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Bovine Tuberculosis (BTB) is a contagious and potentially life-threatening infectious disease of cattle 
caused by Mycobacterium bovis (M. bovis) that lives in various environment depending on prevailing 
weather conditions (Temperature and humidity). Globally, the BTB is one of the diseases with utmost 
public health challenges which places economic and financial burdens on the society. To curb the 
disease, a mathematical model for the spread of BTB among human and cattle populations including 
preventive measures was formulated. The model analysis focused on the existence of disease-free 
and endemic equilibria points and their stabilities. The study used normalized forward sensitivity 
index method to analyze the model, and results revealed that the most sensitive parameter is the 
contaminated environment or inter-cattle transmission. Moreover, the study determined the best way 
of curbing the spread of BTB disease in the human and cattle populations using three interventions: 
public health education campaign, treatment and vaccination. Subsequently, the study performed 
numerical simulations whose results affirm the positive effects of a combination of control measures 
on the magnitude of infections among human and cattle population.

Keywords: Mycobacterium bovis; Bovine Tuberculosis (BTB), Spectral radius; Most sensitive; Bifurcation 
coefficients; Stability analysis; Runge-Kutta fourth (RK4) order

INTRODUCTION
Bovine Tuberculosis (BTB) is a contagious and life-threatening 
infectious disease of cattle. The bacterium Mycobacterium 
bovis (M. bovis) that causes disease, can also afflict many 
other mammals such as humans, goats, pigs, cats and dogs. 
BTB remains a significant challenge in both human and animal 
health worldwide. It poses a substantial economic burden, 
particularly in regions heavily reliant on live-stock agriculture.

In 1993, the disease was declared a global state of emergency.
Despite our knowledge of how to effectively prevent and cure
BTB through half a century of development and progress,
more than 1.6 million people have still died from it. In 2014,
BTB claimed the lives of 1.5 million people, including 890,000
men, 480,000 women, and 140,000 children. India, Indonesia,
and China had the largest number of cases, accounting for
23%, 10%, and 10% of the global total, respectively.
Traditional control measures, such as culling infected animals
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and movement restrictions, have had limited success in
curbing the transmission of BTB. To address this complex
issue, researchers have increasingly turned to mathematical
modelling to gain insights into the dynamics of BTB
transmission and assess the potential impact of various
control strategies. This study delves into the mathematical
modelling of BTB transmission dynamics, with a novel focus
on the synergistic role of a combination of vaccination,
treatment, and education campaigns as control measures [1].

The transmission route entails direct, close contact through
inhaling sputum droplets (thick mucus produced in the lungs)
contaminated with M. bovis bacteria exhaled by infected
animals. On the other hand, indirect transmission of the
disease can occur when one comes into contact with an
infected animal or ingests material heavily contaminated with
M. bovis, such as sputum, pus, urine, feces, and other
excrement of infected animals. There are inherent practical
difficulties associated with detecting M. bovis in
environmental samples. However, the bacteria have been
traced in diverse sources, such as soil, excrement, hay, and
pasture.

Bovine Tuberculosis: A Global Challenge

Bovine tuberculosis poses a substantial threat to both animal
and human populations. In cattle, it results in reduced milk
and meat production, increased slaughterhouse
condemnation rates, and trade restrictions, contributing
significantly to economic losses in affected regions. In
humans, zoonotic transmission of BTB remains a concern,
particularly in areas where close contact with infected cattle
occurs. Given its impact on both public health and the
livestock industry, BTB demands innovative and effective
control measures [2-5].

Mathematical Modelling in Infectious Disease Control

Mathematical modelling has proven to be a powerful tool in
understanding and predicting the dynamics of infectious
diseases. In the context of BTB, previous studies have
employed compartmental models, network models, and
agent-based models to simulate disease spread and evaluate
control strategies. These models have provided valuable
insights into the role of factors such as cattle demographics,
wildlife reservoirs, and testing protocols in BTB transmission
dynamics.

Individual Control Measures

Many studies have assessed the efficacy of individual control
measures, such as vaccination and antimi-crobial treatment,
in reducing BTB prevalence. Vaccination with Bacillus
Calmette-Gu´erin (BCG) has shown promise in reducing the
severity of BTB in cattle. Antimicrobial treatment can help
clear infections but is often logistically challenging due to the
lengthy treatment duration and concerns about antibiotic
resistance.

MATERIALS AND METHODS
Education Campaigns as a Control Measure

Education campaigns aimed at promoting best practices in 
cattle management, biosecurity measures, and early disease 
detection have been recognized as crucial components of BTB 
control. These campaigns empower farmers and stakeholders 
with knowledge to reduce the risk of BTB transmission within 
and between herds.

In Africa and Europe, bovine tuberculosis is a serious threat to 
the economy as well as human and animal health. For 
example, presented a deterministic model for examining the 
impact of separating two large human populations based on 
the probability of coming into contact with cattle for the 
prevention of bovine tuberculosis. The model encompasses 
three types of incidents: Those occurring between cattle, 
between humans, and between cattle and humans. The 
results of the study, based on the stability of the disease-free 
equilibrium and sensitivity analysis of the model’s parameters, 
showed that quarantine measures for cattle and the 
parameter related to medical masks significantly contributed 
to reducing the basic reproduction number and, 
consequently, decreasing the disease transmission rate. The 
effects of vaccines on cattle, treatments, public health 
education campaigns for humans, and communal water 
source sharing, in relation to disease transmission, were not 
fully considered.

