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ABSTRACT

In the present note, we have discussed the effects of partial dip on the peristaltic flow of a Jeffrey fluid in an
asymmetric channel. The governing equations of motion are simplified using a long wave length approximation. A
closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact
solution is presented. The expression for pressure rise is calculated using numerical integrations. The graphical
results are presented to interpret various physical parameters of interest. The trapping phenomena are also
discussed. It is found that the size of the bolus decreases with increasing Hartmann number and Jeffrey material
parameter.

Key words. peristaltic; partial slip; Hartmann number; Jeffreyaterial parameter; shear stress; Adomian
decomposition method.

INTRODUCTION

The word peristalsis is derived from the Greek wagd/ oraAr/kos, which means clasping and compressing. It is

used to describe a progressive wave of contraetimmg a channel or tube whose cross-sectional@mesequently
varies. In physiology, peristalsis is used by tloel\pto propel or mix the contents of a tube asrigtra, gastro-
intestinal tract, bile ducts and other glandulactduSome worms to make locomotion using the mashamwof

peristalsis. Roller and finger pumps using viscuisls also operate on this principle. The prineilf peristaltic
transport has been exploited for industrial apfilices like sanitary fluid transport, blood pumpshieart lungs
machine and transport of corrosive fluids wherecatact of the fluid with the machinery parts ishgbited. Since
the first investigation of Latham [1], a numberaofalytic, numerical and experimental studies ofgpatic flow of

different fluids have been reported under differennditions with reference to physiological and Heetcal

situations. A numerical technique using boundariedral method has been developed by Pozrikidis t¢2]
investigate peristaltic transport in an asymmetti@annel under Stokes flow conditions to understted fluid

dynamics involved. He has studied the streamlintteps and mean flow rate due to different ampétudnd
phases of the wall deformation. The existence ajjging regions adjacent to the walls is also oleskfer some
flow rates.

Recently, physiologists observed that the intraingefluid flow due to myometrial contractions isrfstaltic-type
motion and the myometrial contractions may occubdth symmetric and asymmetric directions, De eieal.

[3]. Eytanet al. [4] have observed that the characterization ofpegnant woman contractions is very complicated
as they are composed of variable amplitudes, serah§requencies and different wave lengths. It alas observed
that the width of the sagittal cross-section of tirerine cavity increases towards the fundus ardcHyvity is not
fully occluded during the contractions. AccordingBytan and Elad [5] have developed a mathematizalel of
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wall induced peristaltic intra- uterine fluid floim a two-dimensional channel with wave trains hgvan phase
difference moving independently on the upper amneelowalls. These results have been used to evdiuédeflow
pattern in a non-pregnant uterus. They have al$tuleded the possible particle trajectories to ustind the
process of embryo transfer before it gets implaatethe uterine-wall. Mishra and Ramachandra Rdifgussed
the peristaltic transport of a Newtonian fluid in asymmetric channel. Subba Redsyal. [7] investigated the
peristaltic motion of a power-law fluid in an asyrtmic channel. Vajravelet al. [8] examined the peristaltic
transport of a Casson fluid in contact with a Nevian fluid in a circular tube with permeable walladeem [9]
discussed the heat transfer in a peristaltic fléwibID fluid with partial slip. Vajravelu [10] stuéd the peristaltic
transport of a Williamson fluid in asymmetric chahmith permeable walls. The flow of MHD fluid witbartial
slip effects of wall permeability and yield stresa the pumping characteristics have been reportethéir
investigation.

