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ABSTRACT 
 
In the present study the peristaltic transport of an incompressible conducting micropolar fluid in an asymmetric 
channel with porous medium has been studied under the assumptions of long wave length and low Reynolds number. 
Applying wave frame analysis, exact analytical solutions have been obtained for the axial velocity and the 
microrotation component. Expression for the pressure rise is also obtained. The influence of physical parameters on 
the velocity, pressure gradient and pressure rise are presented through graphs. The effect of increase in the 
permeability parameter and the magnetic parameter is to reduce the velocity. 
 
Keywords: Peristaltic Transport, micropolar fluid, MHD, Porous medium, Asymmetric channel. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
               
Peristaltic transport is a mechanism of fluid transport which occurs when a progressive wave of area contraction or 
expansion propagates along the distensible tube containing fluid. The principle of peristalsis is used for pumping 
physiological fluids from one place to another in a living body, such as swallowing food through the esophagus, the 
transport of spermatozoa in the ductus efferentes of the male reproductive tract, movement of chyme in the gastro-
intestinal tract, urine transport from the kidneys to the urinary bladder through the ureter, movement of ovum in the 
fallopian tubes, bile flow from the gall bladder into the duodenum and circulation of blood in small blood vessels. 
Also many practical applications involve in modern biomedical and mechanical systems such as blood pump 
machine, heart-lung machine, dialysis machine and noxious fluid transport in nuclear industries. 
  
Most of the physiological fluids behave like a non-Newtonian fluids. Hence the peristaltic transport of non-
Newtonian fluids have much attention recently. Among several non-Newtonian models proposed for physiological 
fluids, micropolar fluid has considerable interest due to its importance in engineering and biomedical problems. 
After the first investigation of Eringen [1], this model attracted the attention of many researchers. Lukasazewicz [2] 
gives many important aspects of the theory and applications of micropolar fluids. A few investigators considered the 
peristaltic flow problems concerning these fluids. Srinivasacharya et al. [3] analyzed the peristaltic transport of a 
micropolar fluid in a tube. Ali and Hayat [4]  discussed the peristaltic flow of a micropolar fluid in an asymmetric 
channel.  
 
Hayat et al. [5] studied the peristaltic flow of a micropolar fluid in a channel with different wave forms. Sreenadh et 
al. [6] investigated the peristaltic flow of micropolar fluid in an  asymmetric channel with permeable walls. The 
influence of partial slip on the peristaltic transport of a micropolar fluid in an inclined asymmetric channel is studied 
by Arun Kumar et al. [7]. 
 
Magneto hydrodynamics is the dynamics of electrically conducting fluids. It is now a well accepted fact that the 
peristaltic flows of magnetohydrodynamic fluids are important in medical sciences and bioengineering.  The mutual 
interaction between the fluid motion and magnetic field is the essential feature of the physical situation in the MHD 
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fluid flow problems. MHD principles are useful in the design of heat exchangers, pumps, radar systems, power 
generation development of magnetic devices, cancer tumor treatment, hyperthermia and blood reduction during 
surgeries. It is realized that the principles of magneto hydrodynamics find extensive applications in bioengineering 
and medical sciences. Hence several scientists having in mind such importance extensively discussed the peristalsis 
with magnetic field effects [8-15]. 
 
The study of fluid flows through porous medium has attracted much attention recently. This is primarily because of 
practical applications of flow through porous media, such as separation process in chemical industries, filtration, 
transpiration cooling, storage of radioactive nuclear waste material transfer, transport process in aquifers and ground 
water pollution. Several researchers studied the peristaltic flow with porous media [16-23].  
 
In this paper the influence of MHD on peristaltic transport of an incompressible micropolar fluid in an asymmetric 
channel with porous medium has been investigated under the assumptions of long wave length and low Reynolds 
number. The expression for the velocity,  pressure rise are obtained. The effects of  different parameters on velocity, 
pressure gradient and pressure rise  are discussed through graphs. 
 
