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ABSTRACT

In the present study the peristaltic transport of an incompressible conducting micropolar fluid in an asymmetric
channel with porous medium has been studied under the assumptions of long wave length and low Reynolds number.
Applying wave frame analyss, exact analytical solutions have been obtained for the axial velocity and the
microrotation component. Expression for the pressure rise is also obtained. The influence of physical parameters on
the velocity, pressure gradient and pressure rise are presented through graphs. The effect of increase in the
permeability parameter and the magnetic parameter isto reduce the velocity.
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INTRODUCTION

Peristaltic transport is a mechanism of fluid tgors which occurs when a progressive wave of aogdraction or
expansion propagates along the distensible tub&iodmg fluid. The principle of peristalsis is uséat pumping
physiological fluids from one place to another iliving body, such as swallowing food through tlseghagus, the
transport of spermatozoa in the ductus efferentéBeomale reproductive tract, movement of chyméhim gastro-
intestinal tract, urine transport from the kidnégshe urinary bladder through the ureter, moveneémvum in the
fallopian tubes, bile flow from the gall bladdetdrthe duodenum and circulation of blood in smédlold vessels.
Also many practical applications involve in moddsiomedical and mechanical systems such as bloodppum
machine, heart-lung machine, dialysis machine andoms fluid transport in nuclear industries.

Most of the physiological fluids behave like a ndawtonian fluids. Hence the peristaltic transpoftnon-

Newtonian fluids have much attention recently. Am@everal non-Newtonian models proposed for phggioal

fluids, micropolar fluid has considerable interdsie to its importance in engineering and biomedprablems.
After the first investigation of Eringen [1], thisodel attracted the attention of many researchetsasazewicz [2]
gives many important aspects of the theory andieatjins of micropolar fluids. A few investigatarsnsidered the
peristaltic flow problems concerning these flui@sinivasacharya et al. [3] analyzed the peristalémsport of a
micropolar fluid in a tube. Ali and Hayat [4] disgsed the peristaltic flow of a micropolar fluidan asymmetric
channel.

Hayat et al. [5] studied the peristaltic flow ofracropolar fluid in a channel with different waverfns. Sreenadh et
al. [6] investigated the peristaltic flow of micpr fluid in an asymmetric channel with permeabials. The
influence of partial slip on the peristaltic trangpof a micropolar fluid in an inclined asymmetdleannel is studied
by Arun Kumar et al. [7].

Magneto hydrodynamics is the dynamics of electiycabnducting fluids. It is now a well accepted tfaélcat the
peristaltic flows of magnetohydrodynamic fluids @&gortant in medical sciences and bioengineerifie mutual
interaction between the fluid motion and magnestdfis the essential feature of the physical situein the MHD
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fluid flow problems. MHD principles are useful ihe design of heat exchangers, pumps, radar sysfmnsr
generation development of magnetic devices, cahgaor treatment, hyperthermia and blood reductianng

surgeries. It is realized that the principles ofgmeto hydrodynamics find extensive applicationbioengineering
and medical sciences. Hence several scientisteifpéivimind such importance extensively discussedtristalsis
with magnetic field effects [8-15].

The study of fluid flows through porous medium hdisacted much attention recently. This is prinyabé&cause of
practical applications of flow through porous mediach as separation process in chemical indusfiigration,
transpiration cooling, storage of radioactive naclwaste material transfer, transport process iifexg and ground
water pollution. Several researchers studied thistaétic flow with porous media [16-23].

In this paper the influence of MHD on peristaltiartsport of an incompressible micropolar fluid masymmetric
channel with porous medium has been investigateluthe assumptions of long wave length and lownRkls
number. The expression for the velocity, pressiseeare obtained. The effects of different paranseon velocity,
pressure gradient and pressure rise are disctiasrdjh graphs.

2. Mathematical formulation
Consider the flow of an incompressible micropolaidfin a two dimensional porous asymmetric charoiekidth
d, +d,, in the presence of a magnetic field. The flowtie channel is governed by micropolar model and is

induced by sinusoidal wave trains propagating withstant spee€ along the channel wall. The geometry of the
walls surfaces is given by

h(xt)=d,+ aico{%ﬂ (?—d)) (right hand side wall ) (1)

E(?(,E) =-d,-a, 00{27” (3(— cf) + ¢J (left hand side wall ) @)

where a, and a, are the amplitudes of the wavdls, is the wave lengthC is the wave speed (0 <¢< 77) is

the phase differenceX and Y are the rectangular coordinates wis measured along the axis of the channel
and Y perpendicular toX . Let (U,\7) be the velocity components in a fixed frame oéreﬁce(Y,V). It

should be noted thag = O corresponds to a symmetric channel with waves bphase and fog = 771 the waves
are in phase .