The study by also presented a dynamic mathematical model 
for the transmission of bovine BTB. The results from the 
model simulations supported vaccine administration as the 
best strategy for reducing BTB infections. Furthermore, they 
suggested that coupling a public health education campaign 
with treatment for humans could maintain R0 below one, 
significantly reducing the spread of bovine tuberculosis. 
However, their study did not address the impact of treatment 
as a measure for controlling the transmission dynamics of 
bovine tuberculosis.

A study by revealed that the use of slaughter and quarantine 
methods to reduce the number of infectious cattle was found 
to be the most important control measures to minimize the 
prevalence of BTB disease.

The study done by revealed that a relatively high proportion 
of BTB infections in the Ngorongoro district are due to the 
husbandry practices of a semi-nomadic system where the 
Maasai search for water and pasture during the dry season. It 
is recommended that implementing an education campaign 
for cattle owners would be the best solution.

In developing countries such as Tanzania, Bovine Tuberculosis 
(BTB) remains a serious threat to human health because the 
disease is still largely hidden in society. Reported cases of BTB 
in Tanzania are concentrated in specific regions, including the 
Northern part of the country (Arusha, Kilimanjaro, and 
Manyara), dairy farms in Kibaha, and some areas in Morogoro 
districts. The prevalence of the disease varies from one region 
to another, depending on the concentration of cattle herds in 
a particular place, ranging from 0.2 percent to 13.3 percent.
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Novelty of the Study

While previous research has explored individual control 
measures in isolation, this study stands out for its innovative 
approach in combining vaccination, treatment, and education 
campaigns within a mathematical modelling framework. 
Investigating the synergistic effects of these measures can 
provide a more comprehensive understanding of their 
potential impact on BTB transmission dynamics. Moreover, it 
addresses the practical question of how these measures can 
be integrated into a cohesive control strategy to reduce both 
the prevalence of BTB and its economic burden [6-10].

Model Formulation

The model under consideration here entails two populations: 
humans and cattle, which often come into contact. The 
management system for grazing is a ranching system in which 
only cattle are confined. The model operates on the 
assumption that at any time t, the human population, 
denoted by Nh(t), is divided into five classes: Susceptible non-
educated (Snh(t)), Susceptible educated (Seh(t)), Exposed 
(Eh(t)), Infectious (Ih(t)), and Recovered (Rh(t)) individuals.

The total human population Nh(t) is given by Nh(t)=Snh(t)+ 
Seh(t)+Eh(t)+Ih(t)+Rh(t).

The recruitment of humans into the susceptible non-educated 
class occurs at a constant rate πh. The assumption is that the 
education strategy is executed at a rate of ψ only for 
susceptible, non-educated humans to reduce the disease’s 
transmissibility. Moreover, the study assumes that the 
education given to a targeted group does not necessarily 
guarantee lifelong protection. Susceptible non-educated 
humans can acquire infection through the consumption of 
cattle products and aerosols from infected cattle, as well as 
through inter-human transmission at the rate φ1, and then 
move to the exposed class. The variable φ1 is the force of 
infection given by

where a1 and a2 are probabilities that infectious cattle and 
human infects susceptible non educated humans, respectively
and θ ∈ [0, 1] is the efficacy of the education campaign that is 
being implemented. Furthermore, an educated human may 
contract the disease by consuming contaminated cattle 
products and inhaling aerosols from infected cattle at the rate
φ2, leading to a transition to the exposed class. The variable 
φ2 represents the force of infection for susceptible educated 
humans.

where a is the probability that infectious cattle infects
susceptible educated human. If no education campaign is

extended to susceptible non-educated human, then θ=0. Both 
educated and non-educated susceptible humans may leave 
their respective classes following the occurrence of natural 
death at a rate of µh. Some of the exposed individuals leave 
the compartment upon gaining full recovery, denoted as ρh, 
due to treatment and a natural or disease-induced death rate 
of µh and αh, respectively. Considering the transmission 
dynamics of BTB disease, the study assumes that the 
treatment does not guarantee permanent protection. As such, 
recovered humans may either progress to the exposed class at 
a rate of τh or leave the compartment following the 
occurrence of natural death at a rate of µh. This study 
presupposes that at any time t, the cattle population denoted 
by Nc(t) is divided into four classes, of Susceptible non-
vaccinated Snv(t), Susceptible vaccinated Sv(t), Exposed Ec(t) 
and Infectious Ic(t) cattle. The total cattle population Nc(t) is 
given by Nc(t)=Snc(t)+Sv(t)+Ec(t)+Ic(t). At any given time t, it is 
also presumed that cattle are recruited into the non-
vaccinated cattle group at a constant rate πc. Healthier cattle 
are vaccinated at a rate ω to reduce the transmission of M. 
bovis from the contaminated environment and inter-cattle 
transmission. Susceptible non-vaccinated cattle can contract 
infections from their respective environment, inter-cattle 
transmission, and infection from infected humans. The 
progression to the exposed class occurs at a rate σ1. The 
variable σ1 represents the force of infection for non-
vaccinated cattle.