2. Mathematical formulation 
Consider the flow of an incompressible micropolar fluid in a two dimensional porous asymmetric channel of width 

21 dd + , in the presence of a magnetic field. The flow in the channel is governed by micropolar model and is 

induced by sinusoidal wave trains propagating with constant speed c along the channel wall. The geometry of the 
walls surfaces is given by 
 

( )1 1 1

2
( , ) cosh x t d a x ct

π
λ

 = + − 
 

      (right hand side wall )    (1) 

 

( ) ( )2 2 2

2
, cosh x t d a x ct

π φ
λ

 = − − − + 
 

   (left hand side wall )    (2)                                            

 

where 
1a  and  are the amplitudes of the waves, λ  is the wave length, c is the wave speed, ( )πφφ ≤≤0  is 

the phase difference, X  and Y  are the rectangular coordinates with X  measured along the axis of the channel 

and Y  perpendicular to X . Let ( ),U V  be the velocity components in a fixed frame of reference ( ),X Y . It 

should be noted that 0=φ corresponds to a symmetric channel with waves out of phase  and for πφ =  the waves 

are in phase . 
 

In the laboratory  frame ( ),X Y  the flow is unsteady. However it is observed in a coordinate system ( ),x y  

moving at the wave speed c, the flow can be treated as steady. The coordinates and velocities in the wave and lab 
frames related through the following expressions: 
 
 

( ) ( ), , , , ,x X ct y Y u x y U c v u v V= − = = − =      (3)    

                   

where u andv  are the velocity components in the wave frame . 
 
Neglecting body force and body couple, the equations governing the steady flow of an incompressible micropolar 
fluid in the presence of  an external magnetic field, on neglecting the induced magnetic field, are given by 
 

0,
u v

x y

∂ ∂+ =
∂ ∂

          (4) 

2 2
2

0 02 2( ) ( ) ( ),
u u p u u w

u v k k u c B u c
Kx y x yx y

µρ µ σ
  ∂ ∂ ∂ ∂ ∂ ∂+ = − + + + + − + − +    ∂ ∂ ∂ ∂∂ ∂     

(5) 

2a
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2 2

2 2( ) ,
v v p v v w

u v k k v
Kx y y yx y

µρ µ
  ∂ ∂ ∂ ∂ ∂ ∂+ = − + + + − −    ∂ ∂ ∂ ∂∂ ∂       

(6) 

2 2

2 22 ,
w w w w v u

J u v kw k
x y x yx y

ρ υ
    ∂ ∂ ∂ ∂ ∂ ∂+ = − + + + −     ∂ ∂ ∂ ∂∂ ∂        

(7) 

 

where u and v are the velocity  components in the x and y directions, respectively, w  is the microrotation 

velocity component in the direction normal to both x and yaxes. p is the fluid pressure, 0σ is the electrical 

conductivity, 0B  is the strength of magnetic field, K  is the permeability, µ  coefficient of viscosity, ,k γ  are the 

viscosity constants of for micropolar fluid, ρ  and � ̅are the fluid density and microgyration parameter.  

 

For the flow under consideration, the velocity field is ( ), , 0v u v=   and micro rotation vector is ( )1,0,0 ww = . 

We introduce the following non-dimensional quantities: 
 

1
2

1 1 1

2
1 2 1 1 1

1 2 2
1 1 1

0 1 2 2
1 0

1 1 1

, , , , , , ,

, , , Re , , ,

1
, , ,

λ
λ λ

ρδ
λ µ λ µ

σσ
µ

= = = = = = =

= = = = = =

= = = = =

d wx y u v c j
x y u v w t t j

d c d c c d

h h d c d d K
h h p p K

d d c d

a a d
M d B a b and d

d d dK
  

(8) 

 

where Re  is  the Reynolds number, δ  is the dimensionless wave number, σ is the permeability parameter, M  

is the Hartmann number and p  is the pressure. 

 
The governing quantities in dimensionless form can be written as  
 

0=
∂
∂+

∂
∂

y

u

x

u

          

(9) 

 
2 2

2 2 2
2 2

1
Re ( ) ( 1)

1

u u p w u u
u v N M u

x y x N y x y
δ δ σ  ∂ ∂ ∂ ∂ ∂ ∂+ = − + + + − + +  ∂ ∂ ∂ − ∂ ∂ ∂     

(10) 

 
2 2 2

3 2 2 2
2 2

Re
1

v v p w v v
u v N v

x y y N x x y

δδ δ δ σ  ∂ ∂ ∂ ∂ ∂ ∂+ = − + − + + −  ∂ ∂ ∂ − ∂ ∂ ∂      

(11) 

 

( ) 2 2
2 2

2 2 2

Re 1 2
2

j N w w v u N w w
u v w

N x y x y m x y

δ
δ δ

−     ∂ ∂ ∂ ∂ − ∂ ∂+ = − + − + +    ∂ ∂ ∂ ∂ ∂ ∂     

 

(12) 

where
k

k
N

+
=

µ , is the coupling number ( ) ( )( )kkkdmN ++=≤≤ µγµ )2(,10 2
1

2
 is the micropolar 

parameter. 
 