In the laboratory frame(Y,\?) the flow is unsteady. However it is observed icomrdinate systen(},y)

moving at the wave spedd the flow can be treated as steady. The coordirete velocities in the wave and lab
frames related through the following expressions:

X=X -ct, y=¥, u(xy)=U-c, v(uy)=V @

whereu andv are the velocity components in the wave frame .

Neglecting body force and body couple, the equatigoverning the steady flow of an incompressibleragolar
fluid in the presence of an external magnetiafien neglecting the induced magnetic field, aveigiby

a—E+a—\_/:O, (4)
ox ady
A _An - 20 20 7 _ _
0 ua—9+va—9 :—a—P+(,u+k) a—_l;'+a—_lj +ka—\iv—ﬂ(u+c)—aoB§(u+c), (5)
ox 0 0x X ay y K
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— N p— v/ A 2 W/ p—
p(ua_\_/wa_xj:_ap (u+k) M+ﬂ a—\iv—'uv, (6)
y ax  dy dy K

0w —ow) _ 0?w  9%w v du
pJ U= +V—= | = —2KW+U —t+— |tk| =——=|, 7)
ox oy % ay ox 0y

where u and v are the velocity components in theand Y directions, respectivelyw is the microrotation

velocity component in the direction normal to bathand Yaxes. P is the fluid pressurePjyis the electrical

conductivity, B) is the strength of magnetic field is the permeability /{ coefficient of viscosity k y are the
viscosity constants of for micropolar fluig? andj are the fluid density and microgyration parameter.

For the flow under consideration, the velocity dié$ v = (G,\_/, 0) and micro rotation vector i¥V= (0,0,V\ll).
We introduce the following non-dimensional quaasti

x=X, y=¥ =t v =AY S

A d, Cc d,c Cc A d,

_H _h_z _dl _IOCdl dl2 n _R

-, h TR 6__’ Re_ /N S — 7,5
e T 0T R VAT (®)

1 o, a a, d
o=—,M=_|2dB,a=-—1,b=—2and d =—2

\/R H o d; d; 1

where Re is the Reynolds number) is the dimensionless wave numbé7,is the permeability parameteil
is the Hartmann number anpP is the pressure.

The governing quantities in dimensionless form lsamvritten as

g

x oy )

2
Red Ua—u+va—u :—a_p+ 1 NaW_'_a-zau o<u
0 ox 1-N

oW 10
ay ox? OyJ (@7 +MHu+D 4o

2
Red?[uQ ey |-, O [ (\OW, 50V ON)_ s5aps, (12)
ox dy dy 1-N ox ox® ay
Rejo(1-N _ 2 2
Rejo(1-N) u O - o 20U, 2 ZN 529 vzv+6V;/
N ox oy ox ay m ox* oy 12)

Kk
whereN = K is the coupling numbe(OS N Sl), nt =d12k (u+ k)/(y(,u+ k)) is the micropolar
parameter.

Using long wavelength and low Reynolds number axiprations, (9) to (12) reduce to
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ou ou
oy @
op ow 0% .
1-N)—=N—+——-(1-N +M +1
@1-N) x Vay oy (1-N) @ )u+1) (14)
0
6_5: (15)
_ 2
_ZW_Z_;+ (ZmZN)?9 V2V:0 (16)
Y

The corresponding non-dimensional boundary contitia the wave frame are

u=-1 at y=handh,

(17)
w=0 at y=handh,
The dimensional volume flow rate in the laboratfveyme is
E(Y,f)_ o
Q= [ U(X.Y.t)dY (18)
R (x3)
In the wave frame the above equation reduces to
O
a= [ u(xy)dy 49
()
From equations (3), (18) and (19), we get
Q=q+ CE(;) - ch_z(;) (20)
The time averaged flow over a period T at a fixedifon X is
— 15
Q==[Qut (21)
T 0
Using (20) in (21) and then integrating we get
Q=q+cd, +cd, (22)
Defining the dimensionless mean flo® in the laboratory frame anff in the wave frame as
0=2 F=9 (23)
cd, cd,
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Equation (22) reduces to
©=F+1+d (24)

in which

hy
F= Iu dy (25)
h,

where h,(x) = 1+ acos(27x), h,(x)=-d - bcos(27x + ¢)

