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ABSTRACT 
 
A finite difference solution of mass transfer effects on MHD flow of incompressible viscous dissipative fluid past an 
exponentially accelerated isothermal vertical plate, on taking into account of viscous dissipative heat, under the 
influence of chemical reaction through porous medium is evaluated.  The velocity, temperature and concentration 
are studied for different parameters such as the magnetic field parameter, Grashof number, mass Grashof number, 
chemical reaction parameter, Schmidt number, Prandtl number, permeability parameter. The numerical values of 
Skin-friction are in tabulated. 
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INTRODUCTION 
 
Simultaneous heat and mass transfer from different geometrics embedded in porous media has many engineering 
and geophysical applications such as geothermal reservoirs, drying of porous solids, thermal insulation, enhanced oil 
recovery, packed-bed catalytic reactors, cooling of nuclear reactors, and underground energy transport.  In 
particular, natural convection induced by the simultaneous action of buoyancy forces resulting from thermal and 
mass diffusion is of considerable interest in nature and in many industrial applications such as geophysics, 

oceanography, drying processes, solidification of binary alloy and chemical engineering.   

 
The present trend in the field of chemical reaction analysis is to give a mathematical model for the system to predict 
the reactor performance.  A large amount of research work has been reported in this field.  In particular, the study of 
heat and mass transfer with chemical reaction is of considerable importance in chemical and hydrometallurgical 
industries.  Chemical reaction can be codified as either heterogeneous or homogeneous process.  This depends on 
whether they occur at an interface or as a single phase volume reaction.  One of the simplest chemical reactions is 
the first order reaction in which the rate of reaction is directly proportional to the species concentration. 
Muthucumaraswamy [4] studied the effect of a chemical reaction on a moving isothermal vertical surface with 
suction.  Mass transfer effects on isothermal vertical oscillating plate in the presence of chemical reaction were 
studied by Muthucumaraswamy and Janakiraman [5].   
 
The effects of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction were 
studied by Das et al. [2]. Anjali Devi and Kandasamy [1] studied the steady laminar flow along a semi-infinite 
horizontal plate in the presence of species concentration and chemical reaction. Mass transfer effect on 
exponentially accelerated isothermal vertical plate was discussed by Muthucumaraswamy et al. [6].  Radiation and 
mass transfer effects on MHD free convection flow past an exponentially accelerated vertical plate with variable 
temperature was studied by Rajesh and Vijaya Kumar Varma [7].  Radiation and chemical reaction effects on an 
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unsteady MHD convection flow past a vertical moving porous plate embedded in a porous medium with viscous 
dissipation was studied by Sudheer Babu et al. [8] 
 
Magneto convection plays an important role in various industrial applications.  Examples include magnetic control 
of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors and magnetic suppression of molten 
semi-conducting materials.  It is of importance in connection with many engineering problems, such as sustained 
plasma confinement for controlled thermonuclear fusion and electromagnetic casting.   Ramachandra Prasad and 
Bhaskar Reddy [9] studied the Radiation and mass transfer effects on an unsteady MHD free convection flow past a 
heated vertical plate in a porous medium with viscous dissipation.  MHD Unsteady free convective heat and mass 
transfer flow past a vertical porous plate with viscous dissipation was studied by Rushikumar [10].  Mansour et al. 
[3] analyzed the effect of chemical reaction and viscous dissipation on MHD natural convection flow saturated in 
porous media with suction or injection.  Recently the effects of heat transfer on MHD unsteady free convection flow 
pat an infinite/semi infinite vertical plate was analyzed by [12-16].  
 
The aim of present paper is to study an unsteady free convection flow of a viscous, incompressible, Newtonian, 
electrically conducting and chemically reacting fluid past an exponentially accelerated infinite isothermal vertical 
plate in the presence of variable mass diffusion and taking into account of viscous dissipation heat, under the 
influence of transverse magnetic field.  The dimensionless governing equations of momentum, energy and diffusion, 
which govern the flow field, are solved by using Crank-Nicolson method.  The behavior of the velocity, 
temperature, concentration and skin-friction has been discussed for various parameters of governing equations. 
 
FORMULATION OF THE PROBLEM: 
The two-dimensional unsteady, chemically reacting and electrically conducting flow of a viscous incompressible 
fluid past an exponentially accelerated isothermal infinite vertical plate with variable mass diffusion has been 

considered.  The 
'x  - axis is taken along the plate in the vertically upward direction and the 'y  - axis is taken 

normal to the plate.   At time 0' ≤t , the plate and fluid are at the same temperature'
∞T  with concentration level '

∞C .  

