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ABSTRACT

The problem of steady, two-dimensional laminar flofna power-law fluid passing through a moving fidate

under the influence of transverse magnetic fieldtiglied. The resulting governing partial differahequation is
transformed into a non linear ordinary differentiafuation using appropriate transformation. Thisnnear

ordinary differential equation is linearized by ngi Quasi-linearization technique and then solvedercally by
using implicit finite difference scheme. The systéralgebraic equations is solved by using Gausddbéerative

method. The solution is found to be dependent dousagoverning parameters including magnetic fipitameter
M, power-law index n and velocity ratio parameteA systematical study is carried out to illustrale teffects of
these major parameters on the velocity profiless lfound that dual solutions exits when the pkatel the fluid

move in opposite directions, near the region obsafon.

Keywords. Magnetic field parameter, Non-Newtonian fluids, modaw index, Quasi-linearization and finite
difference method.

INTRODUCTION

Fluids for which the relationship between the stetggss and rate of strain is non linear throughattigin at given
temperature and pressure are said to be non-Nemtoihe subject of boundary-layer flow on a cordinly
moving surface traveling through a quiet ambieunidflis currently one of important in view of itsleeance to a
number of engineering processes. Flows due to incmusly moving surface is encountered in sevpratesses
for thermal and moisture treatment of materialstipalarly in processes involving continuous pujjief a sheet
through a reaction zone, as in metallurgy , initexnd paper industry, in the manufacture of pdyim sheets,
sheet glass and crystalline materials. An exammpia fcontinuously moving surface is a polymer stoedtlament
extruded continuously from die, or a long threaéting between a feed roll and wind-up roll. Sdldg1] was the
first to investigate the flow due to sheet issuiith constant speed from a slit into a fluid attyé® has considered
the problem of forced convection along an isothémmaving plate. Tsou et.al [2] studied flow and hansfer in
the boundary layer on a continuously moving suriahereas Soundalgekar and Murthy [3] studied tlz tiensfer
problem by assuming the plate temperature to bablat
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Klemp and Acrivos [4] demonstrated a method foegnating the boundary layer equations through #&@negf
reverse flow and applied it to the problem of uniidlow past a parallel flat plate of finite lengtthose surface has
a constant velocity directed opposite to that ofmsdream. Similar problems were considered by Atafez [5],
Hussaini et. al [6] and Ishak et. al [7]. All ofettabove investigators, however restrict their agialio the flow of
Newtonian fluids. Most fluids such as molten plestiartificial fibres, drilling of petroleum, bloognd polymer
solutions are considered non-Newtonian fluids. 8@iter [8] has introduced the concept of the boupdiyer in
the theory of non-Newtonian power-law fluids. A@$s Shah and Petersen [9] have investigated thdystaminar
flow of non- Newtonian fluids over a plate.

Howell et.al [10] and Rao et.al [11] have studied momentum and heat transfer on a continuousngaurface
in a power-law fluid. Kumari and Nath [12] discudsever a continuously moving surface with a patdiee
stream.

Mahmoud and Mahmoud [13] had given the analyticdlittons of hydromagnetic boundary-layer flow ofian-
Newtonian power-law fluid past a continuously maysurface. Recently, Anuar Ishak [14] have inved&d the
steady boundary-layer flow of a non-Newtonian poelaer fluid over a flat plate in a moving fluid.

The object of the present paper is to study thenetag effects on a steady, two-dimensional lamiifav of a
power-law fluid passing through a moving flat platde numerical solutions are carried out by usheyimplicit
finite difference scheme.