Where ε1 is the probability of an infected human infecting 
susceptible, non-vaccinated cattle. Moreover, the 
presumption is that it is difficult to differentiate infected cattle 
from a contaminated environment or from inter-cattle 
transmission. ε2 is the rate at which cattle get infected 
through nose-to-nose contact, aerosol inhalation, grazing 
areas, and all other environmental elements that can infect
cattle. λ ∈ [0, 1] represents the vaccine efficacy. If no 
susceptible cattle are vaccinated, then λ=0. Furthermore, 
vaccinated cattle may contract infection from both a 
contaminated environment and inter-cattle transmission at 
the rate σ2, leading them to move to the exposed class. The 
variable σ2 constitutes the force of infection for susceptible 
vaccinated cattle, as given by

Where ε represents the probability that an infected human
will transmit the disease to susceptible vaccinated cattle. Both
vaccinated and non-vaccinated susceptibles may leave their
respective classes due to natural death at a rate of µc.
Exposed cattle also exit this class, either because of natural
death 5 at a rate of µc or due to progressive incubation into
the infectious class at a rate of γc. Furthermore, infected
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cattle exit the class through natural death at a rate of µc and 
disease-induced death at a rate of αc (Figure 1).

Model Diagram

Figure 1: Schematic flow diagram for the dynamics of bovine 
tuberculosis disease in the presence of some intervention 
strategies for model.

Model Equations

The biological description and schematic flow diagram in 
Figure 1 together result in the following system of nine 
nonlinear ordinary differential equations (Table 1).

Table 1: Parameters and their descriptions.

Parameter Description Values

πh Human recruitment rate 36

πc Cattle recruitment rate 200

a1 Probability that infectious cattle infects
susceptible non-educated human

0.55

a2 Contaminated environment/inter-human 
transmission

0.35

a Probability that an infectious cattle infect a
susceptible educated human

0.000010995

ε1 Probability that an infectious human infects a
susceptible cattle

0.000057803

ε2 Contaminated environment/inter-cattle
transmission

0.908

ε Probability that an infected human infects a
susceptible vaccinated cattle

0.000016252

ρh Human recovery rate with treatment 0.098

τh Removal rate to latent state 0.01

γh Progression rate to infectious state 0.18

γc Progression rate to infectious state 0.18

µh Human natural death rate 0.0023

µc Cattle natural death rate 0.013

αh Human death rate due to disease 0.139

αc Cattle death rate due to disease 0.12
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θ Education efficacy 0.75

λ Vaccine efficacy 0.25

ψ Per capita education rate 0.85

ω Per capita vaccination rate 0.67

Basic Properties of the Model

Positivity of the solutions: To ensure that the model (1) is 
epidemiologically meaningful and well-posed, it is necessary
to demonstrate that all state variables are non-negative ∀t ≥ 
0.

Lemma 1. Let {Snh(0) ≥ 0, Seh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 
0, Snv(0) ≥ 0, Sv(0) ≥ 0, Ec(0) ≥ 0 and Ic(0) ≥ 0 } of themodel 
system (1) are satisfied then the solutions {Snh, Seh, Eh, Ih, Rh, 
Snv, Sv, Ec, Ic } are non-negative for all t ≥ 0 in Ω.

Proof. From the first equation of system (1),

In the absence of human recruitment πh it follows that

Upon integration gives,

In the same way, the remaining state variables give;

Therefore, the solution set {Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic} of 
the model system (1) is non negative for all t ≥ 0 in Ω.

Invariant Region

Lemma 2. The feasible region defined by Ω=Ωh ∪ Ωc ∈ R5
+ × R4

+ 
where Ωh={Snh, Seh, Eh, Ih, Rh ∈ R5

+: Snh+Seh+Eh+Ih+Rh=Nh ≤ πh/ 
µh} and Ωc = {Snv, Sv, Ec, Ic ∈ R4

+:Snv+Sv+Ec+Ic=Nc ≤ πc/µc},
is positively invariant and attracting with regard to the model 
system (1).

Proof. Given Snh (0) ≥ 0, Seh (0) ≥ 0, Eh (0) ≥ 0, Ih (0) ≥ 0, Rh (0) ≥ 
0, Snv (0) ≥ 0, vs. (0) ≥ 0, Ec (0) ≥ 0 and Ic (0) ≥ 0, it is sufficient 
to prove that {Snh(t), Seh(t), Eh(t), Ih(t), Rh(t), Snv(t), Sv(t), Ec(t), 
Ic(t)} ∈ R9

+ is bounded.

Case 1: By summing equations for human population from 
model system gives;

Separating variables and applying anti-derivative of an integrating 
factor it gives;

The same procedure can be used to prove that;

Since the total population Nh(t) as well as Nc(t) is positive for all 
t ≥ 0. It is well defined that,

This proves that all solutions of the BTB model system (1) with 
initial conditions in Ω for all t>0.
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Model Analysis

Disease free equilibrium: Disease-Free Equilibrium (DFE) of 
the mathematical model system (1) is the point where there is 
no disease. Disease-free equilibrium point is obtained by
setting Eh=Ih=Rh=Ec=Ic=0 in all equations. Now, Let E0 be 
disease-free equilibrium point. Therefore, the Disease Free
Equilibrium Point (DFE) denoted by E0 can be expressed as

The Effective Reproduction Number

The Effective Reproduction Number (Re) is the expected 
number of secondary cases produced by a single (typical) 
infection in a completely susceptible population and in non-
susceptible hosts [6,7,10]. Effective reproduction number (Re) 
is the the spectral radius of the next-generation matrix, 
denoted 10 by Re=ρ(FV−1) at DFE with F and V, respectively 
given by

