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ABSTRACT 
 
A novel approach of modeling using input-output experimental data pairs is presented for compaction energy and 
compact density percentage of powder. In this way, singular value decomposition (SVD) method is used in 
conjunction with dimensionless parameters incorporated in such complex process. The obtained model shows very 
good agreement with the testing experimental data pairs which have been unforeseen during the training process. 
The approach of this paper can be generally applied to model very complex real-world processes using appropriate 
experimental data. 
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INTRODUCTION 

 
Shock consolidation is a technique that shows considerable promise for producing bulk material from powders. 
Rapid solidification technology is a rapidly advancing field by which unique 
 
Microstructures of metallic alloys and ceramics are created. Shock consolidation is a process by which the particle 
surfaces are highly deformed producing inter-particle bonding in a one-step-process.  Powders that cannot be 
conventionally compacted by powder metallurgical process, due to their high strength, and powders in which post 
compaction sintering has a deteriorating effect on the mechanical properties, can be compacted by shock pressures 
[1-2]. 
 
The detonation of a highly explosive charge can give rise to induced shock pressures as high as 900 Gpa, lasting for 
several microseconds [3-4].  The exact amplitude and duration of the explosive pressure pulse depend on the type 
and size of the explosive charge and the means by which the energy of the explosive is transmitted to the work 
piece. In fact, explosively induced shock waves have been successfully utilized to change the state and properties of 
materials and to weld, cut, form metals, in particular in the compaction of powder metals. The most common form 
of direct compaction apparatus is the collapsing cylinder press as shown in figure (1). The powder is placed inside a 
metal tube, which is plugged at both ends and surrounded by a uniform layer of explosive. 
 
The explosive is detonated at one end, producing a converging cylindrical shock wave which collapses the metal 
tube and consolidates the powder. There are parameters of interest that affect the performance of explosive metallic 
powder compaction in terms of compaction energy (E) and compact density percentage (Dc). Such parameters are, 
namely, powder packing density (ρ), explosive charge thickness (Te), wall thickness of the cylinder (Tw), mass ratio 
(R, explosive charge mass to cylinder mass), initial powder density percentage (Dt), explosive detonation wave 
velocity (Vd), and cylinder diameter (d). However, only some of these parameters as input variables have a 
significant effect on the output variables in the performance of the powder compaction process. 
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In this paper, it is shown that Dimensionless Analysis and Singular Value Decomposition can effectively model and 
predict the compaction energy and the compaction density percentage, each as a function of important input 
parameters in explosive compaction of metallic powder process. 
 

 
Figure 1: Explosive compaction assembly 

(a) before detonation  (b) during detonation 
 
2-Mechanism of Explosive Compaction 
In order to successfully compact powders using explosives, it is necessary to achieve a desired compact density 
without introducing some of the defects, such as melt holes and gross density variations. It has been suggested [2] 
that the compaction mechanism involves the transmission of a pressure pulse from an explosive charge causing 
densification of the powder mass. The experimental results obtained [4][5] have shown that the mechanism which 
depends only on the explosive detonation pressure and ignores the influence of the powder container tubes does not 
explain the densification of powders. On the basis of the experimental results, it is proposed that the sequence of 
events occurring, upon detonation of the explosive charge, is as follows. As the detonation front moves along the 
tube an oblique compression wave front is generated at the outer surface of the tube wall. The peak pressure of this 
pulse is determined by the explosive detonation velocity and the sonic impedance of the tube material. The length of 
the pulse depends on the thickness of the explosive charge. The pressure pulse will move to the inside surface of the 
tube wall where most of the energy of the pulse will be reflected back into the tube wall as a tensile pulse. The 
reflected tensile pulse will continue to be reflected from the tube surfaces, alternately in compression and in tension, 
until it is attenuated to zero. Thus, the shock pulse from the explosive charge will not be transmitted to the powder 
mass but will, instead, cause the rapid acceleration of the tube wall towards its axis. Those powder particles in 
contact with the tube wall will be accelerated inwards, causing impacts with adjacent particles. This will give rise to 
inter particle shearing, resulting in particles being broken up and oxide layers being ruptured. The cleaned particle 
surfaces will, thus, be capable of welding together, resulting in a dense, coherent mass of compact. The moving 
mass of container tube, compacted powder, and compacting powder particles decelerate from the initial high 
velocity of the container tube for several reasons. Plastic deformation of the container tube and the compacted ring 
of powder absorb energy, in addition to the energy absorption associated with void collapse and particle welding. 
The increasing mass of the moving compact also serves to reduce the velocity. Compaction will be completed when 
the velocity of the collapsing tube and powder is reduced to zero. The density achieved during this sequence of the 
events will depend on the energy initially possessed by the collapsing container tube, a fully dense compact resulting 
from the correct amount of energy. Too low a compaction energy results in compacts exhibiting central porosity, 
while an excess of energy gives rise to melting of the compact centre. 
 