Due to the flow behavior of non-Newtonian fluidegtgoverning equations become more complex to baasl|
additional non-linear terms appear in the equatadmaotion. There is also no universal constitutivedel available
which exhibits the characteristics of the all noewtonian fluids. Mention may be made to some irstiamg studies
done previously, pertaining to non-Newtonian flyidghich may give insights into their behavior. Someent
studies have been made on the peristaltic motidnsoaducting, Newtonian and non-Newtonian fluids in
asymmetric channels. The MHD flow of a fluid in haonel with elastic, rhythmically contracting waits of
interest in connection with certain problems of thevement of conductive physiological fluids, ethe blood and
with the need for theoretical research on the djmeraf a peristaltic MHD compressor. The effectaofmoving
magnetic field on blood flow was studied by Saidl. [11], and they observed that the effects of tablé moving
magnetic field accelerate the speed of blood. Staxea and Agarwal [12] considered the blood aslectrecally
conducting fluid that constitutes a suspensioredfgells in the plasma. Mekheimer [13] analyzedNtHD flow of
a conducting couple stress fluid in a slit chanmigh rhythmically contracting walls. Wang al. [14] have studied
the MHD peristaltic motion of a Sisko fluid in asyanmetric channel and Kothandapani and Sriniva$ fidve
examine the peristaltic transport of a Jeffreydluinder the effect of magnetic field in asymmetti@nnel with
flexible rigid walls. Hayat [16] investigated thdfexts of an endoscope and magnetic field on thestadsis
involving Jeffrey fluid. In view of these facts,vitill be interesting to study the peristaltic flaf conducting Jeffrey
fluid flow in a channel bounded by permeable walls.

In the present analysis the fluid considered ideaifrey type and is electrically conducting. Th&rég model is a
relatively simpler linear model using time deriva$ instead of convective derivatives and it regmes a

rheological different from the Newtonian. The mamarpose of the present study is to investigatepimgstaltic

pumping of MHD flow of a Jeffrey fluid in a two-diemsional asymmetric channel having electricallyiated

walls. The channel asymmetry is produced by chgp#ie peristaltic wave train on the walls which éalifferent

amplitudes and phase due to the variation in cHamiakth, wave amplitudes and phase differences. gdwerning

equations of fluid flow are solved subject to raetvboundary conditions. The comparison among hheetwave
forms is also made carefully and the influenceefesal pertinent parameters on the stream funeti@hpressure
drop have been studied and numerical results asepted. The results and discussions presentéisistudy may
be helpful to further understanding MHD peristaitiotion for non-Newtonian fluids in asymmetric chats.

2. Mathematical formulation

" Permeable wal

° — | :

Fig. 1: Schematic diagram of a two-dimensional asymmetric channel

We consider the motion of an incompressible visdtwid in a two — dimensional channel included bdividual
wave trains propagating with constant speed c albagermeable walls of the channel. The wall de&dions are
given by
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H(Y,E):dﬁaico{z—” &_C{)j....upper wall, (1)

h(X,t)=-d, bcos(—(x Ct)+¢,j ..... lower wall, 2)

where a, p are the amplitude of the waved, is the wavelengthd, +d, (Fig .1) is the width of the channel, the
phase differencep varies in the range o < @< 7,¢¢= 0, corresponds to symmetric channel with waves éut o
phase andp= 77T the waves are in phase and furten,,d,,d, and @ satisfies the condition

a +b{+2ap, cosp< @] +d; ). (3)
3. Equations of motion

The constitutive equations for an incompressibféeefluid are
T=- p I+S, 4)

s=H F+prr) (5)
1+,

whereT andS are Cauchy stress tensor and extra stress teespectively,p is the pressure; is the identity
tensor,/11 is the ratio of relaxation to retardation times,is the retardation timé is the shear rate and dots over
the quantities indicate differentiation with respictime.

In laboratory frame, the equat®moverningthe two—dimensional motion of an incompressible anel MHD
Jeffrey fluid are given as

ai + al = O, (6)

oxX 0 -

p[i+Ui_+\71_}U=—a—_p+ S , SX* -oBW - (7
ot oxX oy X oxX

p[LUi_ i_}v __9p,? j)+"( ) ®)
ot oX oY X oX

Here, g v are the velocity components in the laboratory ﬁ!em\?), p is the densityu is the coefficient of

viscosity of the fluid, Pis the pressure and is the electrical conductivity of the fluid. Weashcarry out their
investigation in a coordinate system moving with #tave speed in which the boundary shape is station

The coordinates and velocities in the laboratoaynie (XY ) and the wave frame}(;/) are related by

x=X-ct,y=Y,0=U-c,v=V,p(x)=P(X t).

where U, V are the velocity components in the wave franfe, and P are the pressures in wave and fixed frame
of references, respectively. Introducing the follegvnon—dimensional quantities:

