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Implications for Clinical Diagnosis 
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and incurable diseases defined by insufficient ATP levels due to 
impaired oxidative phosphorylation (OXPHOS) [1-3]. The OXPHOS 
system, which is embedded in the inner mitochondrial membrane, 
is responsible to produce ATP upon electron transfer through a 

Key Concepts and Clinical Features of 
Mitochondrial Respiratory Disorders
Mitochondrial Respiratory Disorders (MRDs) are a group of rare 

Abstract 
Mitochondrial respiratory disorders are incurable progressive degenerative 
diseases with multi-organ system manifestations. These orphan diseases are 
caused by mutations in the nuclear or mitochondrial genome affecting the 
oxidative phosphorylation (OXPHOS) system responsible for ATP synthesis. 
Currently, therapeutic treatments are not available to patients, resulting in 
significant disability and a poor prognosis. Patients exhibit a constellation of 
complex neurological and multisystem phenotypic symptoms. The hallmark of 
these diseases is their clinical heterogeneity and high variability among patients. 
Consequently, establishing an accurate diagnosis remains a challenging, invasive, 
and time-consuming process due to the limited sensitivity, specificity and 
reliability of the current serum biomarkers used in clinical settings. Recent mouse 
model-based research combined with patient studies led to the identification of 
fibroblast growth factor 21 (FGF-21) as a promising serum biomarker. With its high 
specificity and sensitivity, FGF-21 is a promising diagnostic tool for muscle-affecting 
mitochondrial respiratory disorders, which might be a useful first- line diagnostic 
tool instead of the invasive muscle biopsy currently performed in clinical settings. 
Discovering additional diagnostic biomarkers is critical for establishing an accurate 
diagnosis given the high clinical heterogeneity of these mitochondrial respiratory 
diseases. Ultimately, these novel biomarkers might be instrumental to monitor the 
progression of these diseases and the efficacy of novel therapeutic interventions. 
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series of four OXPHOS respiratory complexes, with complexes I 
and II being the two points of entry for electrons and ATP synthesis 
occurring at complex V, also called ATP synthase (Figure 1). Except 
for complex II that solely contains nuclear-encoded subunits, the 
OXPHOS complexes are composed of subunits encoded by both 
the nuclear and mitochondrial genomes [4, 5].

MRD patients harbor inherited mutations that map in their 
mitochondrial or nuclear genome thereby impairing OXPHOS 
activity and ATP production [6]. Thus, the retrograde signaling 
pathway is impaired due to an accumulation of NAD+ and AMP, 
a direct consequence of a defective OXPHOS system (Figure 2). 
This affects the activity of the key regulators, Sirt1 and AMPK, 
and their main substrate, PGC-1α, required to activate the 
anterograde signaling for a full mitobiogenic response, thereby 
failing to rectify the chronic ATP deficit (Figure 2). Currently, no 
therapeutic options are available to these patients to mitigate 
their ATP insufficiency, resulting in significant disability, a poor 
prognosis and premature death [7,8]. MRDs can manifest at 
any age, ranging from the neonatal phase to adulthood, with 
variable severity. In the case of severe defects in the OXPHOS 
system, organogenesis is affected at the onset since it coincides 
with a metabolic shift from glycolytic to oxidative respiration to 
ensure optimal ATP production during high-energy embryonic 
developmental stages [9]. Embryonic differentiation of neural 
stem cells into neurons, astrocytes, or oligodendrocytes consumes 
about 50% of cellular ATP to execute key differentiation processes 
[10]. Nevertheless, MRDs always worsen over time due to their 
progressive degenerative characteristics. Most MRD patients 
display heterogeneous clinical symptoms affecting several organs 
with high- energy demand, such as the central nervous system 
(CNS), peripheral nerves, skeletal and cardiac muscles, kidneys, 
and endocrine organs [11,12]. MRD patients exhibit symptoms 
with variable intensity that fall into two clinical groups: 1) central 
neurodegenerative phenotypes, including encephalopathy, 
stroke -like episodes, migraines, seizure, ataxia and dementia; 
and 2) peripheral neuronal and muscular phenotypes, such as 
myopathy, cardiomyopathy, peripheral neuropathy, sensorineural 
deafness, and optic atrophy [13].