3- Experimental Assembly for Compaction of Cylindrical Specimens 
Most of the explosive compaction experiments were carried out using the collapsing cylinder press arrangement. 
The tests made use of mild steel tubes of 26 mm internal diameter and machined from seamless tube. The wall 
thickness of the tubes was varied from 1mm to 4 mm. The length of the tube was 75 mm and closed at one end using 
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a mild steel plug. The tube filled with metal powder and vibratory packed into the tube to a constant density. This 
density is referred to as the powder packing density. The value of such powder packing density is divided by the 
value of parent metal density which is known as the initial density percentage (a dimensionless parameter) in this 
work. The top plug was then inserted and the container tube assembly was centrally located inside a PVC cylinder. 
The annulus between the container tube and the PVC cylinder was filled with explosive. To obtain a uniform 
detonation front a wooden cone was glued to the top plug of the container tube, as shown in figure (1). Detonation of 
the charge took place in air with the assembly resting on soft sand. The detonation front, traveling along the length 
of the tube caused the collapse of the container tube, resulting in densification of the metal powder. The details of 
compact density measurements and detonation velocity measurements together with the procedure of computing the 
uncorrected compaction energy and the corrected compaction energy in association with the amount of absorbed 
energy of the tube during the plastic deformation have been comprehensively discussed in references [2][4][5]. 
 
4- Dimensionless modelling of compaction energy and compact density percentage using singular value 
decomposition (SVD) 

The formal definition of modeling is to find a function f̂  so that can be approximately used instead of actual one, 

,f  in order to predict output ŷ  for a given input vector ),...,,,( 321 nxxxxX =  as close as possible to its actual 

output y. Therefore given M observation of multi-input-single-output data pairs so that 

),...,,,( 321 iniiii xxxxfy = Mi ,...,2,1= ,                                                                                                              (1) 

it is now possible to obtain f̂  to predict the output values iŷ  for any give input vector  

),...,,,( 321 iniiii xxxxX = ,                                                                                                                                      (2) 

such that 

),...,,,(ˆˆ 321 iniiii xxxxfy = Mi ,...,2,1= .                                                                                                           (3)  

The problem is now to determine f̂  so that the square of different between the actual output and the predicted one 

is minimized, i.e. 

 .]),...,,,(ˆ[ 2

1
321 Minyxxxxf i

M

i
iniii →−∑

=

                                                                                                            (4) 

In dimensionless modeling, however, a dimensionless set, },...,,,{ 321 kπππππ = , rather than the set of real 

physical variable },...,,,,{},{ 321 nxxxxyXy = , is used to obtain ,f̂  i.e. 

),...,,,(ˆˆ 4321 kiiiii f πππππ = Mi ,...,2,1=                                                                                                           (5) 

 such that  

Minf oi

M

i
kiiii →−∑

=

2

1
321 ]ˆ),...,,,(ˆ[ πππππ .                                                                                                         (6) 

 
In order to construct such independent dimensionless parameters in the case of modeling of corrected compaction 
energy (E), powder packing density (ρ), explosive charge thickness (Te), wall thickness of the cylinder (Tw), mass 
ratio (R, explosive charge mass to cylinder mass), initial powder density percentage (Dt), and detonation wave 
velocity (Vd) have been considered as input parameters [6] 
 
In order to use SVD to obtain the model, that is[7,8] 
 
E=f (ρ, Te, Tw, R, Dt, Vd)                                                                                                                              (7) 
 
From this set of inputs-output parameters, 4 independent dimensionless parameters have been constructed according 
to 3 main dimensions (M, L, T), as follows 

21
dV

E

ρ
π =  ,                                                                                                                                                         (8 - a) 

w
T

e
T

=
2

π  ,                                                                                                                                                             (8 - b)   
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R=
3

π  ,                                                                                                                                                                 (8 - c) 

t
D=

4
π ,                                                                                                                                                                (8 - d) 

so that 

)
43

,
2

(
1

ππππ f=                                                                                                                                             (9) 

 
Equation (9) can be represented as 

γβα ππππ )()()( 4321 C=                                                                                                                                       (10)                            

 
Therefore, the problem of modeling is now to find coefficients C, ,, βα  and γ  so that equation (6) is satisfied. By 

using natural logarithm, equation (10) can be represented as a linear relation with respect to the coefficients 
),( LnC=η ),(α )(β  and )(γ as  

                                                                                                                             
                                                                                       (11) 

                                                                     
Consequently, a system of M Linear algebraic equation with K=4 unknown of the above mentioned coefficients is 
now constructed based on M input-output experimental data pairs as follows [9,10] 


