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ABSTRACT 
 
In the present note, we have discussed the effects of partial slip on the peristaltic flow of a Jeffrey fluid in an 
asymmetric channel. The governing equations of motion are simplified using a long wave length approximation. A 
closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact 
solution is presented. The expression for pressure rise is calculated using numerical integrations. The graphical 
results are presented to interpret various physical parameters of interest. The trapping phenomena are also 
discussed. It is found that the size of the bolus decreases with increasing Hartmann number and Jeffrey material 
parameter. 
 
Key words: peristaltic; partial slip; Hartmann number; Jeffrey material parameter; shear stress; Adomian 
decomposition method. 
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INTRODUCTION 
 

The word peristalsis is derived from the Greek word kosπερ σταλτl l , which means clasping and compressing. It is 

used to describe a progressive wave of contraction along a channel or tube whose cross-sectional area consequently 
varies. In physiology, peristalsis is used by the body to propel or mix the contents of a tube as in uretra, gastro-
intestinal tract, bile ducts and other glandular ducts. Some worms to make locomotion using the mechanism of 
peristalsis. Roller and finger pumps using viscous fluids also operate on this principle. The principle of peristaltic 
transport has been exploited for industrial applications like sanitary fluid transport, blood pumps in heart lungs 
machine and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. Since 
the first investigation of Latham [1], a number of analytic, numerical and experimental studies of peristaltic flow of 
different fluids have been reported under different conditions with reference to physiological and mechanical 
situations. A numerical technique using boundary integral method has been developed by Pozrikidis [2] to 
investigate peristaltic transport in an asymmetric channel under Stokes flow conditions to understand the fluid 
dynamics involved. He has studied the streamline patterns and mean flow rate due to different amplitudes and 
phases of the wall deformation. The existence of trapping regions adjacent to the walls is also observed for some 
flow rates. 
  
Recently, physiologists observed that the intra uterine fluid flow due to myometrial contractions is peristaltic-type 
motion and the myometrial contractions may occur in both symmetric and asymmetric directions, De varies et al. 
[3]. Eytan et al. [4] have observed that the characterization of non-pregnant woman contractions is very complicated 
as they are composed of variable amplitudes, a range of frequencies and different wave lengths. It was also observed 
that the width of the sagittal cross-section of the uterine cavity increases towards the fundus and the cavity is not 
fully occluded during the contractions. Accordingly, Eytan and Elad [5] have developed a mathematical model of 
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wall induced peristaltic intra- uterine fluid flow in a two-dimensional channel with wave trains having a phase 
difference moving independently on the upper and lower walls. These results have been used to evaluate fluid flow 
pattern in a non-pregnant uterus. They have also calculated the possible particle trajectories to understand the 
process of embryo transfer before it gets implanted at the uterine-wall. Mishra and Ramachandra Rao [6] discussed 
the peristaltic transport of a Newtonian fluid in an asymmetric channel. Subba Reddy et al. [7] investigated the 
peristaltic motion of a power-law fluid in an asymmetric channel. Vajravelu et al. [8] examined the peristaltic 
transport of a Casson fluid in contact with a Newtonian fluid in a circular tube with permeable wall. Nadeem [9] 
discussed the heat transfer in a peristaltic flow of MHD fluid with partial slip. Vajravelu [10] studied the peristaltic 
transport of a Williamson fluid in asymmetric channel with permeable walls. The flow of MHD fluid with partial 
slip effects of wall permeability and yield stress on the pumping characteristics have been reported in their 
investigation. 
 
Due to the flow behavior of non-Newtonian fluids, the governing equations become more complex to handle as 
additional non-linear terms appear in the equations of motion. There is also no universal constitutive model available 
which exhibits the characteristics of the all non-Newtonian fluids. Mention may be made to some interesting studies 
done previously, pertaining to non-Newtonian fluids, which may give insights into their behavior. Some recent 
studies have been made on the peristaltic motions of conducting, Newtonian and non-Newtonian fluids in 
asymmetric channels. The MHD flow of a fluid in a channel with elastic, rhythmically contracting walls is of 
interest in connection with certain problems of the movement of conductive physiological fluids, e.g., the blood and 
with the need for theoretical research on the operation of a peristaltic MHD compressor. The effect of a moving 
magnetic field on blood flow was studied by Stud et al. [11], and they observed that the effects of a suitable moving 
magnetic field accelerate the speed of blood. Srivastava and Agarwal [12] considered the blood as an electrically 
conducting fluid that constitutes a suspension of red cells in the plasma.  Mekheimer [13] analyzed the MHD flow of 
a conducting couple stress fluid in a slit channel with rhythmically contracting walls. Wang et al. [14] have studied 
the MHD peristaltic motion of a Sisko fluid in an asymmetric channel and Kothandapani and Srinivas [15] have 
examine the peristaltic transport of a Jeffrey fluid under the effect of magnetic field in asymmetric channel with 
flexible rigid walls. Hayat [16] investigated the effects of an endoscope and magnetic field on the peristalsis 
involving Jeffrey fluid. In view of these facts, it will be interesting to study the peristaltic flow of conducting Jeffrey 
fluid flow in a channel bounded by permeable walls. 
 