Clinical heterogeneity is most acute in patients affected with a 
specific MRD due to mutations in the mitochondrial (mt) genome. 
These mutations, which are maternally inherited, alter either 
mitochondrial protein synthesis, when mapped in a mt- tRNA or 
mt-rRNA gene, or the OXPHOS system, when mapped in one the 
13 mt genes encoding for a subunit of an OXPHOS complex [4]. 
Most pathogenic mtDNA mutations only affect a subset of the 
multi-copy mt genome, causing heteroplasmy, which is defined 
as the presence of wild-type (WT) and mutated mtDNAs in a 
mitochondrion [14,15]. Heteroplasmy is dictated by the ratio 
of WT and mutated mtDNAs in mitochondria, which results in a 
mixed population of healthy and diseased mitochondria within a 
cell. A mitochondrion is considered diseased or dysfunctional if 
its mutant mtDNAs surpass a certain threshold, overwhelming its 
WT mtDNAs, and vice versa for healthy/functional mitochondria. 
Therefore, a diseased phenotype occurs when mitochondrial 
heteroplasmic reaches a certain threshold, which ranges from 
60 to 90% depending of the tissue and mutation, leading to 
insufficient ATP levels [14,16]. Thus, the degree of heteroplasmy 

influences the severity of the diseased phenotype as well as the 
heterogeneity of clinical symptoms. This is best exemplified by 
the mitochondrial respiratory disorder MELAS (Mitochondrial 
Encephalopathy with Lactic Acidosis and Stroke-like episodes), 
which is due to a maternally inherited A to G substitution at 
position 3243 of the mitochondrial gene for tRNALeu(UUR), known 
as the A3243G MELAS mutation [17,18]. This progressive 
neurodegenerative disease has an early onset of heterogeneous 
clinical symptoms that include encephalopathy, seizures, stroke 
-like episodes, and chronic lactic acidosis [19-21]. Among 
siblings, high clinical variability is often observed. Furthermore, 
the MELAS mutation can cause cardiomyopathy or myopathy in 
some families, while causing hearing loss and diabetes in others 
[22-24].

The prevalence of these rare MRDs at about 1 in 5000 live births in 
the United States is most likely underestimated based on recent 
epidemiological studies on newborn cord bloods that revealed 
1 in 200 newborn carrying a potentially pathogenic mtDNA 
mutation [25,26]. With improved clinical diagnosis and advances 
in next-generation sequencing (NGS) technology, more patients 
will be accurately diagnosed, resulting in increased prevalence of 
these orphan diseases [27,28].

Current Metabolite Biomarkers Used 
in Clinical Setting for Diagnosis of a 
Mitochondrial Respiratory Disorder
Establishing an accurate diagnosis of MRD is often challenging, 
time consuming, and costly in part due to the absence of sensitive 
and specific biomarkers [29,30]. Due to extreme phenotypic 
variability among patients, the diagnostic process requires a 
set of clinical assessment combined with complex biochemical, 
histological and genetic analyses [31,32]. In the case of a single 
syndromic phenotype with known causative genes, such as Leber 
hereditary optic neuropathy (LHON), DNA sequencing easily 
confirms its clinical diagnosis since primary LHON mitochondrial 
DNA mutations are responsible for about 95% of LHON cases by 
directly affecting the enzymatic activities of the OXPHOS system 
and subsequently ATP levels [33-35].

Several conventional metabolite biomarkers, such as lactate, 
pyruvate, amino acids, and creatine, are routinely measured in 
plasma and/or cerebrospinal fluid (CSF) and provide a minimally 
invasive evaluation in patients suspected of having an MRD 
[8,30]. Due to their limited specificity, sensitivity and consistency, 
altered levels are only suggestive of a specific MRD [29].

Lactate levels are not consistently elevated in blood or CSF of 
patients affected with MRD. For example, patients diagnosed 
with LHON, Leigh disease, Kearns-Sayre syndrome and complex 
I deficiency display normal lactate levels [36], while most of the 
MELAS patients exhibit elevated levels of lactate in blood and 
CSF [18,19]. More specifically, high lactate levels are common in 
patients affected with neurodegenerative MRDs, such as MELAS, 
MERFF (Myoclonus Epilepsy and Ragged-Red Fibers) and MDS 
(Mitochondrial DNA Depletion Syndrome) [40]. Since increased 
lactate levels are also observed in unrelated pathologies, such 
as CNS infection, seizures, and stroke, lactate by itself is not a 
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are not only found in MRD patients, but also in patients affected with 
pyruvate metabolism disorders characterized by an accumulation of 
cytosolic pyruvate converted into alanine (Figure 1) [41].

Recent studies investigated whether creatine could be used as 
a biomarker for MRDs given its known link with mitochondrial 
bioenergetics [42]. While plasma creatine levels were elevated in 
patients with specific MRDS, such as MELAS, MERFF and mtDNA 
deletion, when compared to healthy subjects [43,44], such 
correlation was not consistently observed among patients affected 
with different MRDs from another independent cohort [45]. Thus, 
additional studies are required to validate the specificity and 
reliability of creatine as a biomarker for a definitive diagnosis of 
MRD.

FGF-21: A promising Diagnostic Biomarker for a Group of MRDs

Since none of the metabolite biomarkers currently used in a clinical 

specific and reliable biomarker to definitively establish an MRD 
diagnosis [38].