_ _ _ _ - _ _ _
X:ZL, y:i, u:Eivzl’J:ZHdl p= 2ﬂd1P ,t:ZHCt , hlzi, hZ:E,Re:ﬂ,
A d, c co A ucA A d, d, U
S:ié, d:ﬁ,a:ﬁ,b:&
Hc d, d, d,
and the stream function
u:a—w' v:—da—w- ©)
oy ox
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in Navier—Stokes equations and eliminating the ares by cross differentiation, we get

WO 0y 0y, |_|[0 50" 2024” (10)
JRGKOy ox 0x ay]w’} Kay2 56x2js’“’} L?xay(g‘X %)}
in which
s&x—w[ 632c(%_wi_a_wﬂaz_w, (1)
| y 0X Oxdy ) | Oxdy

Sxy :i 1+% a_l/ji_ al’[/ 624/_5202[// , (12)

1+ A, d, \ dy ax oxay ) || oy’ ox*

__ 20 {“%(a_wi_a_wiﬂ oy 13)
Y1+ d, | dy ax 9x dy ) |oxdy

6x2 oy’

where p = |2 is the Hartmann number. Using the long wave le roximation and neglecting the wave
M B,d,
u

number along with low-Reynolds number, we can fioan Egs. (10) - (13) that
2 2 2

6_2 1261/: _MZa_‘/::()- (14)

oy*| 1+ A2 oy oy

The dimensionless boundary conditions are (Ref. [9]

l//:%' aty =h =1+acos21x

(15)
w:—g, aty =h, =-d -bcos(2x+¢), (16)
aw+ﬁaw— ]_aty—h (17)
e ol =-1.aty= h2
o Far 18)
where q is the flux angB is the partial slip parameter and a,@8,and d satisfy the relation
a? +b?+2abcosps (1+d)’.
4. Solution of the problem
In order to apply the Adomian decomposition metHeql, (14) can be written as
W =N (), (19)
where N> =M (1+)| )andl__g Since a fourth-order difference operatb.r is a fourth-fold integration operator
defined by
rné
jjjj()dédndrdy- (20)
000
Operating with " on Eq. (19), yields

yZ

Y=oroyros i

tCigt NL™(@,,),, -
(21)
in which the functionsC, (x) (i=1 to 4) can be determined by utilizing theubdary conditions (15)- (18).

On applying the standard Adomian decomposition pgitbne can write
=Yy, @)
m=0
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where the componengg ,m=0, will be determined recursively. The following tesively relation is obtained from
Egs. (20)- (21)

Y .. Y3
Y,=c +cy+c, > +c, 30
(23)
W =L'N@,),,,» m20.
(24)
Hence
(Ny)* (Ny)*
‘//1 N3 3 4| N4C4 5|
(Ny)° (Ny)"
N3C3 6! WC4 7!

¥, =

2m+2 2m+3
()™, 1. (Ny)

wm' (2m+2)! N“ “(2m+3)!

Through Eq. (22) the expression ﬁ;dlr is easily seen to have the form
Y=c +czy+ 5 C5(coshNy — 1)|r c (sinfNy — Ny ,
(25)

which may be simplified as

@ =F +Fy+F,coshNy+F, sinfiNy .
(26)

The velocity is given by

u=F, + NF,sinhNy + NF, cosi\y .
(27)

where the values of;H, can be found by using the boundary conditions-(1B) and are given by

NahcoshN 1% e[ (2eN7g8 - G-, )] sinin BT
[2-N2A( ~h,)]sinhN @21 )N 6 =1, ycosth £21% )

F=="+
)

[(2+ NZ2g)sinhN @ﬁ Ng coshN {hl_Thz }

F,=- '
[(2— N?A(h, —h,))sinhN (@)}—N 0, —h, ) cosiN {hl"z—hz j

@rh-nysinnn (A5
[2-N?B(h - h)]sth(hl hz) N - h)cosH\lPli

(q+h —h,)coshN L)
[2 N?B(h - h)]sth(L) N q,—h )cosmL

The flux at any axial station in the fixed frame is

F,=-

h
J' ——+1)dy=h-h,+q’ (28)
B,
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The average volume flow rate over one period ofigstaltic wave is defined as

Q=iiQdT=T1T£(q+n—h2)dt =q+1+d: (29)

The pressure gradient is obtained from the dinoshsss momentum equation for the axial velocity as