In the present analysis the fluid considered is of Jeffrey type and is electrically conducting. The Jeffrey model is a 
relatively simpler linear model using time derivatives instead of convective derivatives and it represents a 
rheological different from the Newtonian. The main purpose of the present study is to investigate the peristaltic 
pumping of MHD flow of a Jeffrey fluid in a two-dimensional asymmetric channel having electrically insulated 
walls. The channel asymmetry is produced by choosing the peristaltic wave train on the walls which have different 
amplitudes and phase due to the variation in channel width, wave amplitudes and phase differences. The governing 
equations of fluid flow are solved subject to relevant boundary conditions. The comparison among the three wave 
forms is also made carefully and the influence of several pertinent parameters on the stream function and pressure 
drop have been studied and numerical results are presented. The results and discussions presented in this study may 
be helpful to further understanding MHD peristaltic motion for non-Newtonian fluids in asymmetric channels. 
 
2. Mathematical formulation 

 
Fig. 1: Schematic diagram of a two-dimensional asymmetric channel 

 
We consider the motion of an incompressible viscous fluid in a two – dimensional channel included by individual 
wave trains propagating with constant speed c along the permeable walls of the channel. The wall deformations are 
given by 
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1 1 1

2
( , ) cos ( )h X t d a X ct

π
λ

 = + − 
 

….upper wall,        (1) 

2 2 1

2
( , ) cos ( )h X t d b X ct

π φ
λ

 = − − − + 
 

…..lower wall,       (2) 

where 
1a , 

1b  are the amplitude of the waves, λ  is the wavelength, 
1 2d d+ (Fig .1) is the width of the channel, the 

phase difference φ  varies in the range of 0 , 0φ π φ≤ ≤ = , corresponds to symmetric channel with waves out of 

phase and φ =π  the waves are in phase and further 
1 1 1 2, , ,a b d d  and φ  satisfies the condition 

2 2 2 2 2
1 1 1 1 1 22 cos ( )a b a b d dφ+ + ≤ + .                                       (3) 

 
3.  Equations of motion 
 
The constitutive equations for an incompressible Jeffrey fluid are 

T p I S= − + ,           (4) 

2
1

( )
1

S r r
µ λ
λ

= +
+

& &&
 .         (5) 

 
where T  andS  are Cauchy stress tensor and extra stress tensor, respectively, p  is the pressure, I  is the identity 

tensor, 
1

λ  is the ratio of relaxation to retardation times, 
2λ  is the retardation time r&& is the shear rate and dots over 

the quantities indicate differentiation with respect to time. 
 
In laboratory frame, the equations governing the two–dimensional motion of an incompressible and the MHD 
Jeffrey fluid are given as 
 

0=
∂
∂+

∂
∂

Y

V

X

U ,                                                                               (6) 

2
0

( ) ( )XX XYS Sp
U V U B U

t X Y X X Y
ρ σ∂ ∂∂ ∂ ∂ ∂ + + = − + + − ∂ ∂ ∂ ∂ ∂ ∂ 

 ,     (7) 

( ) ( )XY YYS Sp
U V V

t X Y X X Y
ρ ∂ ∂∂ ∂ ∂ ∂ + + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

.       (8) 

 
Here, ,U V  are the velocity components in the laboratory frame( ),X Y , ρ  is the density, µ is the coefficient of 

viscosity of the fluid, p is the pressure and σ is the electrical conductivity of the fluid. We shall carry out their 

investigation in a coordinate system moving with the wave speed in which the boundary shape is stationary.  
 

The coordinates and velocities in the laboratory frame ( ,X Y ) and the wave frame (,x y ) are related by  

, , , , ( ) ( , )x X ct y Y u U c v V p x P X t= − = = − = = . 

