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ABSTRACT 
 
The problem of steady, two-dimensional laminar flow of a power-law fluid passing through a moving flat plate 
under the influence of transverse magnetic field is studied. The resulting governing partial differential equation is 
transformed into a non linear ordinary differential equation using appropriate transformation. This non linear 
ordinary differential equation is linearized by using Quasi-linearization technique and then solved numerically by 
using implicit finite difference scheme. The system of algebraic equations is solved by using Gauss-Seidal iterative 
method. The solution is found to be dependent on various governing parameters including magnetic field parameter 
M, power-law index n and velocity ratio parameter ε. A systematical study is carried out to illustrate the effects of 
these major parameters on the velocity profiles. It is found that dual solutions exits when the plate and the fluid 
move in opposite directions, near the region of separation. 
 
Keywords: Magnetic field parameter, Non-Newtonian fluids, power-law index, Quasi-linearization and finite 
difference method. 
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INTRODUCTION 

 
Fluids for which the relationship between the shear stress and rate of strain is non linear through the origin at given 
temperature and pressure are said to be non-Newtonian. The subject of boundary-layer flow on a continuously 
moving surface traveling through a quiet ambient fluid is currently one of important in view of its relevance to a 
number of engineering processes. Flows due to a continuously moving surface is encountered in several processes 
for thermal and moisture treatment of materials, particularly in processes involving continuous pulling of a sheet 
through a reaction zone, as in metallurgy , in textile and paper industry, in the manufacture of polymeric sheets, 
sheet glass and crystalline materials. An example for a continuously moving surface is a polymer sheet or filament 
extruded continuously from die, or a long thread traveling between a feed roll and wind-up roll. Sakiadis [1] was the 
first to investigate the flow due to sheet issuing with constant speed from a slit into a fluid at rest, he has considered 
the problem of forced convection along an isothermal moving plate. Tsou et.al [2] studied flow and heat transfer in 
the boundary layer on a continuously moving surface whereas Soundalgekar and Murthy [3] studied the heat transfer 
problem by assuming the plate temperature to be variable. 
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Klemp and Acrivos [4] demonstrated a method for integrating the boundary layer equations through a region of 
reverse flow and applied it to the problem of uniform flow past a parallel flat plate of finite length whose surface has 
a constant velocity directed opposite to that of main stream. Similar problems were considered by Abdelhafez [5], 
Hussaini et. al [6] and Ishak et. al [7]. All of the above investigators, however restrict their analysis to the flow of 
Newtonian fluids. Most fluids such as molten plastics, artificial fibres, drilling of petroleum, blood and polymer 
solutions are considered non-Newtonian fluids. Schowalter [8] has introduced the concept of the boundary layer in 
the theory of non-Newtonian power-law fluids. Acrivos, Shah and Petersen [9] have investigated the steady laminar 
flow of non- Newtonian fluids over a plate.   
 
Howell et.al [10]  and Rao et.al [11] have studied the momentum and heat transfer on a continuous moving surface 
in a power-law fluid. Kumari and Nath [12] discussed over a continuously moving surface with a parallel free 
stream.  
 
Mahmoud and Mahmoud [13] had given the analytical solutions of hydromagnetic boundary-layer flow of a non-
Newtonian power-law fluid past a continuously moving surface. Recently, Anuar Ishak [14] have investigated the 
steady boundary-layer flow of a non-Newtonian power-law fluid over a flat plate in a moving fluid. 
 
The object of the present paper is to study the magnetic effects on a steady, two-dimensional laminar flow of a 
power-law fluid passing through a moving flat plate. The numerical solutions are carried out by using the implicit 
finite difference scheme.  
 