3. Solution of the problem
By differentiating equation (16) with respect taryd then using in equation (14) we obtain

_ 3
(N-2) MW 2ZN)OW 4 Ny(o? + M2 )(u+ 1) =( 1= NP
oy ~m° 0dy oX
On simplification we get
_ 1 ow  (2-N)d*w ap
= N-2)— ——(1- N)—|-1 26
N (1-N)(o® +M?) ( )6y+ m’>  oay® ( )BX 29
using equation (26) in (16) we obtain
4 2
oW _OW A +wB=0 (27)
dy” 0y
the general solution of equation (27) is given by
w=c,coshgy+c,9rhby+ c,eoshb,y+ c,8nhd,y (28)

2 _ _ 2 _
whereg = |ATVA~4B LS A-VAZ-4B ot

A=(1-N)(d*+M?)+m? B=2m{1- N(o*+ M) /(2-N)

Substituting (27) in (25) we get

. . 1 0
u=L,(c,sinh8,y+c,coshdy ¥L, ¢, sinf,y+c, cosBy 3ma—z— (29)

The arbitrary constantsG;G,, G and C, are obtained by applying the boundary conditidii® @nd they are
presented below

d d d d
Cl = L19d_§’c2 = L20d_s’c3= L 21d_5 7C 4= L 22d_§
From equation (25) we find that
do_ F+(h-
dp_ F+(h-h) 0
o L+ L,—Lys
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whereF=0©-1-d
The non-dimensional form of the pressure rise parelength AP is given by

¢(d
Ap = {(d_zj dx (31)

An important property of the micropolar fluid isat the stress tensor is hot symmetric. The noredsional shear
stresses in the problem under consideration aendiy

_odu N
oy 1N @)
1 ou N
+ (33)

Tyx = — W
1-Noy 1-N
RESULTSAND DISCUSSION

Equation (29) gives the expression for velocityadanction of y. The velocity profiles are platta figures from
(1) to (5) to study the effects of different paraens such as coupling numbdd , microrotation parametef,
permeability parameted , phase differencg, and magnetic parameter M on the velocity distidutin the

asymmetric channel. Figures 1 and 2 are plottedditferent values of coupling numbeN and microrotation
parameterIM. It is observed that velocity profiles are parahohiso we noticed that the velocity decreaseshwit
increasing N where as it increases for increasing microrotapanameterIT). Figures 3 and 4 depict that the

increase in magnetic parameter M and permeabiisampeter J reduces the velocity in the mid way of the
channel. Further from figure 5 it can be found tha velocity decreases with increasiggy

25 T - . y 2F
2.
1 L
1 L
> > ——m=1
——N=0.0
oF —8—m=10
O —8—N=0.2
—m=70
—N=04
-1 . : \ , -1 . . , ,
-0.8 -0.4 0 04 0.8 1.15 -0.8 -04 0 0.4 0.8 1315

Fig.lVeIo)cf:ity profiles for different ‘N’ with fixed : a=0.5,g= 0.5,
d=1,x =02,¢=7/ 4m= 2dp Hx=- 107= 0.M = 1.

Fig.2 Velocity profiles for different ‘m’ with fixed : a=0.5,b = 0.5,
d=1,x=0.2p=m 4N= 0.2dp dx=- 1&r= 0OM =1
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3
2 ——=02 1
0 —e—c=06
—c=1 0
08 04 0 04 08 115 8 04 0 0.4 08 115

Fig.3vélodty profilesfor differant ‘o’ with fixed: a=0.5,by= 0.5,
d=1x=02¢p=m/4n= 2N= 02p/dx=-10M =1
Fig.4Vdacity profiles for different ‘M’ with fixed : a=0.5,b= 0.5,
d=1,x=0.2p=m/4n= 2N= 0.2p dx=- 16,=04
25 : - . .

2
1
3

—0—¢ =1/8

0 —8—¢=1/6
— =4

-1 . ’ . "

0.8 0.4 0 04 0.8 1.15

y
Fig.5Velocity profiles for different ‘@ with fixed: a=0.5b= 0.5,
d=1,x=02m= 2N=0.2dp /dx=-D,0=0.4M =1.

The expression for the pressure gradieiy /d x is given by equation (30). The variation of preesgradient

with the wave length for different values of comglinumber N and microrotation parametdil is shown in
figures 6 and 7. It is observed that in the widant pf the channel the pressure gradient is reltismall while in a
narrow part of the channel a much pressure gradieeijuired to maintain the flux. On other wards tagnitude
of the pressure gradient increases with increadihghere as it decreases with increasiid From figures 8 and 9
we observe thatip /d x increases with increasing Magnetic parameter Marcheability paramete@. Figure
10 depicts that the amplitude of the pressure gradiecreases with increasipg