 

where ,  u v  are the velocity components in the wave frame,  p  and P  are the pressures in wave and fixed frame 

of references, respectively. Introducing the following non–dimensional quantities: 
 

2
1 1

1

2 22 2
,  ,  ,  ,  ,  ,  ,  

d d PX Y u v ct
x y u v p t

d c c c

π ππ πδ
λ δ λ µ λ λ

= = = = = = = 1 2
1 2

1 1

,  
h h

h h
d d

= = , 1Re
cdρ
µ

= , 

1 2 1 1

1 1 1

,  ,  ,  
d d a b

S S d a b
c d d dµ

= = = = . 

 
and the stream function 

u
y

ψ∂=
∂

,  v
x

ψδ ∂= −
∂

.                             (9)  
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in Navier–Stokes equations and eliminating the pressure by cross differentiation, we get 

( )
2 2 2 2

2 2 2
2 2 2

Re xy xx xyS S S M
y x x y y x x y y

ψ ψ ψδ ψ δ δ
       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− ∇ = − + − −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

.     (10) 

 
in which  

 
2

2

1 1

2
1

1xx

c
S

d y x x y x y

δλδ ψ ψ ψ
λ
  ∂ ∂ ∂ ∂= + −  + ∂ ∂ ∂ ∂ ∂ ∂  

 ,      (11) 

2 2
22

2 2
1 1

1
1

1xy

c
S

d y x x y y x

δλ ψ ψ ψ ψδ
λ
    ∂ ∂ ∂ ∂ ∂= + − −    + ∂ ∂ ∂ ∂ ∂ ∂    

,     (12) 

2
2

1 1

2
1

1yy

c
S

d y x x y x y

δλδ ψ ψ ψ
λ
  ∂ ∂ ∂ ∂ ∂= − + −  + ∂ ∂ ∂ ∂ ∂ ∂  

,      (13) 

2 2
2 2

2 2x y

ψ ψδ ∂ ∂∇ = + ∂ ∂ 
, 

where 
0 1M B d

σ
µ

= is the Hartmann number. Using the long wave length approximation and neglecting the wave 

number along with low-Reynolds number, we can find from Eqs. (10) - (13) that  
2 2 2

2
2 2 2 2

1

1
0

1
M

y y y

ψ ψ
λ

 ∂ ∂ ∂− = ∂ + ∂ ∂ 

.                                            (14) 

The dimensionless boundary conditions are (Ref. [9]) 

2

qψ = , at
1 1 cos 2 ,y h a xπ= = +                    (15) 

2

qψ = − , at
2 cos(2 ),y h d b xπ φ= = − − +                              (16) 

2

2
1

y y

ψ ψβ∂ ∂+ = −
∂ ∂

, at
1hy = ,         (17) 

2

2
1

y y

ψ ψβ∂ ∂− = −
∂ ∂

 , at 
2.y h=                            (18) 

where q is the flux and β is the partial slip parameter and a, b, φ  and d satisfy the relation 

( )22 2 2 cos 1a b ab dφ+ + ≤ + . 

 
4. Solution of the problem 
In order to apply the Adomian decomposition method, Eq. (14) can be written as 

( )m yy
L Nψ ψ= ,              (19) 

where 2 2
1(1 )N M λ= + and

4

4

d
L

dy
= . Since a fourth-order difference operator, 1L−  is a fourth-fold integration operator 

defined by 

1

0 0 0 0

(.)
y

L d d d d y
η ξτ

ξ η τ− = ∫ ∫ ∫ ∫ .                         (20) 

Operating with 1L− on Eq. (19), yields 
2

1
1 2 3 4

3
( )

2! 3! m yy

y y
c c y c c NLψ ψ−= + + + + .     

 (21)       

in which the functions ic (x) (i=1 to 4) can be determined by utilizing the boundary conditions (15)- (18). 

 
On applying the standard Adomian decomposition method, one can write 

0
m

m

ψ ψ
∞

=

=∑ .(22) 



K. Rajanikanth et al                                                Adv. Appl. Sci. Res., 2012, 3(6):3755-3765      
 _____________________________________________________________________________ 

3759 
Pelagia Research Library 

where the components 
mψ , 0m ≥ , will be determined recursively. The following recursively relation is obtained from 

Eqs. (20)- (21) 
2

0 1 2 3 4

3

2! 3!

y y
c c y c cψ = + + +    

 (23) 
1

1 ( ) ,  m 0m m yyL Nψ ψ−
+ = ≥ .  