It follows that the effective reproduction number of the
model system (1), is given by

such that,

So, when there is no intervention strategy such that ψ=0 and 
ω=0,” which refers to the education campaign and vaccination 
rate,” and without any treatment for individual humans being 
implemented (ρh=0), then the basic reproduction number R0 
will be

Biologically, it is meaningful to compare the threshold values: 
the basic reproduction number without a vaccine, denoted as 
R0, and the effective reproduction numbers with and without 
a vaccine, denoted as Rv and Re respectively, such that 
Re<Rv<R0. The basic reproduction number, often denoted as 
R0, plays a crucial role in epidemiological studies by 
facilitating predictions of future infections of interest. When 
the basic reproduction number is less than one (R0<1), it 
implies that, on average, an infectious individual leads to the 
infection of fewer than one other individual. Consequently, 
over time, the bTB disease could naturally die out, leading to a 
population free from BTB. In other words, both the human 
and cattle populations would remain free from the disease 
invasion if R0<1 [11-15].

Conversely, if the basic reproduction number (R0) is greater 
than one, it implies that each infected individual, on average, 
will lead to more than one newly infected individual. In this 
scenario, the infection persists, causing the disease to 
continue spreading in the population. Therefore, if R0>1, BTB 
will continue to spread

Local Stability of Disease-Free Equilibrium (DFE)

The local stability analysis of DFE enables us to understand 
how a system behaves near an equilibrium point, but not 
necessarily at a specific equilibrium point. In other words, 
local stability investigates the nature of the system in the 
vicinity of the equilibrium point.

Theorem 3.1. The BTB model system at DFE (E0) is locally 
asymptotically stable if Re<1 and unstable if Re>1.

Proof. The Jacobian matrix of the model system at disease 
free equilibrium point (E0) is given by
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From the Jacobian matrix JE0, the first, fifth and seventh
columns contains diagonal entries. Therefore, the diagonals
−µh, −(µh + τh), and −µc are the three eigenvalues of the
Jacobian JE0. Thus, excluding these columns and the
corresponding rows, the remaining eigenvalues are
computed. Then the reduced 6 × 6 matrix from JE0 becomes.

From the Jacobian matrix ξ, the first and fourth columns
contains diagonal entries. Therefore, the diagonals − (µh + ψ)
and − (µc + ω) are the two eigenvalues of the Jacobian ξ. Thus,
excluding these columns and the corresponding rows, the
remaining eigenvalues are computed. Then the reduced 4 × 4
matrix from ξ bec becomes.

Matrices G1, G2, G3 and G4 are defined as follows

Apparently, matrices G3 and G4 are singular matrices with |
G3| = 0 and |G4| = 0. Now, it is sufficient to demonstrate that
the disease-free equilibrium point of the model system (1) is
stable only when the trace and determinant of matrices G1
and G2 are negative and positive, respectively. Trace and
determinant of matrix G1 denoted by Tr(G1) and det(G1) are
respectively given by.

Trace and determinant of matrix G2 denoted by Tr(G2) and
det(G2) are respectively given by

Thus det(G1)> 0 and det(G2)> 0 if and only if Re<1. Since the
traces of matrix G1 and G2 are negative and the determinants
are strictly greater than zero when Re<1, then the disease-free
equilibrium point E0 is locally asymptotically stable when Re<1
and unstable otherwise. Epidemiologically, it implies that the
bTB disease can be eliminated in the endemic area when
Re<1, particularly when the vaccination rate (ω) is kept
constant without limitation, and the education campaign rate
(ψ) is also executed for every individual. Conversely, if Re>1,
then each infectious individual produces more than one new
infected individual, implying that the disease can spread
rapidly in the entire population [16-20].

Global Stability of Disease-Free Equilibrium (DFE)

This subsection analyses the global stability pertaining to DFE
aimed to establish the asymptotic behaviour of the model
system (1) beyond just the neighbourhood points of the
model disease-free steady state.

Lemma 3. The disease-free equilibrium point is globally
asymptotically stable if Re<1 and unstable if Re>1.

Proof. The approach of [6] is used to analyse the global
stability of DFE of the model system (1). Using this approach,
the model system (1) is written as follows.

where ζn stands for classes that do not transmit bTB disease,
that is ζn=(Snh, Seh, Rh, Snv, Sv) T and ζi stands for classes that
can transmit bTB disease, that is ζi=(Ih, Eh, Ec, Ic) T. Here, T
stands for the transposition of ζn and ζi, and also ζE0 is ζn at
DFE (E0). The matrix M1 is obtained by differentiating the non-
transmitting equations of the model system (1) with respect
to non-transmitting variables at E0, whereas the matrix M2 is
obtained by differentiating the non-transmitting equations of
the model system (1) with respect to the transmitting
variables. The disease-free equilibrium point (E0) is globally
asymptotically stable if the eigenvalues of M1 are real and
negative, and if M3 is a Metzler stable matrix with non-
negative off-diagonal elements. Therefore, the model system
(1) yields the following.
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Also,

Since the matrix M1 is a lower triangular matrix, then the 
eigenvalues will be the diagonal entries presented as follows:
ξ1=−(µh+ψ), ξ2=−µh, ξ3=−(µc+ω) and ξ4=−µc which are all 
negative and real. This shows that at the DFE the system dζn/
dt=M1(ζn−ζE0)+M2ζi is globally asymptotically stable. 
Furthermore, the matrix M3 is obtained by differentiating the 
transmitting equations of the model system (1) with respect 
to the transmitting variables which gives

Testing whether the matrix M3 is a Metzler stable matrix 
requires applying the approach as propounded by [16,11]. 
The following Lemma is used.