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                                                                                                                    (12)                                                                                                     

where  

)( ijij Ln πζ = , Mi ,...,2,1= , j=1,2,3                                                                                                                  (13) 

and  

)( 11 ii Ln πζ = . Mi ,...,2,1=                                                                                                                                 (14) 

Such system of linear equations in which M>>K=4 can be represented as:[11] 
YAX = ,                                                                                                                                                                   (15) 

where  
TX ][ γβαη= ,                                                                                                                                               (16) 

T
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                                                                                                                                (17)                                                                                    

 
The least-squares technique from multiple-regression analysis leads to the solution of the normal equation in the 
form of  

YAAAX TT 1)( −= ,                                                                                                                                                (18) 

 
which determines the vector of the best 4=k unknown of equation (10) for the whole set of M experimental 
observation data. However, such solution directly form solving normal equations (18) is rather susceptible to round 
off error and, more importantly, to the possible singularity of these equations. Therefore, SVD is used to solve 
equation (15) which leads to better results in comparison with those of using equation (18). 
 
SVD is the method for solving most linear least-squares problems that some singularities may exist in the normal 

equations. The SVD of a matrix, KM ×ℜ∈A , is a factorization of the matrix into the product of three matrices, 

)()()()( 4321 πγπβπαηπ LnLnLnLn +++=
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column orthogonal matrix  KM ×ℜ∈U , diagonal matrix KK×ℜ∈W with non-negative elements (singular 

values), and orthogonal matrix KK×ℜ∈V such that 
 

TVWUA =                                                                                                                                                            (19) 

 
The most popular technique for computing the SVD was originally proposed in [12]. The problem of optimal 
selection of vector of the coefficients in equation (15) and (18) is firstly reduced to the modified inversion of 
diagonal matrix W [13] in which the reciprocals of zero or near zero singulars (according to a threshold) are set to 
zero. Then, such optimal X are obtained using the following relation  
 

YUV T














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









=

jw
diagX

1
.                                                                                                                                  (20) 

In order to demonstrate the prediction ability of SVD in such dimensionless modeling, the data have been divided 

into two different sets, namely, training and testing sets. The training set, which consists of randomly chosen tN  

input-output data pairs, is used for training the 4=K  unknown coefficients involved in the dimensionless model of 

deflection-thickness ratio. The testing set, which consists of PN unforeseen input-output data samples during the 

training process, is merely used for testing to show the prediction ability of the obtained simple model. 
 
In order to model, based on experimental data presented in Table (1), the multi-input-single-output set of 
constructed dimensionless data according to equations (8-a) to (8-d) which are for corrected compaction energy. 
 
The corresponding values of parameters are found as ,5.38=C ,0765.0=α ,76.0=β  and 423.0−=γ . 

Hence, the model can now be given as  

( ) ( ) 423.076.0

076.0

2
..5.38)( −









= t

W

e

d

DR
T

T

V

E

ρ
                                                                                                       (21) 

Figure (2) shows the comparison of )(E  given by equation (21) with respect to the experimental values both for 

training and testing data sets. It is evident from this figure that equation (21) predicts the midpoint deflection-
thickness ratio successfully for the testing data 
 
Similarly, in order to construct such independent dimensionless parameters in the case of modeling of compact 
density percentage (Dc), cylinder diameter (d), explosive charge thickness (Te), wall thickness of the cylinder (Tw), 
mass ratio (R, explosive charge mass to cylinder mass), initial powder density percentage (Dt), detonation wave 
velocity (Vd), and sound velocity in air have been considered as input parameters in neural network, that is 
 
Dc=f (d, Te, Tw, R, Dt, Vd, Vs)                                                                                                                                   (22) 
  
From this set of inputs-output parameters, 5 independent dimensionless parameters have been constructed according 
to 3 main dimensions (M, L, T), as follows 

c
D=

1
π  ,                                                                                                                                                               (23-a) 

d
w

T
e

T 2

2
=π  ,                                                                                                                                                           (23-b) 
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π  ,                                                                                                                                                                 (23-c) 

s
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d
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4
π ,                                                                                                                                                               (23-d) 

t
D=

5
π                                                                                                                                                                  (23-e) 

so that 
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)
543

,
2

(
1

πππππ f= .                                                                                                                                       (24) 

 
equation (24) can be represented as 

δγβα πππππ )()()()( 54321 C=                                                                                                                             (25) 

 
In order to model, based on experimental data presented in Table (1), the multi-input-single-output set of 
constructed dimensionless data according to equations (23-a) to (23-d) which are for compact density percentage. 
 