 (24) 
Hence 

4 5

1 3 43 4

1 ( ) 1 ( )

4! 5!

Ny Ny
c c

N N
ψ = + , 

6 7

2 3 43 4

1 ( ) 1 ( )

6! 7!

Ny Ny
c c

N N
ψ = + , 

           . 
           .   
           . 

2 2 2 3

3 43 4

1 ( ) 1 ( )
,  m 0.

(2 2)! (2 3)!

m m

m

Ny Ny
c c

N m N m
ψ

+ +

= + ≥
+ +

 

Through Eq. (22) the expression for ψ  is easily seen to have the form 

1 2 3 43 4

1 1
(cosh 1) (sinh )c c y c Ny c Ny Ny

N N
ψ = + + − + − ,  

 (25) 

which may be simplified as 

1 2 3 4cosh sinhF F y F Ny F Nyψ = + + + .  

 (26) 

The velocity is given by 

2 3 4sinh coshu F NF Ny NF Ny= + + .    

 (27) 

where the values of F1-F4 can be found by using the boundary conditions (15)-(18) and are given by  
 

21 2 1 2
1 1 1 2

1
2 1 2 1 2

1 2 1 2

cosh ( ) (2 ) ( ) sinh ( )
2 2

2 2 ( ) sinh ( ) ( )cosh ( )
2 2

h h h h
Nqh N N q h q h h Nq

F
h h h h

N h h N N h h N

β

β

− −
 + + − + − 

= + − −
 − − − − 

, 

2 1 2 1 2

2
2 1 2 1 2

1 2 1 2

(2 )sinh ( ) cosh ( )
2 2

(2 ( ))sinh ( ) ( )cosh ( )
2 2

h h h h
N q N Nq N

F
h h h h

N h h N N h h N

β

β

− − + +  = −
− − − − − −  

, 

1 2
1 2

3
2 1 2 1 2

1 2 1 2

( )sinh ( )
2

[2 ( )]sinh ( ) ( )cosh ( )
2 2

h h
q h h N

F
h h h h

N h h N N h h Nβ

+ + −  = − − −− − − −

, 

1 2
1 2

4
2 1 2 1 2

1 2 1 2

( )cosh ( )
2

2 ( ) sinh ( ) ( )cosh ( )
2 2

h h
q h h N

F
h h h h

N h h N N h h Nβ

++ −
= − −
 − − − − 

. 

The flux at any axial station in the fixed frame is  
 

1

2

1 2( 1)
h

h

Q dy h h q
y

ψ∂= + = − +
∂∫

,                                                   (28) 
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The average volume flow rate over one period of the peristaltic wave is defined as   

1 2

0 0

1 1
( ) 1

T T

Q QdT q h h dt q d
T T

= = + − = + +∫ ∫
.                            (29)  

 
 The pressure gradient is obtained from the dimensionless momentum equation for the axial velocity as 

1 2
3 1 2

2 1 2 1 21
1 2 1 2

( )
( )cosh

2
( ) ( )1 2 ( ) sinh ( )cosh

2 2

h h
q h h Np N

h h h hx N h h N N h h Nλ β

− + − ∂ =  − −∂ +   − − − −  

 .     (30) 

 
The non–dimensional expression for the pressure rise λ∆P  is given as follows  

2

0

( )
p

P dx
x

π

λ
∂∆ =
∂∫

                                                      (31) 

 
The non-dimensional shear stress at the upper wall of the channel reduces to  

2

2
1

1

1xyS
y

ψ
λ

∂=
+ ∂

( )

2 1 2 1 2
1 2

21 1 2 1 2
1 2 1 2

( ) (sinh cosh cosh sinh
2 21

1
2 ( ) sinh cosh

2 2

h h h h
N q h h N Ny n Ny

h h h h
N h h N N h h N

λ β

  + +    + − +     
     =

+  − −     − − − −          

.   (32)    

 
The frictional forces, at 

1y h=  and 
2y h= denoted by 

1Fλ and
2Fλ  respectively are given as follows 

1
2

1 1

0

 dx
dp

F h
dxλ

 = −  
 

∫ ,         (33)                        

1
2

2 2

0

 dx
dp

F h
dxλ

 = −  
 

∫ .         (34) 

 
6. Expressions for wave shape: 
The non-dimensional expressions for the five considered wave forms are given by the following equations: 
I. Sinusoidal wave: 