Mathematical Formulation: 
Consider a steady, two dimensional laminar flow of a power-law fluid passing through a moving flat plate with 
constant velocity Uw, in the same or opposite direction to the free stream U∞ . The x – axis extends parallel to the 
plate, while the y-axis extends upwards, normal to it. Also, a magnetic field of strength B is applied in the positive 
y-direction, which produces magnetic effect in the x-direction. The boundary layer equations governing the flow in a 
power-law fluid are  
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where u and v  are the velocity components along the x and y axes, respectively, τxy is the shear stress and ρ is the 
fluid density. The boundary conditions are  
 
u = Uw,  v = 0  at  y = 0,       
u → U∞   as  y → ∞                   -----(3) 
 
The stress tensor is defined as  
 

i.e. ,22
2)1(

ij

n

klklxy DDDK
−=τ      -----(4) 

where














∂
∂

+
∂
∂

i

j

j

i
ij x

u

x

u
D

2

1
       -----(5) 

denotes the stretching tensor, K is the consistency coefficient and n is the power-law index. The index n is non-
dimensional, and the dimension of K depends on the value of n. The two- parameter rheological eq. (4) is known as 
the Ostwald-de-waele model or, more commonly, the power-law model. The parameter n is an important index to 
subdivide fluids into pseudo plastic fluids (n<1) and dilatant fluids (n>1). For n = 1, the fluid is simply the 
Newtonian fluid. Therefore, the deviation of n from unity indicates the degree of deviation from Newtonian 
behaviour. With n ≠ 1, the constitutive eq. (4) represents shear thinning (n<1) and shear thickening (n>1) fluids. 
Using eq.s (4) and  (5), the shear appearing in  eq. (2) can be written as  
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Now the momentum equation (2) becomes    
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Method of  Solution : 
We shall transform equation (2) into a ordinary differential equation amenable to a numerical solution. For this 
purpose we introduce a similarity transformation given as  
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where η is the similarity variable, f(η) is the dimensional stream function, L is the characteristic length and Re is the 
generalized Reynolds number defined as  
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The continuity equation (1) is satisfied by introducing a stream function ψ such that 
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Using the similarity transformation, equation (2) is transformed into the ordinary differential equation of the form 
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  is the magnetic parameter  

The transformed boundary conditions are 
 

1)()0(,0)0( =∞′=′= fandff ε    -----(12) 

 
where ε = Uw / U∞  is the velocity ratio parameter. We note that when ε = 0 (stationary plate) an n = 1 (Newtonian 
fluid), the present problem reduces to the classical Blasius problem. When ε < 0, the fluid and the plate move in the 
opposite directions, while they move in the same direction when ε >0. The case 0 < ε < 1 is when the speed of the 
plate is less than those of the fluid and the opposite is true when ε >1. Moreover, ε = 1 corresponds to the case when 
the plate and the fluid move with the same velocity. For brevity, in this study we consider only the case ε ≤ 1. 
 
To solve the transformed governing equation (11) with the boundary conditions (12), first equation (11) is linearized 
using the Quasi linearization technique [15].  
Then equation (11) is transformed to  
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where F is assumed to be known and the above equation (13) can be expressed in the simplified form as  
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Using implicit finite difference formulae, the equations (14) is transformed to   
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where   B0[i] = 2A0[i]     B1[i] = -6A0[i] + 2hA1[i] +h2A3[i] 
B2[i] = 6A0[i] - 4hA2[i] +2h3A4[i]                               B3[i] = -2A0[i] + 2hA2[i] - h

2A3[i] 

B5[i] = 2h3{ A 5[i] – A1 
1]][[ −′′ niF } 

 
here ‘h’ represents the mesh size in η  direction. Equation (15) are solved under the boundary conditions (12) by 

Gauss-Seidel iteration method and computations were carried out by using C programming. The numerical solutions 
of  ƒ  are considered as (n+1)th order iterative solutions and F are the nth order iterative solutions. After each cycle of 

iteration the convergence check is performed, and the process is terminated when 410−<− fF . 

