effect of cross diffusionsttan stability
criteria is negligible. However, there are liquidxtares for which cross diffusions are of the saarder of
magnitude as the diffusivities. There are only fetwdies available on the effect of cross diffusam double
diffusion convection largely because of the comipjexn determining these coefficients. The effedt Soret
coefficient on the double—diffusive convection heen studied by [7]. They have reported that thgnitade and
sign of the Soret coefficient were changed by vayyihe composition of the mixture. [8] has mathecadly
examined the problem of Soret —effect on rotatbermosolutal convection of the Veronis type andédstablished
a condition under which oscillatory motion of grongiamplitude cannot manifest. The problem of Dufdiven
thermosolutal convection has also been consideyd@]land results concerning the linear growth iate behavior
of oscillatory motions have been established. Tistability problem of magnetorotatory thermosoluwahvection
of the Veronis and Stern type has been examine ®jytaking in to account the Dufour effect andmseircle
theorems are derived, that prescribe upper linatscbmplex growth rate of oscillatory motions ofeutral or
growing amplitude. [11] has studied the effect afation on thermosolutal convection in a comprdsesitouple-
stress fluid through porous medium and concludedl ttie stable salute gradient and rotation intrecescillatory
modes in the system, which were non-existent iir tiessence. The effects of flow parameters on tlecity field,
temperature field and concentration distributiomehbeen studied by [12] and results are presemtgshigally and
discussed quantitatively on the problem of visadigsipation effects on unsteady free convectionraads transfer
flow past an accelerated vertical porous plate withtion. [13] have investigated the problem onrbgthgnetic
natural convection flow of an incompressible vidag#c fluid between two infinite vertical moving@ oscillating
parallel plates.

In his investigation of magneto hydrodynamic simpkfnard convection problem [14] has sought unsssitdly
the regime in terms of the parameters of the sysikme, in which the total kinetic energy assodatéth a
disturbance exceeds the total magnetic energy iassdcwith it, since these considerations are ofisilee
significance in deciding the validity of the pripté of exchange of stabilities. However, the solutifor w

(= constant(sin z))is not correct mathematically (and Chandrasekhar aweare of it).Banerjee et. al. until

1985 did not pursue their investigation in thisedtion and consequently did not see this conneclibis gap in the
literature on magnetoconvection has been complatddi5] who presented a simple mathematical proadtablish

that Chandrasekhar’s conjecture is valid in théme§) g, < 777 and further this result is uniformly applicable fo
any combination of a dynamically free or rigid bdarny when the region outside the liquid are pelfeminducting

Qa,
2

or insulating. They showed that in the parametginie <1 the total kinetic energy associated with a

disturbance is greater than the total magneticggra&ssociated with it.

The present analysis extends this energy considerst the problem of hydromagnetic modified douBiffusive
convection coupled with cross-diffusions to theetygescribed by [2]. It is establish that in theapeeter regime
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_ o4y -2 , 27
Qayrr 2+ R’SOT 2 4k2 2 /7 < 1, the total kinetic energy associated with a distndgais greater than the

sum of its total magnetic and concentration ensrgdesimilar characterization theorem for hydronetgndouble
diffusive convection problem coupled with crosdfudiions of the type described by [3] is also elishled.

2. Mathematical formulation of the Problem

The relevant governing equations and boundary tiondi for the modified hydromagnetic double-diffeesi
instability problem coupled with cross-diffusions their non-dimensional linearized form are easégn to be
given by [4, 8, 9]

(02 —az)(DZ -a’ —ij: R; a%0- R.a%p-QD(D? -a?) h, (2.1)
g
D? -a? —(1-Toa,)plf +[ D; (D? - a%) ~Tod, Ryplp= 1~ Toa,) + Tod,ReJw |
2.
Dz—az—ﬂjwsr(Dz-az)e:—iv , 2.3)
T T

and

Dz—az—&jhz =-Dw, (2.4)

o

with
w=0=0=¢ on both the boundaries,

D?’w=0 on a tangent strese-boundary everywhere,

Dw=0 on a rigid boundary
h, = on both the bdaries if the regions outside
the fluid are perfectly conducting,
Dh, =-ah,atz=1 _ _ _ _ o

if the regions outside the fluid are ilasing.
Dh, =ah,atz=0
1.