( ) ( )1 1 sinh x a x= + ,         (35) 

( ) ( )2 sinh x d b x φ= − − + ,        (36) 

II. Triangular wave: 

( )
1

1 3 2
1

8 ( 1)
1 sin[(2 1) ]

(2 1)

m

m

h x a m x
mπ

+∞

=

 −= + − − 
∑ ,      (37) 

( )
1

2 3 2
1

8 ( 1)
sin[(2 1) ]

(2 1)

m

m

h x d b m x
m

φ
π

+∞

=

 −= − − − + − 
∑ ,      (38) 

III. Square wave: 

[ ]
1

1
1

4 ( 1)
( ) 1 cos (2 1)

(2 1)

m

m

h x a m x
mπ

+∞

=

 −= + − − 
∑ ,       (39) 

[ ]
1

2
1

4 ( 1)
( ) cos (2 1)

(2 1)

m

m

h x d b m x
m

φ
π

+∞

=

 −= − − − + − 
∑ ,      (40) 

IV. Trapezoidal wave: 

( )1 2 2
1

sin (2 1)32 81 sin[(2 1) ]
(2 1)m

m
h x a m x

m

π

π

∞

=

 − 
= + − − 

 

∑ ,      (41) 

( )2 2 2
1

sin (2 1)32 8 sin[(2 1) ]
(2 1)m

m
h x d b m x

m

π

φ
π

∞

=

 − 
= − − − + − 

 

∑ .     (42) 

   



K. Rajanikanth et al                                                Adv. Appl. Sci. Res., 2012, 3(6):3755-3765      
 _____________________________________________________________________________ 

3761 
Pelagia Research Library 

RESULTS AND DISCUSSION 
 

In this section results are presented and discussed for different physical quantities of interest. In Fig. 2, the axial 
velocity distribution is shown for different parameters partial slip β, Hartmann number M and Jeffrey material 
parameter .  From Fig. 2(a) we observed that the increase in the partial slip β decreases the magnitude of the 
velocity at the middle of the channel and increases at the walls. Figs. 2(b)-2(c) shows the influence of the Hartmann 
number M and Jeffrey material parameter on the axial velocity. It is found that the magnitude of the axial velocity 
decreases in the center and increases nearer at the walls of the channel with increasing the Hartmann number M and 
Jeffrey material parameter.  Fig.3 is plotted to see the effect of the parameters β, M and  on the pressure 
gradient. Figs. 3(a) and 3(c) show that the pressure gradient  /dp dxdecreases with increasing the partial slip 

parameter β and Jeffrey material parameter, on the other hand, in the wider part of the channel x ∈ [0, 0.3] and 
x ∈  [0.6, 1] the pressure gradient is really small, that is, the flow can easily pass without imposition of a large 
pressure gradient. Besides, in a narrow part of the channel x ∈ [0.3, 0.6] a much pressure gradient is required to 
maintain the β and , it especially near 0.4x = . Fig. 3(b) indicates that the pressure gradient /dp dx increases with 

increasing Hartmann number M and the maximum pressure gradient is also near0.4x = . 
 
The pressure rise is important physical measure in the peristaltic mechanism. Fig.4 is a graph of the dimensionless 
pressure drop versus the dimensionless flow rateQ . The pumping regions are peristaltic pumping 

( 0Q > and 0Pλ∆ > ), augment pumping ( 0Q > and 0Pλ∆ <  ) and retrograde pumping ( 0Q <  and 0Pλ∆ > ). Figs. 4(a) 

and 4(c) show the effects of the partial slip parameter β and Jeffrey parameter on Pλ∆ versusQ . It can be seen that 

for the adverse pressure gradient ( 0Pλ∆ > ) and free pumping ( 0Pλ∆ = ), the pumping decreases when the values of β 

and  increase. However, in copumping, the pumping increase with the increase of both parameters, β and . The 
effect of Hartmann number M on pumping characteristics is plotted in Fig. 4(b). It can be seen that for the adverse 

pressure gradient ( 0Pλ∆ > ) and free pumping ( 0Pλ∆ = ), the pumping increases as the values of M increase. 

However, in the copumping region, the pumping decreases with increasing Hartmann numberM . 
 