Lemma 4. Let G be a square Metzler matrix stable which can 
be written in block form

where A and D are square matrices. Then, G is a Metzler 
stable matrix if and only if matrix A and D−CA−1B or matrix D 
and A−BD−1C are Metzler stable.

By comparing the matrix M3 and a square Metzler matrix G, 
then the matrices A, B, C and D are expressed as follows:

After some computations and simplifications,

A − BD−1C is said to be Metzler stable matrix if and only if (µh

+γh) (µh+αh+ρh) ≥ 0. As already noted, it can be seen that
matrix M1 has all the eigenvalues that are real and negative
and matrix M3 is the Metzler matrix as its off-diagonal
elements are so non-negative, that |A−BD−1C| ≥ 0 =⇒ M3(i,j) ≥ 
0 for all indices i ̸= j. Implicitly, that the disease-free equilibrium
point is globally asymptotically stable when Re<1, otherwise it 
is unstable. In biological terms, the bTB disease will eventually
die out in the population given Re<1 no matter how huge the 
disease invaded. Otherwise, if Re>1 the disease will spread 
even more as there will be many new infections in the 
population.

Endemic Equilibrium Point (EEP)

Existence of the equilibrium solutions: The Endemic
Equilibrium (EE) denoted by E∗ such that E∗=(S∗nh, S∗eh, E∗h, 
I∗h, R∗h, S∗nv, S∗v, E∗c, I∗c) is the state where the population is 
not free from the infection. At this point the disease persists in 
the population. In other words, the disease cannot be 
eradicated from the population. In the case of bTB, the 
number of infectious cases is not equal to zero such that, Eh ̸=0,
Ih ̸=0, Rh ̸=0, Ec ̸=0, Ic ̸=0. Setting each equation in the model 
system (1) equal to zero, then the steady state of the system 
becomes.

Finally, when solving for the corresponding variable from
equation (11) the Endemic Equilibrium denoted by E∗=(S∗nh, 
S∗eh, E∗h, I∗h, R∗h, S∗nv, S∗v, E∗c, I∗c) is solved and given by
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where,

From equation (12), the value of I∗h and I∗c is substituted into

and after some algebraic computations and simplifications, a 
polynomial of degree three results Aσ1

∗3+Bσ1
∗2+Cσ1

∗=0. Upon 
algebraic simplification, Aσ1

∗3+Bσ1
∗2+Cσ1

∗=0 results to 
σ1

∗∗Aσ1
∗2+Bσ∗

1+C=0, where σ1
∗=0 or Aσ1

∗2+Bσ∗
1+C=0 

which satisfies Endemic Equilibrium. The value of A is strictly 
positive. Depending on the signs of B and C, there are three 
cases to consider as having positive real root of the force of 
infection (σ∗1) as follows:

Case 1: If B<0 then model system (1) has a stable endemic 
equilibrium point when C<0. This equilibrium happens when 
Re>1 as interpreted from (13). In this case backward

bifurcation is not possible due to the absence of multiple 
equilibria.

Case 2: Exactly one endemic equilibrium point. Suppose B<0 
and C=0 or B2−4AC=0. In other words, the polynomial Aσ1

∗2

+Bσ∗
1+C=0 has just one positive root and hence the model

system (1) has unique endemic equilibrium point.

Case 3: Two endemic equilibria. If B<0, C>0 and B2−4AC>0, 
then the polynomial Aσ1

∗2+Bσ∗
1+C=0 has two positive real 

roots. In other words, the model system (1) has two endemic 
equilibria and hence there is a possibility of backward 
bifurcation. These three cases are summarized under theorem 
3.2.

Theorem 3.2. The number of positive endemic equilibria of 
bovine tuberculosis model (1) is hereunder summarised thus:

If C<0, Re>1, then the system has a unique endemic 
equilibrium.

If B<0 and C=0 or B2−4AC=0, then the system has exactly one 
endemic equilibrium.

If B<0, C>0 and B2−4AC>0, then the system has exactly two 
endemic equilibria.

Otherwise there are no endemic equilibria, i.e., when AC>0 
and B>0.

Stability of Endemic Equilibrium Point (EEP) of Model 
with Interventions

In epidemiological models, forward or backward bifurcation 
has vital implications for the biological control measures of 
infectious diseases. Bifurcation analysis of the equilibrium 
points reveals whether the disease is completely reducible or 
persistent in the afflicted population. This analysis occurs at 
the disease-free equilibrium using Center Manifold theory, as 
presented in [6]. It is done by renaming the state variables of 
the model system as follows.

Resulting system can be written in the form of
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(12)

(13)

corresponds to Disease Free Equilibrium (DFE), whereas Aσ1
∗2

+Bσ∗1+C=0, can also be written in the form:

(14)



Let ε∗2 be the bifurcation parameter, then, the system is a 
system of model equations at disease free equilibrium point
when ε2=ε∗2 with R0=1. Hence, solving for ε∗2 from R0=1 in

Next, the system is transformed with ε2=ε∗2, which possesses 
a simple zero eigenvalue. Center Manifold Theory is employed 
to analyze the dynamics of in the vicinity of ε2=ε∗2. 
Consequently, the Jacobian matrix of the system at the 
disease-free equilibrium, denoted as J (ε∗2), is given by

Now, the right and left eigenvectors associated with the zero 
eigenvalues are calculated. The right eigenvector associated 
with the zero eigenvalue is given by w=(w1, w2, ..., w9)T, 
which results in the following equations:

Solving the system (15) for wi′s, i=1, 2, ..., 9, gives the following 
right eigenvectors

furthermore, to calculate left eigenvector given by v=(v1, v2, ..., v9)T, 
which satisfy v. w=1, the matrix J(ε∗2) is transposed and becomes.