Now using equation (2.3) in equation (2.2), we have
G.(D? -a%) - plp+G,(D? -a%) p=-w, 2.6)
where

The meanings of symbols from physical point of veaw as follows;

z is the vertical coordinate, d/dz is differeriatalong the vertical direction?as square of horizontal wave

U
number,c =— is the thermal Prandtl numben:g is the magnetic Prandtl numbeT,:ﬂ is the Lewis
K n K
ap,d? apB,d*
number, Ry = % is the thermal Rayleigh numbeRg = M is the concentration Rayleigh number,
KU KU
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=22 is the Chandrasekhar numbdD, = is the Dufour numberS; =
47p,U1] Bk B

number(, is the coefficient of specific heat due to vagdatin temperaturea!i’2 is the analogous coefficient due to

B

variation in concentratiol}; = —= is the ratio of concentration gradient to thergraldient,I; is the temperature
1

at the lower boundary, is the concentrationf is the temperature, p is the complex growth natés the vertical
velocity, h is the vertical magnetic field.

D
'82 is the Soret

d
In equations (1)—(6), z is real independent vaeahlch that @ z< 1, D = d_ is differentiation w.r.t z , %is a
P4

constants > 0 is a constangf; >0 is a constantT > 0 is a constantR; and R are positive constants for the
Veronis' configuration and negative constant far®s configuration, p =,p+ ip is complex constant in general
such that pand p are real constants and as a consequence the @epemdiables w(z) = Mz) + iwi(z), 8 (z) =
0,2 +16,(2) .¢(2 =@, (2) +i@(z) andh, = h; +i h; are complex valued functions(and their real and

imaginary parts are real valued).

3. Linear Transformation and M athematical Analysis
The nature of the system (2.1)-(2.6) is clearlylitptavely different from those of double-diffusiveonvection
problems O; =0=S;) as now we have coupling between all the threereifunctionsw, 8,and ¢ in all the

three equations. Consequently, they behave nastidlyobstruct any attempt for the elegant extensfahe earlier
results for the double-diffusive convection probeta the present generalized set up. The nastwilmehaf these
equations is mollified by the linear transforma#iaiven by:

w=(S; +B)w,

6 =Ef+Fg,

9=560+By,

h,=(S, +B)h,, (3.)
where

G, +A G, +
and A is a positive root of the equation

A*-(G,-1)A-1 S;G, =0.

+ +
p=—ip g FBA g iGz,A:Gl—r
T

The system of equations (2.1), (2.3), (2.4) an®)(2ogether with boundary conditions (2.5), upotingsthe
transformations (3.1) and omitting the tilde signg$implicity, assumes the following form:

(D2 —az)(Dz -a? —Epjw: R'a?0-R/ a’¢-QD(D?-a?)h, , (3.2)
[kl(D2 —az)— pJH =—w, (3.3)
{kz(Dz —az)—ﬂgoz —"?V , (3.4)
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po -
(Dz—az——c1 h, =-Dw, B
with
w=0=6=¢ on both the boundaries,
D?w=0 on a tangent strese-freundary everywhere,
Dw=0 on a rigid boundary,
h,=0 on both the bournekif the regions outside

the fluid are perfectly conducting,

Dh, =-ah,atz=1
if the regions outside the fluid are iragirg,
Dh, =ah,atz=0

(3.6)
where

S
T

are positive constants and

| 2 G+ ARG +RSt) o _ (St +B)(RsA+ R Gy)
BA-S.G, S BA-S.G,

Rayliegh number and the modified concentration irRgjl number.

are respectively the modified thermal

We now prove the following theorems:
Theorem 1: If (p, w,0,¢, h), p =p + ip, p > 0 is a solution of equations (3.2) — (3.5) togetith boundary

conditions (3.6) withR, >0 Ry >0 andQa,77 % + Ryor 27 %k, ° /277 <1 then

1 1 1

_[QDV\/]Z + a2|vv|2)dz> QJlNDhZ|2 + a2|hz|2)dz + RS’aza.[Mzdz . (3.7)
0 0 0

Proof: Multiplying equation (3.5) byh*Z (the complex conjugate of)hintegrating the resulting equation over the
range of z by parts a suitable number of times,raakling use of the boundary conditions (3.6) we get

aM+j(|Dh| +a2|h|)dz+& Ih,fdz= jw Dh, | @8)

where M ={(jn, "), +(In,?} =0

Equating the real part of equation (3.8), we get

aM+:|;(|DhZ|2 +a2|hz|2)dz+%i|hz|2dz

1
= Real part of (—J'w Dh’, dz]
0
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<

jw Dh dz{
0

1
< I|W||th|dz
0

1 1/2 1 1/2
< {j|w|2dz} {I|th|2dz} . (3.9)
0 0

(using Schwartz inequality)
Since P, > 0, therefore from the inequality (3.9), we get