The variation of the axial shear stress 

xyS with y  is calculated from Eq. (32) and is shown in Fig.5 for different 

physical parameters. In Figs. 5(a) and 5(c) we observed that the curves intersect at origin and the axial shear stress 

xyS  increases with increasing β and  in the upper wall and an opposite behavior is observed in the lower wall of the 

channel. The relation between the shear stress 
xyS and y at different values the Hartmann number M is depicted in 

Fig. 5 (b). We observe that the curves intersect at origin, the shear stress 
xyS decreases with increasing the Hartmann 

number M in above of the origin  and an opposite behavior is observed in the below of the origin and no effect at the 
walls.  
 
Trapping phenomena         
Another interesting phenomenon in peristaltic motion is the trapping. It is basically the formation of an internally 
circulating bolus of fluid by closed stream lines. The trapped bolus will be pushed ahead along the peristaltic waves. 
The stream lines are calculated form Eq. (26) and plotted in Fig. 6 for various values of β. It is concluded that the 
volume of the trapping bolus increases with increasing β. The stream lines are drawn in Figs. 7-8 for different values 
of Hartmann numberM and Jeffrey material parameter. It is found that the volume of the trapping bolus decreases 
with increasing Hartmann number M and  Jeffrey material parameter the bolus disappears forM =3and =2. Figs. 
9-10 compare various Jeffrey material parameters for different wave forms like sinusoidal wave, triangular wave, 
trapezoidal wave and square wave. 
 

CONCLUSION 
 

In the present note, we have discussed the MHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel with 
partial slip β. The governing two-dimensional equations have been modeled and then simplified using the long wave 
length approximation. The results are discussed through graphs. We have concluded the following observations: 
 
� The magnitude of the velocity field increases near the walls and decreases at the center of the channel with 
increasingM and . 
�  The pressure gradient increases with increasingM , and decreasing in and β. 
� In the peristaltic pumping region the pressure rise increases with the increase ofM , and decreases with the 
increase in β and . 
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� The shear stress distribution increases in the upper wall and decreases in the lower wall with increasing in both 
β and .   
� The size of the trapping bolus increases by increasing β and decreases by increasingM and , while the bolus 
disappear at M =3 and =2.  
 

                              

Fig. 2: The velocity profiles with a=0.5, b=0.5, d=1.25, x=1, / 3φ π= , 1Q= ; (a) 1λ  =1 and M=1;  (b) β=0.01,
 1λ  =1 and  (c) M=1, 

β=0.01. 

Fig. 3: Distributions of the pressure gradient with a=0.5, b=0.5, d=1.25, φ =π/3, Q =1; (a) 1λ  =1 and M=1; (b) β=0.01,
  1λ  =1 and (c) 

M=1, β=0.01. 

Fig. 4:  Effect of the dimensionless flow rate Q on variation of Pλ∆  with a=0.5, b=0.5, d=1.25, φ = π /3;    (a) 1λ =0.5,M=1; (b) β=0.01, 

M=1 and (c) β=0.01, 1λ =0.5 
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Fig. 5: The axial shear stress distributions at the walls with a= 0.5, b=0.5, d=1, φ = π /6, Q =2; (a) 1λ =0.5 and M=2; (b) 1λ  =0.5 and 

β=0.1 and (c) M=2 and β=0.1. 

 

 

Fig. 6:  Streamlines in the wave frame for pumping with a=0.5, b=0.5, d=1, φ =0, Q =2, 1λ =0.1, M=0.5; (a) 0.0β = ; (b) 0.1β = and (c) 

0.2β =  
 

 
Fig. 7:  Streamlines in the wave frame for pumping with a=0.5, b=0.5, d=1.5, 0φ= ; 

1 1λ = , 0.1β = , 1Q= ; (a)  M=1;  (b) M=2 and (c) 

M=3. 
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Fig. 8: Streamlines in the wave frame for pumping with a=0.5, b=0.5, d=1.25, 0φ = , 0.1β= , 1Q = , M=2; (a) 

1 0.1λ =
  

(b) 
1 1λ = and  

(c) 
1 2λ =

 

 
 
 

Fig. 9:  Streamlines for a=0.5, M=1, b=0.5, d=1, 0φ = , Q =1; 
1 0λ = , β=0.3; (a) Sinusoidal wave; (b) Triangular wave; (c) Trapezoidal 

wave and (d) Square wave. 

 
Fig. 10:  Streamlines for a=0.5, M=1, b=0.5,

 0φ = , d=1, 1Q = , 
1 1λ = , β=0.3;  (a) Sinusoidal wave; (b) Triangular wave; (c) 

Trapezoidal wave and (d) Square wave. 
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