Mathematical Formulation:

Consider a steady, two dimensional laminar flownagbower-law fluid passing through a moving flattelavith
constant velocity ), in the same or opposite direction to the freeastr U, . The x — axis extends parallel to the
plate, while the y-axis extends upwards, normat.tdlso, a magnetic field of strength B is appliedthe positive
y-direction, which produces magnetic effect in xhdirection. The boundary layer equations governimgflow in a
power-law fluid are

%4‘@:0, _____ (1)
ox oy

ou ou_10r, 0B
U—+V— == -—u, )

ox 9y poy p

where u and v are the velocity components aloegxthnd y axes, respectivety, is the shear stress apds the
fluid density. The boundary conditions are

u=U, v=0 at y=0,
U - U as yso0 e (3)

The stress tensor is defined as

ie.7,=2K2D,D,|""*D,, @)

~ - du,
whereD; 1 ai L — (5)
2{0x; 0x
denotes the stretching tensor, K is the consistenefficient and n is the power-law index. The xdeis non-
dimensional, and the dimension of K depends orvéthee of n. The two- parameter rheological eq.ig®nown as
the Ostwald-de-waele model or, more commonly, thwes-law model. The parameter n is an importanéexnth
subdivide fluids into pseudo plastic fluids (n<Ijdadilatant fluids (n>1). For n = 1, the fluid ismply the
Newtonian fluid. Therefore, the deviation of n froomity indicates the degree of deviation from Nevian

behaviour. With n£ 1, the constitutive eq. (4) represents shear thinfn<1) and shear thickening (n>1) fluids.
Using eq.s (4) and (5), the shear appearing in(2aan be written as
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n-1
r, =K ou @ ----- (6)
oy| 9y
Now the momentum equation (2) becomes
du_  au_K o[|lou"au)| oB’
u—+v—=—||— —|——u @)
ox dy poy(|dy] dy) p

Method of Solution :
We shall transform equation (2) into a ordinaryfetiééntial equation amenable to a numerical solutfeor this
purpose we introduce a similarity transformatiovegi as

1 1
Re |1y x/ L+
= Re ™y U e e 2 8
7 (X/L] Yy (Re] o @

wheren is the similarity variablef(n) is the dimensional stream function, L is the eletgristic length and Re is the
generalized Reynolds number defined as

-n LFI
Re= 'OU“+ _____ 9)
K

The continuity equation (1) is satisfied by introthg a stream functiogp such that

0 0
u=2¢% and v=-2% (10)

oy 0x
Using the similarity transformation, equation (2}iansformed into the ordinary differential eqoatof the form

| n , 1 n I
(7o) st wr-mer=0 (11)
n+1
2

where M = —— X is the magnetic parameter

00

The transformed boundary conditions are
f(0)=0, f '(O) =& and f '(00) =1 (12)

wheree = U,/ U,, is the velocity ratio parameter. We note that whe 0 (stationary plate) an n = 1 (Newtonian
fluid), the present problem reduces to the clas8tasius problem. When < 0, the fluid and the plate move in the
opposite directions, while they move in the sanreation where >0. The case 0 € < 1 is when the speed of the
plate is less than those of the fluid and the oppdstrue wherg >1. Moreoverg = 1 corresponds to the case when
the plate and the fluid move with the same velodityr brevity, in this study we consider only tlases < 1.

To solve the transformed governing equation (11 wWie boundary conditions (12), first equation)(ikllinearized

using the Quasi linearization technique [15].
Then equation (11) is transformed to

n[F"’(f")n_l‘F frn(F")n—l_Frrr(Frr)n—l]+ 11[Ff "+ an_FFn]_Mfr :O (13)
n

where F is assumed to be known and the above equat) can be expressed in the simplified form as
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A)f"'+A2f"+A3f'+A4f=A\3_A1[f"]n_l _____ (14)
. _ . . 1
h = F" n 1, - Fm - F
where Alil=n(F") Ali]=nF" Alil=—F
. . 1
=-M Alil=——F"
AS[I] , 4[|] n+1
. _ 1
- F m F my n-1 FF "
Ali] = nF"(F7)"™ +
Using implicit finite difference formulae, the edisms (14) is transformed to
BJ[i1f[i +2]+B[i] f[i +1] + BJi] f[i]+ BJi] f[i -1] = B,[i] (15)
where BJi] = 2A[i] Ba[i] = -6A[i] + 2hA4[i] +h?A4]i]
B[] = 6A[i] - 4hAJ[i] +2h3A[i] Bi] = -2A[i] + 2hA[i] - h?A4]i]

Bdli] = 2n*{ Adil — AL [FTi]]"™

here ‘h’ represents the mesh sizesjindirection. Equation (15) are solved under the lolaumy conditions (12) by
Gauss-Seidel iteration method and computations wamged out by using C programming. The numecédlitions
of f are considered as (n™M9rder iterative solutions and F are tfeander iterative solutions. After each cycle of

iteration the convergence check is performed, hagtocess is terminated WI+En— f| <10™.