Using  long wavelength and low Reynolds number approximations, (9) to (12) reduce to  
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0=
∂
∂+

∂
∂

y

u

x

u

          

(13) 

 

 ( )
2

2 2
2

(1 ) 1 ( )( 1)
p w u

N N N M u
x y y

σ∂ ∂ ∂− = + − − + +
∂ ∂ ∂

     

(14) 

 

0=
∂
∂
y

p

          

(15) 

 

0
)2(

2
2

2

2
=

∂
∂−+

∂
∂−−

y

w

m

N

y

u
w

        

(16) 

 
The corresponding non-dimensional boundary conditions in the wave frame are  
 

1 2

1 2

1

0

u at y h and h

w at y h and h

= − =
= =

          (17) 

 
The dimensional volume flow rate in the laboratory frame is  
 

( )
( )

( )1

2

,

,

, ,
h X t

h X t

Q U X Y t dY= ∫
        

(18) 

 
In the wave frame the above equation reduces to 

( )
( )

( )1

2

,= ∫
h x

h x

q u x y d y           (19) 

 
From equations (3), (18) and (19), we get  
 

( ) ( )1 2Q q ch x ch x= + −
        

(20) 

 

The time averaged flow over a period T at a fixed position X   is 
 

∫=
T

dtQ
T

Q
0

1
          (21) 

 
Using (20) in (21) and then integrating we get  
 

 21 cdcdqQ ++=
         (22) 

 
 

Defining the dimensionless mean flow  Θ  in the laboratory frame and F  in the wave frame  as 
 

1 1

,
Q q

F
cd cd

Θ = =
         

(23) 
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Equation (22) reduces to 

  dF ++=Θ 1           (24) 
 
in which 

 ∫=
1

2

h

h

dyuF

          

(25) 

 
where  ( ) ( ) )2cos(),2cos(1 21 φππ +−−=+= xbdxhxaxh

      

   

 
3. Solution of the problem  
By differentiating equation (16) with respect to y and then using in equation (14) we obtain  
 

3
2 2

2 3

w 2 N w p
N 2 1 N M u 1 1 N

y m y x
σ∂ − ∂ ∂− + + − − + + = −

∂ ∂ ∂
( )

( ) ( )( )( ) ( )
  

  

 
On simplification we get  

3

2 2 2 3

1 w 2 N w p
u N 2 1 N 1

1 N M y m y xσ
 ∂ − ∂ ∂= − + − − − − + ∂ ∂ ∂ 

( )
( ) ( )

( )( )
             (26) 

using equation (26) in (16) we obtain 
 

4 2

4 2

w w
A wB 0

y y

∂ ∂− + =
∂ ∂                               

(27) 

 
the general solution of equation (27) is given by 
 

1 1 2 1 3 2 4 2w c y c y c y c ycosh sinh cosh sinhθ θ θ θ= + + +
               

(28) 

 

where 
2 2

1 2

A A 4B A A 4B

2 2
,θ θ+ − − −= =

   

            

2 2 2 2 2 2A 1 N M m B 2m 1 N M 2 Nσ σ= − + + = − + −( )( ) , ( )( ) ( )  

 

Substituting (27) in (25) we get 

1 1 1 2 1 2 3 2 4 2 2 2

1
( sinh cosh ) ( sinh cosh ) 1

( )
θ θ θ θ

σ
∂= + + + − −

+ ∂
p

u L c y c y L c y c y
M x

             

(29) 

 

The arbitrary constants  1 2 3c c c, ,
  

and

 
4c

  

are obtained  by applying the boundary conditions (17) and they are 

presented below 
 

1 19 2 20 3 21 4 22, , ,= = = =dp dp dp dp
c L c L c L c L

dx dx dx dx
 

 