Pyruvate is another plasma metabolite integrated into diagnostic 
chemistry profile currently performed in clinical settings for 
diagnosis [29]. The fact that pyruvate levels are prone to 
inaccurate measurement due to instability and susceptibility 
to inadequate specimen collection diminishes its reliability as a 
diagnostic biomarker. Finally, measurement of the ratio of lactate 
to pyruvate (L:P) in blood or CSF only provides valuable diagnostic 
information in MRDs affecting the CNS given the elevated lactate 
levels in blood and/or CSF [39, 40].

Elevated blood or CSF levels of amino acids, such as alanine, glycine, 
and proline, have also been reported in MRD patients as a result 
of a defective OXPHOS system and subsequent changes in the 
NADH:NAD+ redox signature (Figure 2) [29]. However, their sensitivity 
and specificity remain uncertain. For example, elevated alanine levels 
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setting is reliable, specific and discriminative, there is an urgent need 
to discover serum biomarkers for a definitive diagnosis in patients 
suspected to have an MRD [8,46]. Although global metabolic 
profiling using plasma from patients already properly diagnosed 
with an MRD was used to identify promising biomarkers for MRDs, 
this comprehensive approach has yet to lead to the discovery of 
consistent and sensitive diagnostic biomarkers [43].

Recent mouse studies combined with patient studies have 
revealed fibroblast growth factor 21 (FGF-21) as unexpected 
potential biomarker [47]. FGF-21 is a circulating cytokine known 
to be involved in carbohydrate and lipid metabolism as well as 
secreted upon prolonged fasting in humans [48-51]. FGF-21 levels 
were significantly increased in the blood and OXPHOS-deficient 
muscle fibers of the “deletor” mouse model, which mimics key 
features of late- onset mitochondrial myopathy upon expression 
of a dominant patient mutation in the mitochondrial replicative 
helicase Twinkle [52,53]. Moreover, FGF-21 levels correlate 
with the severity of the OXPHOS deficit and the progression of 
mitochondrial myopathy. Interestingly, the “deletor” mice have 
skeletal muscle fibers with characteristics of a pseudo-starvation 
state, despite their normal nutritional state, which is congruent with 
FGF-21 being secreted from the liver in response to fasting [54].

The feasibility of FGF-21 as a serum diagnostic biomarker 
was assessed in patients genetically diagnosed with a specific 
MRD, patients with non-mitochondrial neurological disorders 
affecting muscles and healthy subjects [55]. This comprehensive 
multicenter study has revealed increased FGF-21 serum levels 
in patients with an MRD affecting skeletal muscles. However, 
patients with an MRD mainly affecting the nervous system, such 
as MIRAS (Mitochondrial Recessive Ataxia Syndrome), exhibited 
lower FGF-21 serum concentrations that those with mitochondrial 
diseases manifesting in skeletal muscle. The fact that FGF-21 
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Figure 2

levels were unaltered in patients with non-mitochondrial 
muscle diseases, implying that FGF-21 serum levels are a direct 
result of both OXPHOS deficit skeletal muscle pathology [55]. 
Most importantly, the sensitivity and specificity of FGF-21 
was estimated at 92% for muscle-manifesting MRDs, making 
FGF-21 a reliable first-line diagnostic tool for these diseases 
instead of the more invasive muscle biopsy, which is currently 
the gold standard diagnostic tool [8]. In addition, FGF- 21 
could be a diagnostic indicator of the progression of the 
disease since FGF-21 levels correlate with the severity of the 
symptoms. One of the siblings with MELAS exhibiting limited 
cardiomyopathy and myopathy had lower FGF- 21 levels than 
his sibling with severe phenotypic manifestation of myopathy 
[55]. These clinical observations are in agreement with results 
from studies using the “deletor” mice showing increased FGF-
21 levels upon progression of mitochondrial myopathy [53]. 
Ultimately, FGF-21 may be a promising biomarker to monitor 
efficacy of therapeutic intervention and therefore promote 
the design of novel therapeutic strategies for the currently 
intractable MRDs.

Conclusion
The fact that the FGF-21 biomarker is specific for MRDs affecting 
skeletal muscles emphasizes the urgent need for large- scale 
clinical analysis and identification of novel diagnostic biomarkers 
tailored to the complexity and clinical heterogeneity of those 
MRDs. Such discoveries will most likely establish a shift in the 
diagnostic pathway used in clinical settings for differential and 
accurate diagnosis for patients suspected of having an MRD. Such 
progress in translational research will result in a more precise 
assessment of the prevalence of those mitochondrial diseases 
than currently estimated. In fact, recent epidemiological studies 
on newborn cord bloods have revealed that 1 in 200 newborns 
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harbor mutations affecting the OXPHOS system and therefore are 
at risk of developing MRD. In sum, the use of new biomarkers 
combined with the advent of NGS technique will bring the field 
of mitochondrial medicine forward and accelerate the discovery 
of novel therapeutic strategies.
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