BN (@+h-h)costv 1) (30)
O I+A| (oo N2B(h - hz)]sth(hl ) N -h, cosrm(hl hy)
The non—dimensional expression for the pressuee/A3 is given as follows
AP, = j( )ax (31)
The non-dimensional shear stress at the upperofviile channel reduces to
20qeh | (cinpng[ L hﬁhzj ;
1 54// 1 {N (9+h hz){(sth( > jcoery+ co 2 sirky ' (32)

y = 1+)| ay’ 1+)ll {[2_sz_m)ﬂ]sinhN(r?j‘Nm_hZ) Cosm(h;mﬂ

The frictional forces, aly = h, and y = h,denoted byF,, andr,, respectively are given as follows

F,=[-h (35] dx (33)
Fp, =[N (‘;F:] dx- (34)

6. Expressionsfor wave shape:
The non-dimensional expressions for the five cargid wave forms are given by the following equation
I. Sinusoidal wave:

h(x) =1+asin(x), (35)
h,(x) = -d —bsin(x+¢), (36)
[I. Triangular wave:

hl(x):1+a{ Z C )m;;Z sin[(2n- 1)(]} (37)
n () =-0-b{% 3 LU sinfam- 1ol ®)

lll. Square wave:

h(9= 1+a{42(§ " cof (an- m]} (39)
hz(x):_d { z (_1)m+1 CO# (zn 1)(_}_4} (40)
IV. Trapezoidal wave:
T
30 = SN (2m-1) _
h(x)=1+a ?;(zsmi_l)zsm[(m—l))(] ' (41)
- smE(Zm— 1)
h(x)=-d-b %;ﬁsm[(zm—nxw] : (42)
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RESULTSAND DISCUSSION

In this section results are presented and discuisedifferent physical quantities of interest. fig. 2, the axial
velocity distribution is shown for different pararaes partial slipp, Hartmann numbeM and Jeffrey material
parametel,. From Fig. 2(a) we observed that the increasthénpartial slipp decreases the magnitude of the
velocity at the middle of the channel and increagabe walls. Figs. 2(b)-2(c) shows the influent¢he Hartmann
numberM and Jeffrey material parametizjon the axial velocity. It is found that the magudiguof the axial velocity
decreases in the center and increases nearer\ahaliseof the channel with increasing the HartmaomberM and
Jeffrey material parametr. Fig.3 is plotted to see the effect of the parans, M and i, on the pressure
gradient. Figs. 3(a) and 3(c) show that the presgwadient dp/dxdecreases with increasing the partial slip
parameteB and Jeffrey material parameigr on the other hand, in the wider part of the clehrl][0, 0.3] and
X[ [0.6, 1] the pressure gradient is really smalgttis, the flow can easily pass without impositifna large
pressure gradient. Besides, in a narrow part ofctienel X[1[0.3, 0.6] a much pressure gradient is required to
maintain thef andi,, it especially neat=0.4. Fig. 3(b) indicates that the pressure gradigmtdxincreases with

increasing Hartmann numbkt and the maximum pressure gradient is also xears.

The pressure rise is important physical measutbdameristaltic mechanism. Fig.4 is a graph ofdimensionless
pressure drop versus the dimensionless flow gateThe pumping regions are peristaltic pumping

(Q>o0andaP, >0), augment pumpingd >0andAP, <0 ) and retrograde pumpin@(<0 andapP, >0). Figs. 4(a)
and 4(c) show the effects of the partial slip patarf and Jeffrey parameteron AP, versusy. It can be seen that
for the adverse pressure gradiegp (>0) and free pumping4P, =0), the pumping decreases when the valugs of

andi, increase. However, in copumping, the pumping aseewith the increase of both paramet%r@ﬂdj-:. The
effect of Hartmann numbeévl on pumping characteristics is plotted in Fig. 4(bran be seen that for the adverse
pressure gradientap, >0) and free pumping AP, =0), the pumping increases as the values of M inereas

However, in the copumping region, the pumping deses with increasing Hartmann numigler

The variation of the axial shear stregg,with y is calculated from Eqg. (32) and is shown in Fifpb different

physical parameters. In Figs. 5(a) and 5(c) we meskthat the curves intersect at origin and tHalahear stress
S, increases with increasirfigand.i in the upper wall and an opposite behavior is nlegkin the lower wall of the

channel. The relation between the shear st@;ysmd y at different values the Hartmann numibéiis depicted in
Fig. 5 (b). We observe that the curves interseorigtn, the shear stre3§y decreases with increasing the Hartmann

numberM in above of the origirand an opposite behavior is observed in the befaiweoorigin and no effect at the
walls.