From equation (25) we find that 
 

1 2

23 24 25

( )F h hdp

dx L L L

+ −=
+ −

                    

(30) 
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where F 1 d= Θ − −  

The non-dimensional form of the pressure rise per wavelength   ∆P  is given by  
 

1

0

dp
p dx

dx
∆  =  

 
∫

                   

(31) 

 
An important property of  the micropolar fluid is that the stress tensor is not symmetric. The non-dimensional shear 
stresses in the problem under consideration are given by 
 

w
N

N

y

u
xy −

−
∂
∂=

1
τ                    (32) 

w
N

N

y

u

Nyx −
+

∂
∂

−
=

11

1τ                   (33) 

 
RESULTS AND DISCUSSION 

 
Equation (29) gives the expression for velocity as a function of y. The velocity profiles are   plotted in figures from 

(1) to (5) to study the effects of different parameters such as coupling number N , microrotation parameter m , 

permeability parameter σ , phase difference,φ  and magnetic parameter M on the velocity distribution in the 

asymmetric channel. Figures 1 and 2 are plotted for different values of coupling number N  and microrotation 

parameter m . It is observed that velocity profiles are parabolic. Also we noticed that the velocity decreases with 

increasing N  where as it increases for increasing microrotation parameter m . Figures 3 and 4 depict that the 

increase in magnetic parameter M and permeability parameter σ reduces the velocity in the mid way of the 
channel. Further  from figure 5 it can be found that the velocity decreases with increasing .φ  
 

    
.1     ‘ ’  : 0.5, 0.5,

d 1, x 0.2, 4, 2, / 10, 0.4, 1.φ π σ
= =

= = = = = − = =
Fig Velocity profiles for different N with f a bi

m d d

x

p x M

ed

 

   
0..2     ‘ ’  : 5, 0.5,

d 1, x 0.2, 4, 0.2,  / 10, 0.4 .

 

, 1φ π σ
= =

= = = = = − = =
Fig Velocity profiles for different m with a b

N dp dx

fi

M

xed

 

 
 



P. Lakshminarayana et al                                Adv. Appl. Sci. Res., 2016, 7(1):105-114        
 _____________________________________________________________________________ 

111 
Pelagia Research Library 

    
.3   0.5, 0.5,

d 1,x 0.2, / 4, 2, 0.2

  ‘

, / 1 1

’ : 

0,

 

φ π
σ = =

= = = = = = − =
a b

m

Fig Velocity profiles for different with

N dp dx

fi d

M

xe
           

0..4     ‘ ’  : 5, 0.5,

d 1,x 0.2, / 4, 2,  0.2, / 10,

 

0.4φ π σ
= =

= = = = = = − =
Fig Velocity profiles a b

m N d

for different M with

p dx

fixed

 

 
.5    0.5, 0.5,

d 1,x 0.2, 2

 ‘

,  0.2, / 1

’ 

0, 0.4,

:

1

 

.

 φ
σ

= =
= = = = = − = =

aFig Velocity profiles for different with b

m N

fi

dp dx M

xed
 

 
The expression for the pressure gradient d p d x is given by equation (30). The variation of  pressure gradient 

with the wave length for different values of coupling number N  and microrotation parameter m  is shown in 
figures 6 and 7. It is observed that in the wider part of the channel the pressure gradient is relatively small while in a 
narrow part of the channel a much pressure gradient is required to maintain the flux. On other wards the magnitude 
of the pressure gradient increases with increasing N where as it decreases with increasing .m  From figures 8 and 9 
we observe that d p d x  increases with increasing Magnetic parameter M and permeability parameter .σ  Figure 

10 depicts that the amplitude of the pressure gradient decreases with increasing.φ       

    

0.5, 0.5,d 1, / 4, 0.5, 0.3,M

.6   ‘ ’  

: =1, = -1φ π σ= = = = = = Θ
Fig Variation of pressur gradient versus wavelength for different N with

fi mxed a b
 

0.5, 0.5,d 1, / 4, 0.2, 0.3,M

.7   ‘ ’  