At time 0' >t , the plate is exponentially accelerated with a velocity ( )''
0 exp tauu =  in its own plane and the 

temperature from the plate is raised to '
wT  and the mass is diffused from the plate to the fluid at a uniform rate.  A 

magnetic field of uniform strength is applied perpendicular to the plate and the magnetic Reynolds number is 
assumed to be small so that the induced magnetic field is neglected.  Then under usual Boussinesq’s approximation 
the unsteady flow is governed by the following equations: 
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 Diffusion equation 
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Where
'x , 'y  and 

't  are the dimensional distances along and perpendicular to the plate and dimensional time 

respectively, 
'u  and 

'v  are the components of dimensional velocities along 
'x  and 'y  directions respectively.  'T  

and 
'C  are the dimensional temperature and concentration, ρ  is the fluid density, v  is the kinematic viscosity, 

pC  is the specific heat at constant pressure, σ  is the  electrical conductivity of fluid, g is the acceleration due to 

gravity, β  and *β  are the thermal and concentration expansion coefficients, 
'k  is the permeability of the porous 

medium, 0B  is the magnetic induction, D is the chemical molecular diffusivity, lK is the chemical reaction 
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parameter and κ  is the fluid thermal conductivity.   The first and second terms on the right hand side of the 
momentum equation (2) denote the thermal and concentration buoyancy effects respectively. 
 
With the following initial and boundary conditions: 
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On introducing the following non –dimensional quantities: 
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In view of (5) equations (1) to (3) reduce to the non-dimensional forms 
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with the following initial and boundary conditions in non-dimensional quantities are: 
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METHOD OF SOLUTION 

 
Numerical Technique: Equations (6) – (8) are coupled non-linear partial differential equations and are to be solved 
under the initial and boundary conditions of equations (9). However exact or approximate solutions are not possible 
for this set of equations and hence we use finite difference technique of implicit type namely Crank-Nicolson 
implicit finite difference method which is always convergent and stable. The finite difference equations 
corresponding to equations (9) are as follows:  
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Here, the suffix i corresponds to Y, j corresponds to t and ∞→L .  Also 

jj ttt −=∆ +1
 and 

ii YYY −=∆ +1
knowing the values of C, θ  and u at a time t, we can calculate the values at a time tt ∆+  as 

follows.  We substitute i = 1, 2, 3 …41 in equation (12) which results in a tridiagonal system of equations in 
unknown values of C.  Using initial and boundary conditions, the system can be solved by Thomas algorithm as 
discussed in Carnahan et al. [4].  Thus C is known at all values of Y at time tt ∆+ .  Then knowing the values of C 

and applying the same procedure and using boundary conditions we calculate θ  from equation (11).  Then knowing 

the values of θ  and applying the same procedure and using boundary conditions, we calculate u from equation (10).  
This procedure is continued to obtain the solution till desired time t.  In order to check the accuracy these results are 
computed with usual explicit finite difference technique and the results computed from both explicit and implicit 
method are found to agree well. 
 
Skin – Friction: 
We now calculate the skin-friction from the velocity field, which is given in non dimensional form as  
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Numerical values of t are calculated by applying the Newton’s Interpolation formula for four points.   
 
Nusselt number: 
From the temperature field, we now study the rate of heat transfer, which is given in non – dimensional form as 
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and the numerical values of q are listed in table 2.  
 
Sherwood number: 
From the concentration field, we now study the rate of mass transfer which is given as 
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and the numerical values of Sh are listed in table 3.   
 

Table – 1: Values of τ  
 

t/M 1 5 10 15 
0.1 4.40807 4.82864 5.31386 5.76150 
0.2 4.43375 4.90064 5.43215 5.91790 
0.3 4.54327 5.04476 5.61381 6.13253 
0.4 4.687413 5.222678 5.828848 6.38050 
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Table – 2: Values of q 
 

t/Pr 0.71 1 7 
0.1 1.510258 1.790929 4.680644 
0.2 1.125072 1.280887 3.369132 
0.3 1.031135 1.104625 2.743608 
0.4 1.00776 1.039073 2.371092 

 
Table – 3: Values of Sh 

 
t/Sc 0.6 0.78 1 2.62 
0.1 0.02783 0.031719 0.035895 0.057891 
0.2 0.04005 0.045321 0.051165 0.082576 
0.3 0.05079 0.056684 0.063478 0.101862 
0.4 0.06125 0.067432 0.074740 0.118437 