30 T - T T 30

dp/dx

Fig.6 Variation of pressur gradient versuswavelength for different ‘N’ with
fixed:a=0.5b= 0.5, Ip=m /4n= 0.5r= 0.3,M O=-1
Fig.7 Variation of pressur gradient versuswavelength for different ‘ni with
fixed:a=0.5b=0.5,c= lg=m7 /AN = 0.7= 0.3,M O=-1
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The equation (31) gives the expression for thegumesriseA p in terms of the mean flod® . The variation of

pressure rise with the mean flow for different \eswf coupling numbeN is shown in figure 11. It is observed

that the pressure rise increases with increadthgand the pumping curves meet at the point (0.6 FQjther
apposite behavior is observed. Figure 12 shows ttietpressure rise increases with decreasing rmoitatiion

parameterlT] and the pumping curves are intersect at the [§0ifit 0). After this point situation is reversedoi
figures 13 and 14 we noticed that the pressure iriseeases with increasing permeability paramefér and

Magnetic parameter M and the pumping curves aret me&® = 0.2. Further apposite behavior is observed.
Figure 15 depicts that the pressure rise decreeffesncreasing phase differengg.

45

——a=05
-85 =1

—o0 =2

0 0.2 0.4 0.6 0.8 1

Fig.8 Variation of pressur gradient versuswavelength for different ‘o’ with
fixed:a=0.5b= 0.5, lp=m7 /4N = 0.2Zn= 0.5M=@z=-1
Fig.9 Variation of pressur gradient versuswaveength for different ‘M’ with
fixed:a=0.5b= 05, Ip=7 /A= 0= 05= .JO=-1

35 r . . :

30 —— =8

—8—¢=n/d

Fig.10Variation of pressur gradient versuswavelength for different ‘@ with
fixed:a=0.5b=05,cc IN= 0.2n= 0.5;= 0M8 =1,0=-1

14
——N=0.2
4
—8—-N=04
6 ——N=06
Q
<
2
2
6 . L .
-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
<] 0]

Fig.11Variation of pressureriseversus flowrate for different ‘N’ with
fixed:a=0.5b= 0.5, Ip=7m /4n= 0,5 =0.4,M=1.5
Fig.12Variation of pressureriseversus flowrate for different ‘ni with
fixed:a=0.5b=0.5,0= =7 /4N = 0.21= 0.3 =1

112
Pelagia Research Library



P. Lakshminarayanaet al Adv. Appl. Sci. Res,, 2016, 7(1):105-114

15

‘1 05 0 05 1 05 0 05
(] (]
Fig.13Variation of pressureriseversus flowrate for different ‘o’ with
fixed:a=0.5b=0.5,d= Ip=m /AN = 0.2, m=0.5M=
Fig.14 Variation of pressureriseversus flowrate for different ‘M’ with
fixed:a=0.5b=0.5d p=m /8N = 0.2, m=0.5 =D.

8
i

—o—d):nfg

5t —B—¢ = /4

— =72

Ap

f

£ 05 0 05 1
C]
Fig.15Variation of pressureriseversus flowrate for different ‘@ with

fixed:a=0.5b=0.5d1LN=02,m=050= 04 =1

Appendix

N-260-%)  N-20,0-%)
nm’ | - m
A-N)(@?*+M?)" % (@A-N)o?+M?)’

_ (coshg)h, — cosigh, )|_4 =L (sinhgh, cost@h,- sinfth, coshh,

L
SRV R

L =L (coshgh, cos#h,— codhh, codt,
L,

L

=L,(sinhé@h, costdIh,— sinBth, coghh,
, =(coshgh, sinigh,— cosbip, sidh,
L, =(sinhgh, sintgh,— sinigh, sinBh,
L, =(costfy sinighh,~ coshih, sirdhh,
Lo =(L;sinhéh, sinfgh,~L , cosBh, coghh,
L, =(L,costgh, sinfh,~L , sinflh, coghh ,
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R _dp sinhgh
L, = L(sinif 8h,— cosRéh, )L .= N IVE)

L14:L4L9_LEJ—7'L15:L4.—9_LL-8L 16:L|3 12_Lls 1

L,—-L
L =Llp-Ldpl=LL Lkl o7 LE:QLIZS— Llj—LliG

L, = Ll — Lol s, L = Lis- Ly lbn
0 1 =21 ’
L15 L12
1 , .
(@ +M?) -L,L,;sinh@h,-L,J,cost@h —-L L ,sin@h .
L22 =

L, coshd,h,
L, :%[ Lis(coshgh,— costth, ¥ L ,, (sinih - sirp |}
1

L= Z]LafcoStON,~ cosOh, YL, (sinBih - sinfiy ]

__(h-h)
SCETE
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