: =1, = -1φ π σ= = = = = = Θ
Fig Variation of pressur gradient versus wavelength for different m with

fi Nxed a b
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The equation (31) gives the expression for the pressure rise p∆ in terms of  the mean flow Θ . The variation of  

pressure rise with the mean flow for different values of coupling number N  is shown in figure 11. It is observed 

that  the pressure rise increases with increasing N  and the pumping curves meet at the point (0.6, 0). Further 
apposite behavior is observed. Figure 12 shows that the pressure rise increases with decreasing microrotation 
parameter m  and the pumping curves are intersect at the point (0.6, 0). After this point situation is reversed. From 

figures 13 and 14 we noticed that the pressure rise increases with increasing permeability parameter σ  and 

Magnetic parameter M and the pumping curves are meet at 0.2Θ = . Further apposite behavior is observed. 
Figure 15 depicts that the pressure rise decreases with increasing phase difference .φ  

 

    

0.5, 0.5,d 1, / 4, 0.2, 0.5,M=1,

.8   ‘

-

’  

=: 1

σ
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Fig Variation of pressur gradient versus wavelength for different with

fix med a b N
 

.9   
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‘ ’  
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Fig Variation of pressur gradient versus wavelength for different M with

fix med a b N
 

 
.10  
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φ
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Fig Variation of pressur gradient versuswavelength for differen

a b N m M

t with
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σ
φ π= = = = =

Fig Variation of pressurerise versus flow rate for different with
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.14   ‘ ’ 
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φ
σ= = = = = = =

Fig Variation of pressureriseversus flowrate for different with
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Appendix 

 
2 2

1 2
1 22 2

1 22 2 2 2

( 2) (1 ) ( 2) (1 )
, ,

(1 )( ) (1 )( )

θ θθ θ

σ σ

− − − −
= =

− + − +

N N
m mL L

N M N M

 2 2 2 1
3 4 1 1 1 2 2 1 2 2 12 2

(cosh cosh )
, (sinh cosh sinh cosh )

( )

θ θ θ θ θ θ
σ

−= = −
+

h h
L L L h h h h

M

 5 1 1 1 2 2 1 2 2 1(cosh cosh cosh cosh ),θ θ θ θ= −L L h h h h

 
6 2 2 1 2 2 2 2 2 1(sinh cosh sinh cosh ),θ θ θ θ= −L L h h h h  

7 1 1 2 2 1 2 2 1(cosh sinh cosh sinh ),θ θ θ θ= −L h h h h
 

8 1 1 2 2 1 2 2 1(sinh sinh sinh sinh ),θ θ θ θ= −L h h h h
 

9 2 1 2 2 2 2 2 1(cosh sinh cosh sinh ),θ θ θ θ= −L h h h h  

10 1 1 1 2 1 2 1 1 2 1( sinh sinh cosh cosh ),θ θ θ θ= −L L h h L h h  

11 1 1 1 2 1 2 1 1 2 1( cosh sinh sinh cosh ),θ θ θ θ= −L L h h L h h
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2 2 2 1
12 2 2 1 2 1 13 2 2

sinh
(sinh cosh ),

( )

θθ θ
σ

= − =
+

hdp
L L h h L

dx M  

14 4 9 6 7 15 5 9 6 8 16 3 12 6 13, , ,= − = − = −L L L L L L L L L L L L L L L
 

3 9 18 15 16
17 4 12 6 10 18 5 12 6 11 19

14 18 15 17

, ,
−= − = − =

−
L L L L L

L L L L L L L L L L L
L L L L  

3 9 19 14 13 19 10 20 11
20 21

15 12

, ,
− − −= =L L L L L L L L L

L L
L L  

19 1 1 2 20 1 1 2 21 2 2 22 2

22
2 2 2

1
sinh cosh sinh

( )
cosh

θ θ θ
σ

θ

− − −
+=

L L h L L h L L h
M

L
L h  

[ ]1
23 19 2 1 1 2 20 1 1 1 2

1

(cosh cosh ) (sinh sinh ) ,θ θ θ θ
θ

= − + −L
L L h h L h h

 

[ ]2
24 21 2 1 2 2 22 2 1 2 2

2

(cosh cosh ) (sinh sinh )θ θ θ θ
θ

= − + −L
L L h h L h h

 

1 2
25 2 2

( )

( )σ
−=
+

h h
L

M
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