 
RESULTS AND DISCUSSION 

 
For negative values of ε there is a critical value εc with two solution branches for εc<ε<0, unique solution for ε ≥ εc, 
a saddle-node bifurcation at ε = εc and no solution for ε <  εc. The boundary layer approximation breakdown at ε = εc 
and thus no solution is obtained for   for ε < εc. These values of εc are given in table 1 which are in good agreement 
with Klemp and Acrivos [4], Hussaini et .al [6] and Anuar Ishak and Norfifah Bachok [14] for Newtonian fluid. It is 
seen from the table 1 that the increase of power-law index n decreases the  critical value of velocity ratio parameter 
εc. 
 
The fluid velocity profiles )(ηf ′ are shown in figures 1-4 for various flow parameters magnetic field parameter M, 

power-law index n and velocity ratio parameter ε. Figure 1 shows that with the increase in the values of power-law 
index n, velocity profiles )(ηf ′ increases for a positive value of velocity ratio parameter ε = 0.5 in the absence of 

magnetic field. The velocity profiles )(ηf ′  for seleted values of n presented in the absence of magnetic field show 

that the far field boundary condition is approached asymptotically ( i.e. the velocity gradient at large distance from 
the plate is zero).  It is evident from the figure 2 that for each value of power-law index n considered, there exist two 
different profiles for velocity ratio parameter ε = -0.25, which support the dual nature of the solution. Figure 2(a) 
drawn for lower branch and figure 2(b) drawn for upper branch with velocity ratio parameter ε = -0.25 shows that 
the velocity profiles )(ηf ′ increases with the increase of power-law index n. It is also observed that the effect of 

power-law index n is more in upper branch for pseudo-plastic fluids ( n < 1). The effect of magnetic field M is 
shown in figure 3 with velocity ratio parameter ε = 0.5 for different fluids such as (a) pseudo-plastic fluid (n = 0.6), 
(b) Newtonian fluid (n = 1.0) and (c) dilatant fluid (n = 1.4). The effect of magnetic field parameter M is to 
decelerate the fluid flow velocity )(ηf ′ in all the cases (a), (b) and (c). Figure 4 is shown for velocity profiles 

)(ηf ′  (upper branch) for different values of magnetic field parameter M with velocity ratio parameter ε - -0.25 for 

different fluids such as (a) pseudo-plastic fluid (n = 0.6), (b) Newtonian fluid (n = 1.0) and (c) dilatant fluid (n = 
1.4). The effect of magnetic field parameter M is to reduces the velocity profiles )(ηf ′ far away from the plate and 

reverse phenomenon is observed near the plate. 
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Fig. 1. Velocity Profiles f ′ for different values of power-law index n with εεεε = 0.5 and M = 0.0. 
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Fig. 2. Velocity Profiles f ′ for different values of power-law index n with εεεε = -0.25 and M = 0.0. 

(a) Lower Branch  (b) Upper Branch 
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Fig. 3. Velocity Profiles f ′  for different values of Magnetic parameter M with εεεε = 0.5. 

(a) n = 0.6 (Pseudo plastic fluid)        (b) n = 1.0 (Newtonian fluid)       (c) n = 1.4 (dilatant fluid) 
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Fig. 4. Velocity Profiles f ′  for different values of Magnetic parameter M with εεεε = -0.25. 
(a) n = 0.6 (Pseudo plastic fluid)        (b) n = 1.0 (Newtonian fluid)       (c) n = 1.4 (dilatant fluid) 

 
Table 1 : Variation of εεεεc power-law index n 

 
n εc 

0.6 -0.3532 
0.8 -0.3641 
1.0 -0.3816 
1.2 -0.3975 
1.4 -0.4996 

Nomenclature : 
B – Magnetic field intensity 
Dij – stretching tensor 
f   - Dimensionless stream function 
K – consistency coefficient  
L – Characteristic length of the plate 
n – power-law index 
Re – generalized Reynolds number 
Uw – Free stream velocity 
u, v – Velocity components along and normal to the plate 
x, y - Coordinates along and perpendicular to the plate 
η – Dimensionless similarity variable 
ψ  - stream function 

ρ – Density 
σ – Electrical conductivity 
ε – velocity ratio parameter 
τxy - Shear stress  
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