RESULTSAND DISCUSSION

For negative values @fthere is a critical valug, with two solution branches feg<e<0, unique solution fog = €,

a saddle-node bifurcation &t €. and no solution fog < €.. The boundary layer approximation breakdowa atk,

and thus no solution is obtained for $ox €.. These values &f. are given in table 1 which are in good agreement
with Klemp and Acrivos [4], Hussaini et .al [6] aAghuar Ishak and Norfifah Bachok [14] for Newtoniffuid. It is
seen from the table 1 that the increase of poweritalex n decreases the critical value of veloritlyo parameter

€.

The fluid velocity profiles f '(/7) are shown in figures 1-4 for various flow parameteagnetic field parameter M,
power-law index n and velocity ratio paramegeFigure 1 shows that with the increase in the eslof power-law
index n, velocity profilesf '(/7) increases for a positive value of velocity ratiogmaetere = 0.5 in the absence of
magnetic field. The velocity profiled '(17) for seleted values of n presented in the absehmeagnetic field show
that the far field boundary condition is approachsgimptotically ( i.e. the velocity gradient atgardistance from
the plate is zero). It is evident from the fig@réhat for each value of power-law index n consdethere exist two
different profiles for velocity ratio parameter= -0.25, which support the dual nature of the totu Figure 2(a)
drawn for lower branch and figure 2(b) drawn fopapbranch with velocity ratio parameter -0.25 shows that
the velocity profiles f '(17) increases with the increase of power-law index iis kiso observed that the effect of
power-law index n is more in upper branch for pseplédstic fluids ( n < 1). The effect of magnetield M is
shown in figure 3 with velocity ratio parameter 0.5 for different fluids such as (a) pseudo-ftaiuid (n = 0.6),
(b) Newtonian fluid (n = 1.0) and (c) dilatant fuin = 1.4). The effect of magnetic field paramekéris to

decelerate the fluid flow velocityf '(7)in all the cases (a), (b) and (c). Figure 4 is shder velocity profiles
f '(/7) (upper branch) for different values of magnet&diparameter M with velocity ratio parameter-0.25 for
different fluids such as (a) pseudo-plastic fludd= 0.6), (b) Newtonian fluid (n = 1.0) and (c)adnt fluid (n =
1.4). The effect of magnetic field parameter Mageduces the velocity profile§ '(17) far away from the plate and
reverse phenomenon is observed near the plate.
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Fig. 1. Velocity Profiles f'for different values of power-law index n with € = 0.5and M = 0.0.
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Fig. 2. Velocity Profiles f'for different values of power-law index n with € =-0.25 and M = 0.0.
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Fig. 3. Velocity Profiles f' for different values of M agnetic parameter M with € = 0.5.

(a) n = 0.6 (Pseudo plastic fluid)

(b) n = 1.0 (Newtonian fluid) (c) n=1.4 (dilatant fluid)
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Fig. 4. Velocity Profiles f' for different values of M agnetic parameter M with € = -0.25.

(a) n = 0.6 (Pseudo plastic fluid) (b) n = 1.0 (Newtonian fluid)

Tablel: Variation of & power-law index n

n £
0.6 | -0.3532
0.8 | -0.3641
1.0 | -0.3816
1.2 | -0.3975
1.4 | -0.4996

Nomenclature:

B — Magnetic field intensity

Dj — stretching tensor

f - Dimensionless stream function

K — consistency coefficient

L — Characteristic length of the plate

n — power-law index

Re — generalized Reynolds number

U,,— Free stream velocity

u, v — Velocity components along and normal topllage
X, ¥ - Coordinates along and perpendicular to thete
n — Dimensionless similarity variable

{ - stream function

p — Density

o — Electrical conductivity

& — velocity ratio parameter

T,y - Shear stress
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(c) n= 1.4 (dilatant fluid)
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