 
RESULTS AND DISCUSSION 

 
In the preceding sections, the problem of an unsteady free convective flow of a viscous, incompressible, chemically 
reacting fluid past an exponentially accelerated isothermal infinite vertical plate was formulated and solved by finite 
difference scheme.  The effects of different variables like thermal Grashof number (Gr = 5), the solutal Grashof 
number (Gc = 5), Prandtl number (Pr = 0.71 (air) and Pr = 7 (water)), Schmidt number (Sc = 0.6), Eckert number (E 
= 0.01), the chemical reaction parameter (Kr = 0.2), the magnetic parameter       (M = 5) and the permeability 
parameter (k = 1).        
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Figure – 1(a)         Figure – 1(b) 

 
The velocity and concentration profiles for different values of the chemical reaction parameter (Kr = 0.2, 5.0, 10.0) 
Gr = 5, Gc = 5, Pr = 7, Sc = 0.6, M = 5, k = 1, E = 0.01 are revealed in the Figures 1(a) and 1(b).  It is obvious that 
an increase in Kr leads to decrease in both the values of velocity and concentration. 
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Figure – 2(a)            Figure – 2(b) 

 
The velocity profiles for different values of the thermal Grashof number (Gr = 5, 10, 15) Kr = 0.2, Gc = 5, Pr = 0.71 
and Pr = 7, Sc = 0.6, M = 5, k = 1, E = 0.01 are described in Figure 2 (a).  It is observed that an increase in Gr leads 
to arise in the values of velocity.  For the case of different values of the solutal Grashof number (Gc = 5, 10, 15) Kr 
= 0.2, Gr = 5, Pr = 0.71 and Pr = 7, Sc = 0.6, M = 5, k = 1, E = 0.01 the velocity profiles are displayed in the Figure 
2(b).  It is found that an increase in Gr leads to a rise in the values of velocity. 
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Figure – 3(a)     Figure – 3(b) 

 
Figures 3(a) and 3(b) illustrate the behavior of the velocity and temperatures for different values of the Prandtl 
number (Pr = 0.71, 1.00, 7.00) Kr = 0.2, Gc = 5, Gr = 5, Sc = 0.6, M = 5, k = 1, E = 0.01.  The numerical results 
show that the effect of increasing values of Prandtl number results in a decrease in velocity.  From Fig. 3(b), it is 
observed that an increase in the Prandtl number results in a decrease in temperature. 
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Figure – 4(a)              Figure – 4(b) 

 
The effects of Schmidt number (Sc = 0.6, 0.78, 1.00, 2.62) Kr = 0.2, Gc = 5, Pr = 0.71 and Pr = 7, Gr = 5, M = 5, k = 
1, E = 0.01 on the velocity and concentration are depicted in Figures 4(a) and 4(b).  As the Schmidt number 
increases, both the velocity and concentration decreases.  
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Figure – 5(a)     Figure – 5(b) 

 
The velocity and temperature profiles are shown in Figures 5(a) and 5(b) for different values of Eckert number (E = 
0.01, 0.02, 0.03, 0.04) Kr = 0.2, Gc = 5, Gr = 5, Pr = 0.71 and Pr = 7, Sc = 0.6, M = 5, k = 1.  An increase in Eckert 
number E leads to increase in both velocity and temperature. 
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Figure – 6     Figure - 7 

 
The effect of different values of Hartmann number (magnetic parameter M) (M = 1, 5, 10, 15) Kr = 0.2, Gc = 5, Pr = 
0.71 and Pr = 7, Sc = 0.6, Gr = 5, k = 1, E = 0.01 on velocity profile is shown in Figure-6.  It is observed that an 
increase in M leads to decrease in velocity.  Figure 7 concerns the velocity profile for different values of permeable 
parameter (k = 0.05, 1.00, 10.0) Kr = 0.2, Gc = 5, Pr = 7, Sc = 0.6, M = 5, E = 0.01.  From this figure it is clear that 
the velocity increases with increase of k. 
 
Table No.1 reveals the skin-friction against time t for various values of parameters M.  It is noticed that the skin-
friction increases with an increase in magnetic parameter.   
 
Table No.2 depicts the Nusselt number against time t.  It is found that the rate of heat transfer increases with 
increasing Pr.  Nusselt number for Pr = 1 is higher than that of Pr = 0.71 and for     Pr = 7 is higher than that of Pr = 
7.  The reason is that smaller values of Pr are equivalent to increasing thermal conductivities and therefore heat is 
able to diffuse away from the plate more rapidly than higher values of Prandtl number.  Hence, the rate of heat 
transfer is reduced. 
 
Table No.3 shows the variation of Sherwood number Sh against time t.  It is observed that the Sherwood number 
increases with an increase in Schmidt number 
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