Table 1:  Inputs-outputs data of explosive compaction of metallic powders[5] 
 

 I N P U T S O U T P U T S 

TEST 
NO. 

Powder  
Packing   
Density 
 kg/m3 

Explosive 
 Wave  

Velocity 
 km/s 

Explosion 
 Layer  

Thickness 
 mm 

Diameter 
 of  

Cylinder 
 mm 

Cylindrical  
Wall  

Thickness 
 mm 

Explosive  
and  

Cylinder  
Mass  
Ratio 

Initial  
Density 

 Percentage 

Corrected  
Compaction 

 Energy 
 Mj/m3 

Compact  
Density  

Percentage 

1 3370 1.66 6 26 4 0.28 37.6 21.2 47.4 
2 3370 1.48 4.75 26 2 0.42 37.6 32.2 55.5 
3 3370 1.63 5.75 26 1 1 37.6 77 75 
4 3370 2 8.45 26 2 0.81 37.6 94 86.9 
5 3370 2.67 13.2 26 2 1.42 37.6 301.2 98.5 
6 3568 1.48 4.75 26 2 0.4 45 28.5 59.8 
7 3568 1.87 7.5 26 2 0.7 45 79.4 --- 
8 3568 2.26 10.25 26 2 1.05 45 168 95.5 
9 3568 2.67 13.2 26 2 1.42 45 310 95.5 
10 4410 1.66 6 26 2 0.54 56 73.5 69.8 
11 4410 2.68 13.3 26 2 1.44 56 326 88.4 
12 4410 3.84 21.5 26 2 2.76 56 982 96.4 
13 4230 1.8 7 26 2 0.62 47.5 64.2 73.7 
14 4230 1.87 7.5 26 1.5 0.86 47.5 87.9 81.8 
15 4230 1.94 8 26 1 1.35 47.5 134.2 86 
16 4230 2.71 13.5 26 1.5 1.81 47.5 356.6 96.7 
17 4230 3.06 16 26 1.5 2.28 47.5 555.8 98.1 
18 4560 1.48 4.75 26 2 0.4 51.2 40.5 67.6 
19 4560 2.22 10 26 2 1 51.2 161.2 94 
20 4560 2.92 15 26 2 1.69 51.2 421.4 98.1 
21 3370 1.7 6.3 26 2 0.57 37.6 52.5 67 
22 3370 2.3 10.5 26 2 1.06 37.6 167.2 98 
23 3568 1.7 6.25 26 2 0.565 45 53.5 74.2 
24 3568 2 9 26 2 0.87 45 119.3 92.6 
25 4410 1.8 7 26 2 0.65 56 95.8 72.5 
26 4410 2.26 10.25 26 2 1.05 56 197.5 82.2 
27 4410 3.06 16 26 2 1.84 56 507 91 
28 4230 2.3 10.5 26 2 1.01 47.5 160.6 91.3 
29 4230 3 15.5 26 2 1.69 47.5 421.5 97.7 
30 4560 2.22 10 26 2 1 51.2 160 92.8 
31 3370 2.64 13 26 2 1.39 37.6 285.2 --- 
32 3568 1.81 7.1 26 2 0.66 45 72 82.2 
33 4230 2.64 13 26 2 1.34 47.5 265.1 94.7 
34 4560 1.8 7 26 2 0.646 51.2 72 81 
35 4410 2.08 9 26 2 0.87 56 144.8 80.1 

 
In order to model, based on experimental data presented in Table (1), the multi-input-single-output set of 
constructed dimensionless data according to equations (23-a) to (23-d) which are for corrected compaction energy. 
 
The corresponding values of parameters are found as ,3758.0=C ,5845.0=α  ,815.0−=β  and 

0823.1−=γ . Hence, the model can now be given as  

( ) ( ) 04.00.58-7.1

-1.122

).(.2.0)( −
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
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
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= t
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d
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e
C D

V
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dT

T
D                                                                                                  (26) 
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Figure (3) shows the comparison of )( CD  given by equation (26) with respect to the experimental values both for 

training and testing data sets. It is evident from this figure that equation (26) predicts the midpoint deflection-
thickness ratio successfully for the testing data 
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Figure 2:  Variation of corrected compaction energy with input data samples: comparison of experimental values with computed values 

(Eq. 21) 
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Figure 4:  Variation of compact density percentage with input data samples: comparison of experimental values with computed values 

(Eq. 26) 
 

CONCLUSION 
 

Singular value decomposition and dimensionless analysis have been used to model the compaction powder using 
some experimental input-output data. It has been shown that the simple obtained models can successfully predict the 
compaction energy and compact density percentage compared with the actual experimental values. The 
methodology of this paper can be readily applied to find simple closed-form equations of complex real-world 
processes where some experimental input-output data pairs are available. 
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