1 1 U2 q 1/2
j|th|2dz<{j|w|2dz} {I|th|2dz}
0 0 0

or

1 1
I|th|2dz<.|.|w|2dz . (3.10)
0 0

Using inequality (3.10), it follows from inequalif®.9) that

1 1
Dh.|* +a?|h,|* bz < [|w|*dz (3.11)
J{on.J* e, e o

0
Since w (0) = 0 = w (1), therefore using [16], wat g

1 1 1
.|'|W|2dz<¥.|'|Dw|2dz . (3.12)
0 0

It follows from inequalities (3.11) and (3.12) that

[{on, +atfn,f piz< 2 jiow'ae
0

0

1 1
< [owf +atpul” bz
or ’

1 1
Qo[ (oh,? +a?h,*kiz+ R/ a2 gz
0 0

< Qﬂgl i@Dw{z +a2|V\42)dz+ R' o azi.Mzdz . (3.13)

Multiplying equation (3.4) by the complex conjugatiethe equation (3.4) and integrating by partsrdkie vertical
range of z for an appropriate number of times aa#ling use of the boundary conditions (3.6) we get

< J(IDf" +2a(Def +alef Joz+ 27 [ (Dt + o'l
0 0
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|p| .|'|cq dz-—f|w| dz . (3.14)

Since, P, >0, therefore from equation (3.14), we get

_l[(‘quf +2a%|Dgf’ +a4|442)dz<rz—1kzjl'|vx42dz. (3.15)

0 20

Since ¢ (0) = 0 = (1), therefore using [16], we get

T[Zj.|(q2d2 < j'|qu2 dz

andalso

n“hqfdz sﬂquz dz . (using Schwartz inequality) (3.16)
: :

It follows from inequalities (3.15) and (3.16) that

R [T
M “44 dz <

or

(|owf” +a’wf" )dz

O ey

,”V\'idz 22k(];z.2+a)

1 1
a’ flgffdz< o ——— I [Dw" +a%jwf” )
0 - 0
> \3
since the minimum value ognz;-iza) ford>0is ZYIA .
/ 1
or Rs’azaﬂ(/j dz< o= RS g NDV\,{2+aZ|V\42}iz . (3.17)
I 0

Now from inequalities (3.13) and (3.17), we get

1 1
Qal_|'0DhZ|2 + a2|hz|2)dz+ Rs’aza_ﬂqfdz
0 0

<|Qa, Ro NDV\42+a2|W12)dz. (3.18)
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/
Therefore, ifQJl + Ro <1, then from inequality (3.18), we get

27 5 a2

N

4

1 1 1
IQDMZ + a2|V\42)dz> Qal.|'0th|2 + a2|hz|2) dz + Rs/aza“qudz , (3.19)
0 0 0

and this completes the proof of the theorem.

We note that the left hand side of equation (3r&®yesents the total kinetic energy associated avitlisturbance
while the right hand side represents the sum dbttd magnetic and concentration energies, anaiEme 1 may be
stated in the following equivalent form:

At the neutral or unstable state in the hydromagraduble diffusive convection problem of the Vesrype
coupled with cross-diffusions, the total kineticeegy associated with a disturbance is greater tharsum of its

- v o 4y -2, 27
total magnetic and concentration energies in tharpater regimeQa;, 77 2+ Rsor 2 4k2 2 /7 <1 and

this result is uniformly valid for any combinatiari dynamically free or rigid boundaries that artheti perfectly
conducting or insulating.

Theorem 2: If (p, w,0, @, hz), p=np+ip, pr> 0 is a solution of equation (3.2) —(3.5) togethdh boundary

/
conditions (3.6) withR. < 0, Rg <0, and Qa, + |RT|J <1, then
gt
1 1 1
I(|DV\,12 + a2|w|2)dz> Qalj(|DhZ|2 + a2|hz|2) dz+‘RT / ‘azaﬂﬂzdz . (3.20)
0 0 0

Proof: Similar to that of Theorem1.

We note that the left hand side of equation (3r2@yesents the total kinetic energy associated avitlisturbance
while the right hand side represents the sum dbttd magnetic and thermal energies, and TheoremyRbe stated
in the following equivalent form:

At the neutral or unstable state in the hydromagnabuble diffusive convection problem of the Stertype
coupled with cross-diffusions, the total kineticeegy associated with a disturbance is greater shiam of its total

Qo, , Rl
magnetic and thermal energies in the parametemee e + 27 <1 and this result is uniformly valid for
" 'k}

any combination of dynamically free or rigid bourida that are either perfectly conducting or inSota
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