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ABSTRACT 
 
The aim of the present work is to study the influence of mass transfer on unsteady hydromagnetic free convective 
memory flow of incompressible and electrically conducting fluids past an infinite vertical porous plate in the 
presence of constant suction and heat absorbing sink through porous medium.  Approximate solutions have been 
derived for the mean velocity, mean temperature and mean concentration using multi-parameter perturbation 
technique and these are presented in graphical form.  The effects of different physical parameters such as magnetic 
parameter, Grashof number, modified Grashof number, Prandtl number, Schmidt number, Eckert number and heat 
sink strength parameter are discussed.  
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INTRODUCTION 
 

Many transport processes exist in nature and in industrial applications in which the simultaneous heat and mass 
transfer occur as a result of combined buoyancy effects of thermal diffusion and diffusion of chemical species.  A 
few representative fields of interest in which combined heat and mass transfer plays an important role are designing 
of chemical processing equipment, formation and dispersion of fog, distribution of temperature and moisture over 
agricultural fields and groves of fruit trees, crop damage due to freezing and environmental pollution. 
 
Viscoelastic flows arise in numerous processes in chemical engineering systems. Such flows possess both viscous 
and elastic properties and can exhibit normal stresses and relaxation effects. An extensive range of mathematical 
models has been developed to simulate the diverse hydrodynamic behavior of these non-Newtonian fluids. An 
eloquent exposition of viscoelastic fluid models has been presented by Joseph [1]. Examples of such models are the 
Oldroyd model [2], Johnson–Seagalman model [3], the upper convected Maxwell model [4], and the Walters-B 
model [5]. Both steady and unsteady flows have been investigated at length in a diverse range of geometries using a 
wide spectrum of analytical and computational methods. Siddappa and Khapate [6] studied the second order Rivlin–
Ericksen viscoelastic boundary layer flow along a stretching surface. Rochelle and Peddieson [7] used an implicit 
difference scheme to analyze the steady boundary-layer flow of a nonlinear Maxwell viscoelastic fluid past a 
parabola and a paraboloid. Ji et al. [8] studied the Von Karman Oldroyd-B viscoelastic flow from a rotating disk 
using the Galerkin method with B-spline test functions. Rao and Finlayson [9] used an adaptive finite element 
technique to analyze viscoelastic flow of a Maxwell fluid. 
 
Ramanamurthy et al. [10]) have discussed the MHD unsteady free convective Walter’s memory flow with constant 
suction and heat sink. Mustafa et al. [11] obtained the analytical solution of unsteady MHD memory flow with 
oscillatory suction, variable free stream and heat source.  Numerical study of transient free convective mass transfer 
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in a Walters-B viscoelastic flow with wall suction was analysed by Chang et al. [12].  Effects of the chemical 
reaction and radiation absorption on free convection flow through porous medium with variable suction in the 
presence of uniform magnetic field were studied by Sudheer Babu and Satyanarayana [13].  Gireesh Kumar et al. 
[14] analyzed the effects of the chemical reaction and mass transfer on MHD unsteady free convection flow past an 
infinite vertical plate with constant suction and heat sink.     
 
The present study is to study the mass transfer effects on unsteady hydromagnatic free convective memory flow of 
incompressible and electrically conducting fluid flow an infinite vertical plate through porous medium.  Our main 
interest is to observe how various parameters affect the flow past an infinite vertical accelerated plate. 
 
2. FORMULATION OF THE PROBLEM 
Consider unsteady hydromagnitic free convective flow of incompressible and electrically conducting fluid past an 
infinite vertical porous plate in the presence of constant suction and heat absorbing sink through porous media. Let 
the x-axis be taken in the vertically upward direction along the infinite vertical plate and y-axis normal to it. 
Boussineq’s approximation, for the equations of the flow is governed as: 
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From (1) we have,  

0vv −=           (5) 

 
On disregarding the Joulean heat dissipation, the boundary conditions of the problem are: 
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Introducing the non-dimensional quantities and parameters: 
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Where ρ , κ , pC , Pr, Gr, Gc, S, Sc, Ec, M and mR  are acceleration due to density, thermal conductivity specific 

heat at constant pressure, Prandtl number, Grashof  number, Solutal Grashof number, sink strength, Schimdth 
number, Eckert number, Hartmann number and Raynolds number respectively. 
 