Then solving J(ε∗2)T, the following are obtained
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Solving the system (16) for viʹs, i = 1, 2, ..., 9, yields the following 
left eigenvectors

From [6], Theorem 4:1 is used to establish the conditions for 
the existence of forward or backward bifurcations of the 
endemic equilibrium point near R0=1.

Lemma 5. Consider the following general system of ordinary 
differential equations with a parameter β such that

such that f (0, β) ≡ 0, where 0 is an equilibrium point of the 
system with the following conditions:

is the linearization matrix of the model system (1) around the 
equilibrium 0 with β evaluated at 0.

Zero is a simple eigenvalue of A, and all other eigenvalues of A 
have negative real parts.

Matrix A has a non-negative right eigenvector w and a left 
eigenvector v corresponding to the zero eigenvalue.

The sign of a and b always determines the local dynamics of 
the system around the equilibrium point.

a>0, b>0. When β <0 with |β| ≪ 1; 0 is locally asymptotically
stable and there exists a positive unstable equilibrium; when
0< β ≪ 1; 0 is  unstable and  there exists  a  negative, locally 
asymptotically stable equilibrium.

a<0, b<0. When β <0 with |β| ≪ 1; 0 is locally asymptotically 
stable and there exists a positive unstable  equilibrium; when
0< β ≪ 1; 0 is asymptotically stable equilibrium, and there 
exists a positive unstable equilibrium.

a<0, b<0. When β <0 with |β| ≪ 1; 0 is unstable, and a positive 
unstable equilibrium appears.

a<0, b>0. When β changes from positive to negative, 0 
changes its stability from stable to unstable. Correspondingly, 
a negative unstable equilibrium becomes positive and locally 
asymptotically stable. Particularly, if a>0 and b>0, then, a 
subcritical (or backward) bifurcation occurs at β =0.

Computation of bifurcation coefficients to determine the local 
dynamics of the transformed system (14), the value of an and b 
are computed to probe whether the model system (14) shows 
forward or backward bifurcation. Since v1=v2=v5=v6=v7=0 for 
k=1; 2; 5; 6; 7 then k=3; 4; 8; 9 are considered. For the system 
(14), the associated non-zero second order partial derivatives at 
disease-free equilibrium and at ε2= ε∗2 are given by

For the value of b, it can be shown that there exists a non-
vanishing partial derivative.

Therefore, a<0 and b>0, hence the model system (1) exhibit a 
forward bifurcation.

Lemma 6. The unique endemic equilibrium is guaranteed and 
by 3.2, the model is locally asymptotically stable for R0>1. In 
addition, by 3.2 item (i), the model undergoes backward 
bifurcation when a>0. This holds only if v3<0 and v8<0, 
otherwise it undergoes forward bifurcation.

Oswald S, et alPage 11

Volume 09 • Issue 01 • 041

(16)

(17)



RESULTS AND DISCUSSION

Bifurcation Diagram

Figure 2 illustrates the forward bifurcation (transcritical 
bifurcation) at R0=1 when a<0 and b>0 for a model system 
described by equation (1). Thus, the bifurcation diagram for 
the model system shows that the disease-free equilibrium and 
endemic equilibria exchange stability when R0=1. This scenario 
indicates biologically that the model system (1) is globally 
asymptotically stable at the disease-free level. The equilibrium 
point emerges when R0<1, and a unique endemic equilibrium 
point results whenever R0>1. The unique endemic equilibrium 
point is locally asymptotically stable when R0 is near one. 
Observably, as R0 decreases below one (R0<1), no endemicity 
exists, and the disease wanes. As R0 rises above one (R0>1), 
the disease spreads through the population.

Figure 2: Forward bifurcation diagram for the model system 
(1) illustrating how that the disease-free equilibrium and
endemic equilibria exchange stability when R0=1. The cyan
and blue curve indicate stable equilibria whereas the dashed
red curve signifies unstable equilibrium.

Global Stability of Endemic Equilibrium Point

This subsection deploys the Lyapunov function method to 
study the global stability of the Endemic Equilibrium Point 
(EEP) beyond just the issue of neighborhood equilibrium 
points. The Lyapunov 25 function enables the extension of the 
analysis to capture an enormous region, as opposed to relying 
only on a strip region.

Theorem 3.3. If Re>1, then the bovine tuberculosis disease model 
system (1) has a unique equilibrium point E∗ which is globally 
asymptotically stable.

Proof. Since a suitable Lyapunov function is developed using 
approach, the Lyapunov function will then be applied to 
analyze the global stability of the endemic equilibrium point 
of the model system (1). Therefore, the Lyapunov function is 
developed using the general form as illustrated below:

where ci is a positive constant, xi is the population of the ith
compartment and x∗i is the endemic equilibrium point. Thus, 
the following Lyapunov function is constructed:

Since the chosen function L and its constant are always 
differentiable and continuous, the differentiating L regarding 
time yields the following results:

Substituting the model equations of the model system (1) into 
the equation (18) to obtain

Now, at the endemic equilibrium point of the model system 
(1) the following are results.