Trapping phenomena

Another interesting phenomenon in peristaltic moti® the trapping. It is basically the formationaof internally
circulating bolus of fluid by closed stream lingtie trapped bolus will be pushed ahead along thetpkic waves.
The stream lines are calculated form Eq. (26) dottqul in Fig. 6 for various values @f It is concluded that the
volume of the trapping bolus increases with indregg. The stream lines are drawn in Figs. 7-8 for défe values
of Hartmann numbew and Jeffrey material parameier It is found that the volume of the trapping botiesreases
with increasing Hartmann numbegrand Jeffrey material parameierthe bolus disappears fa=3andi.=2. Figs.
9-10 compare various Jeffrey material parameiegfar different wave forms like sinusoidal wave, biplar wave,
trapezoidal wave and square wave.

CONCLUSION

In the present note, we have discussedMhD Peristaltic flow of a Jeffrey fluid in an asynetnic channel with
partial slipp. The governing two-dimensional equations have eedeled and then simplified using the long wave
length approximation. The results are discussesltiir graphs. We have concluded the following olmserms:

» The magnitude of the velocity field increases ris@r walls and decreases at the center of the chavitie
increasingVl andi..

» The pressure gradient increases with increadingnd decreasing ih,andp.

» In the peristaltic pumping region the pressure hggeases with the increaseMf, and decreases with the
increase irp andt ;_
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» The shear stress distribution increases in theruppk and decreases in the lower wall with inchegsn both
B andi,.

» The size of the trapping bolus increases by inanggs and decreases by increasingndi,, while the bolus
disappear a1 =3 andi,=2.
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Fig. 2: The velocity profileswith a=0.5, b=05, d=1.25, x=1, = 77/3, Q=1; (@) A, =1and M=1; (b) p=0.01, A; =Land (c) M=1,

_ B=0.01.
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Fig. 3: Distributions of the pressure gradient with a=0.5, b=0.5, d=1.25, (J=r/3, (§=1; (a) /11 =1and M=1; (b) $=0.01, /11 =l and (c)
M=1, p=0.01.
4 2 4
| B=00 2,05
2h, Sl e WL
e N BN o i W1
0 e
-2
e,
A
B
G PR S S . . . - N S T,
02 o4 05 08 1 -y T R R T S 89 0z o04_06 08 1
2 ] g
[a) by (e}

Fig. 4: Effect of the dimensionlessflow rate (3 on variation of APA with a=0.5, b=0.5, d=1.25, == /3; (a) /]1 =0.5,M=1; (b) $=0.01,

M=Land (c) p=0.01, A, =05
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Fig. 5: Theaxial shear stressdistributionsat the wallswith a= 0.5, b=0.5, d=1, (== /6, Q:Z; (® /]1 =0.5and M=2; (b) Al =0.5and
p=0.1and (c) M=2 and p=0.1.
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Fig. 6: Streamlinesin thewave frame for pumping with a=0.5, b=0.5, d=1, (#=0, Q=2 Al =0.1, M=05; () £=0.0; (b) S=0.1and (c)
£B=0.2
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Fig. 7. Streamlinesin thewave frame for pumping with a=0.5, b=0.5, d=1.5, ¢=0; A4 =1, 8 =0.1, Q=1; (a8 M=1; (b) M=2and (c)

M=3.
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(a) )
Fig. 8: Streamlinesin thewave frame for pumping with a=0.5, b=05, d=1.25,p= 0, =01, Q =1, M=2; (8) A, =0.1 (b) A, =land
©A=2
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Fig.9: Streamlinesfor a=0.5, M=1, b=0.5, d=1, =0, (5:1; /11 =0, p=0.3; (a) Sinusoidal wave; (b) Triangular wave; (c) Trapezoidal
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Fig. 10: Streamlinesfor a=0.5, M=1, b=0.5, ¢ =0, d=1, Q =1, /]l =1, p=0.3; (a) Sinusoidal wave; (b) Triangular wave; (c)
Trapezoidal wave and (d) Square wave.
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