Using (7), (6) and (5), equations (2), (3) and (4) become 
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The corresponding boundary conditions are 
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To solve equations (8), (9) and (10), we assume ω  to be very small and the velocity, temperature and concentration 
in the neighbourhood of the plate as  
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Where 0u , 0T  and 0C  are mean velocity, mean temperature and mean concentration respectively. 

 
Using (12) in equations (8), (9) and (10), equating harmonic and non-harmonic terms for mean velocity, mean 

temperature and mean concentration, after neglecting coefficient of 2ε , we get 
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The equation (13) is third order differential equation due to presence of elasticity.  Therefore 0u  is expanded using 

(Beard and Walters rule, 1964). 
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Using multi parameter perturbation technique and assuming 1<<Ec , we write 

00100000 uEcuu +=          (19) 

01201101 uEcuu +=          (20) 

01000 TEcTT +=          (21) 

01000 CEcCC +=          (22) 

Using equations (19) – (22) in equations (14), (15), (17) and (18) and equating the coefficient of 0Ec  and 1Ec , we 
get the differential equations 
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RESULTS AND DISCUSSION 
 

The problem of mass transfer on unsteady hydromagnetic free convective memory flow of incompressible and 
electrically conducting fluids past an infinite vertical porous plate in the presence of constant suction and heat 
absorbing sink has been formulated, analysed and solved by using multi-parameter perturbation technique.  
Approximate solutions have been derived for the mean velocity, mean temperature and mean concentration.  The 
effects of the flow parameters such as magnetic parameter (M), suction parameter (S), Grashof number for heat and 
mass transfer (Gr, Gc), Schmidt number (Sc), Prandtl number (Pr) and Eckert number (Ec) on the mean velocity, 
mean temperature and mean concentration profiles of the flow field are presented with help of mean velocity 
profiles (Figures 1-4), mean temperature profiles (Figures 5-7). 
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Figure - 1: Mean Velocity profile when M = 0.1, Sc = 0.6, Ec = 0.001, S = -0.05
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Figures 1 and 2 represent the mean velocity profiles due variations in Gr (Thermal Grashof number), Gc (Solutal 
Grashof number), M (Magnetic parameter) and S (Sink strength parameter).  It is observed that the mean velocity 
increases with increase of thermal Grashof number and solutal Grashof number.  It also observed that mean velocity 
decrease with increase in magnetic parameter and sink strength parameter. 
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Figure - 3: Mean Velocity profile when Gr = 5.0, Gc = 5.0, S = -0.05, Ec = 0.001
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Figure - 4: Mean Velocity profile when M = 0.1, Gr = 5.0, Gc = 5.0, Sc = 0.6
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Figures 3 and 4 reveals the mean velocity profiles due to variations in Sc (Schmidt number), Pr (Prandtl number) 
and Ec (Eckert number).  It is noticed that whenever Schmidt number increases the mean velocity decrease.  It is 
also observed that the increases in Prandtl number  and Eckert number causes the decrese in mean velocity. 
 
Figures 5 and 6 reveals the mean temperature profiles due to variations in Pr (Prandtl number) and Ec (Eckert 
number) and S (Sink stregth parameter).  It is noticed that whenever Prandtl number and Eckert number increases 
the mean temperature decrease.  It is also observed that the increases in Sink stregth parameter  and Eckert number 
causes the decrese in mean temperature. 
 
Figure 7 depicts the mean velocity profile due to the variations in k (porous parameter).  It is noticed that whenever 
porous parameter increases the velocity also increases. 
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Figure - 5: Mean Temperature profile when M = 0.1, Gr = 5.0, Gc = 5.0, S = -0.05
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Figure - 6: Mean Temperature when M = 0.1, Pr = 1.0, Gr = 5.0, Gc = 5.0, Sc = 0.6
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