Case 1: Considering the differential equations of human 
population, then making πh, ψ, τh, γh and ρh the subject yields 
the following:
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Case 2: Considering the differential equations of cattle 
population and making πc, ω, (µc+γc) and γc the subject yields 
the following:

Now, substituting equations (20) and (21) into the equation, then 
dL/dt becomes.

To investigate the global stability of the endemic equilibrium 
using the Lyapunov function approach at the steady state, set 
dN∗h/dt=0 and dN∗c/dt=0, such that:

Substituting equation (23) and (24) into forces of infections to 
obtain:

After substituting equation (25) into (26), the equation becomes

Simplifying equation (26), it gives
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Therefore, following the idea of the function Φ (Snh, Seh, Eh, Ih, 
Rh, Snv, Sv, Ec, Ic) is non positive, that is Φ (Snh, Seh, Eh, Ih, Rh, 
Snv, Sv, Ec, Ic) ≤ 0 for all (Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic). Then, 
this implies that dL/dt ≤ 0 for all (Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, 
Ic) and it is zero only when Snh=S∗nh, Seh=S∗eh, Eh=E∗h, Ih=I∗h, 
Rh=R∗h, Snv=S∗nv, Sv=S∗v, Ec=E∗c, Ic=I∗c. Therefore, the largest 
compact invariant set in Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic such 
that dL/dt=0 is the singleton (E∗) which is the endemic 
equilibrium point of the model system (1). [20] principle, 
indicates that (E∗) is globally asymptotically in the interior 
region of Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic. Now recalling the 
definition of Lyapunov stability, if L(Snh, Seh, Eh, Ih, Rh, Snv, Sv, 
Ec, Ic)>0 ∀(Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic) ∈ Ω \{E∗}, L(E∗)=0 
and L′(Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic) ≤ 0 ∀(Snh, Seh, Eh, Ih, Rh, 
Snv, Sv, Ec, Ic) ∈ Ω \{E∗}  then,   E∗=(S∗nh, S∗eh, E∗h, I∗h , R∗h,

S∗nv, S∗v , E∗c , I∗c ) is stable. Furthermore, if L(Snh, Seh, Eh, Ih, 
Rh, Snv, Sv, Ec, Ic)>0 ∀(Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic) ∈ Ω\ 
{E∗}, L(E∗)=0 and L′ (Snh, Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic)< 0 ∀(Snh, 
Seh, Eh, Ih, Rh, Snv, Sv, Ec, Ic) ∈ Ω\{E∗} then, E∗=(S∗nh, S∗eh, E∗h, 
I∗h, R∗h, S∗nv, S∗v, E∗c, I∗c ) is asymptotically stable.

Sensitivity and Numerical Analysis

Sensitivity Analysis: The sensitivity analysis helps identify the 
influence of model parameters on the effective reproduction 
number (Re) and disease transmission. It determines which 
parameters and initial conditions affect the model output. 
Additionally, it informs researchers about which parameters 
require more numerical attention. The normalized forward 
sensitivity index of the variable Re depends on the 
differentiability of a parameter p and is defined as follows:

where ψ is a parameter present in effective reproduction 
number Re. For example, the sensitivity index of Re 
corresponding to the parameter α is given as

Other indices are calculated using a similar approach and the 
results are displayed in Table 2 and Figure 3.

Parameter Sensitivity index Parameter Sensitivity index

a1 +3.00524 ×10-6 a2 +3.4392 × 10-8

a +1.10214 × 10-6 ε1 +1.33268 × 10-6

ε +1.67366 × 10-6 ε2 0.999994

ρh −2.10205 × 10-6 γh +1.32496 × 10-6

γc 0.999997 µh +7.8354 × 10−7

µc −0.0694459 αh −4.34908 × 10-7

αc −0.999997 ψ −2.61227 × 10−6

λ −0.33333 ω −0.930551

θ −9.11778 × 10−6  -  -
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Table 2: Sensitivity indices of Re using parameter values in Table 1.



Figure 3: Graph of sensitivity indices of Re with respect to the 
model parameters.

Interpretation of the Sensitivity

Figure 3 displays the sensitivity profile of Re concerning the 
model parameters found within Re. Further analysis reveals 
that the parameters a2, a1, a, ε1, ε2, ε, γh, γc, and µh have 
positive indices, while µc, ρh, αh, alphac, ψ, λ, ω, and θ have 
negative indices. Notably, parameters γc and ε2 exhibit index 
values of +0.999997 and +0.999994, respectively, indicating 
that an increase in these parameters, while keeping other 
variables constant, elevates the effective reproduction 
number Re.

In other words, increasing these parameters heightens the risk 
of a bTB outbreak in the wider population. To minimize 
infections in the cattle population, the rates γc and ε2 must be 
kept sufficiently low to ensure that the removal rate from the 
exposed to infectious class remains minimal, while also 
maintaining a low contact rate in contaminated environments 
and inter-cattle transmission.

On the contrary, the vaccine parameter ω and the induced 
death rate αc emerge as the most negatively sensitive 
parameters, with  index values of  αc=−0.999997 and ω=
−0.930551, respectively. This implies that increasing the value
of ω by vaccinating healthy cattle and the value of αc by
culling infected animals, while keeping other parameters
constant, reduces the effective reproduction number Re, thus
alleviating the disease burden among the cattle population
and promoting disease free conditions in the human
population.

Numerical Simulation

The most effective approach for accurately solving an 
Ordinary Differential Equation (ODE) is to carefully develop an 
exact solution, as discussed in. The chosen method must 
always uphold the standard properties of the approximated 
solution, including consistency and convergence, and it must 
also preserve the qualitative properties of the solution, such 
as boundedness and positivity, as highlighted. In this section, 
we employed the Runge-Kutta fourth (RK4) order method to 
obtain mathematical results for the model system due to its 
heuristic properties within the ODE framework. This method 
is known for its stability and practicality, even with large time 
steps, as demonstrated in previous studies. We utilized the

ODE45 version in MATLAB software to execute the 
computations using the parameter values presented in Table 
1. The initial conditions for the state variables were set as
follows: Snh=15000, Seh=1000, Eh=1000, Ih=500, Rh=300,
Snv=15000, Sv=10, Ec=6000, and Ic=10. These initial
conditions were arbitrarily chosen to illustrate specific
behaviors of the model system (Figure 4).

Evolution of Population against Time

Figure 4: Dynamics of human and cattle populations over time 
with interventions.

Figure 4 depicts the behavior of the infected human and cattle 
populations as time progresses. Figures 4(a) and 4(b) indicate 
that interventions for both the human and cattle populations 
reduce the number of infected individuals significantly. This 
result attests to the existence of the DFE point in the model 
system (1). When ψ=0, ρh=0, and ω=0, it implies that 
interventions are not in place, meaning the populations of 
humans and cattle can never reach zero, no matter how long 
the EE point of the model system persists.

Simulation on the effects of varying some parameter values 
on the model this section presents data derived from the 
performance of the simulation of model system to explore the 
behavior of certain state variables over time. This simulation 
involved varying selected parameter values, as presented in 
Table 1. The simulation results are graphically displayed in 
Figure 5.
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Figure 5: (a) Effect of education efficacy (θ) on infected 
human population and (b) Effect of vaccination efficacy (λ) 
on infected cattle population.



Figure 5 shows that education efficacy (θ) and vaccine efficacy 
(λ) play pivotal roles in reducing infectious hosts in humans 
and cattle. Thus, as education and vaccine efficacy approach 1, 
the number of infectious humans and cattle decreases.

From Figure 6, it can be surmised that the application of 
rifampicin, isoniazid, ethambutol, and pyrazinamide as 
medication for infected humans at the rate ρh and Bacille 
Calmette Gu´erin (BCG) vaccination for infected cattle at the 
rate ω leads to a reduction in the number of infected humans 
and cattle when employed on a large scale and applied 
effectively.

Figure 6: (a) Effect of treatment (ρh) on recovered human 
population and (b) Effect vaccine (ω) on cattle population.

Figure 6(b) reveals that when cattle are vaccinated to at least 
ω ≥ 0.4 with a minimum dose of 20 mg, the number of healthy 
cattle increases rapidly. Additionally, the number of recovered 
humans also rises, as shown in Figure 6(a). Similarly, when 
treatment implementation reaches at least ρh ≥ 0.4, it triggers 
a significant increase in the number of recovered humans.

Simulation on Environmental Contamination

This section presents results from the simulation of the 
infected human and cattle populations when pastures, soil, 
slurry, and hay are presumably heavily contaminated with 
M. bovis, with potential infections stemming from sputum,
pus, urine, feces, and other excretions of infectious animals
(Figure 7).

Figure 7(b) illustrates that the number of infected cattle rises 
as the grazing rate (ϵ2) on the heavily contaminated 
environment increases. However, after several months, the 
number of infected cattle decreases due to the disease.

Simulation on Multiple Intervention Strategies

This section presents data derived from simulating the 
infected human and cattle populations. It explores the 
outcomes resulting from the execution of various intervention 
strategies simultaneous (Figure 8).

Figure 8: (a) Impacts of multiple interventions on infected 
human population and (b) Single intervention on infected 
cattle population.

Figure 8 shows the effects of a different combination of 
interventions (public health education campaigns, treatment, 
and vaccination) on the bTB transmission dynamics. Figure 8 
shows that combining all three intervention strategies 
decreases disease transmission in the endemic area faster 
than using only two interventions.

CONCLUSION
This study has presented the formulation of the model for bTB 
disease transmission in the presence of control strategies, 
which include public health education campaigns, treatment, 
and vaccination. Specifically, it has clearly demonstrated the 
positivity and boundedness of the model system (1) for the 
model’s domain to be biologically and mathematically 
meaningful. The results stemming from the sensitivity analysis 
on all model parameters, aimed at determining their 
relationship with the effective reproduction number (Re), 
show that the probability of cattle contracting M. bovis from 
the contaminated environment, inter-cattle transmission (ε2), 
and the removal rate from the exposed class to the infectious 
class (γc) are the most positively sensitive parameters for the 
effective reproduction number. In contrast, the most 
negatively sensitive parameters are ω (vaccination) and αc 
(induced disease death rate), indicating that all infectious 
cattle are subject to culling in the absence of curative 
medication administration. Moreover, the numerical 
simulation of the model reveals that the combination of all 
interventions has the most significant impact on the control 
of bTB disease. Therefore, these control measures should be
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Figure 7: Impacts of contaminated environment (ϵ2) on (a) 
Infected human population and (b) Infected cattle 
population.



implemented concurrently, especially in endemic areas, to 
effectively control bTB disease transmission.
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