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ABSTRACT

A layer of couple-stress fluid heated from below in a porous medium is considered in the presence of uniform
vertical magnetic field. Following the linearized stability theory and normal mode analysis, the paper
mathematically established the condition for characterizing the oscillatory motions which may be neutral or
unstable, for any combination of perfectly conducting, free and rigid boundaries at the top and bottom of the fluid. It
is established that all non-decaying slow motions starting from rest, in a couple-stress fluid of infinite horizontal
extension and finite vertical depth, which is acted upon by uniform vertical magnetic field opposite to gravity and a
constant vertical adverse temperature gradient, are necessarily non-oscillatory, in the regime
Re 1+ 2F)s
R €p,

Where R is the thermal Rayleigh number, F is the couple-stress parameter of the fluid, B is the medium

permeability, £ is the porosity of the porous medium and P, is the magnetic Prandtl number. The result is

important since the exact solutions of the problem investigated, in closed form are not obtainable for any arbitrary
combinations of perfectly conducting dynamically free and rigid boundaries.
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INTRODUCTION

Stability of a dynamical system is closest to idal in the sense that realization of a dynamg@tem depends
upon its stability. Right from the conceptualizasoof turbulence, instability of fluid flows is mgj regarded at its
root. A detailed account of the theoretical andegixpental study of the onset of thermal instabiliBénard
Convection) in Newtonian fluids, under varying asgtions of hydrodynamics and hydromagnetics, has lgéven

by Chandrasekh&B] and the Boussinesq approximation has been usedgthoat, which states that the density

changes are disregarded in all other terms indl@t®n of motion, except in the external forcertef he formation
and derivation of the basic equations of a layerflofd heated from below in a porous medium, usthg

Boussinesq approximation, has been given in aisehy Josep[i]]. When a fluid permeates through an isotropic

and homogeneous porous medium, the gross effegpissented by Darcy’s law. The study of layerlaififheated
from below in porous media is motivated both th&oadly and by its practical applications in engneg. Among
the applications in engineering disciplines one name the food processing industry, the chemicatgssing
industry, solidification, and the centrifugal casgtiof metals. The development of geothermal powsources has

increased general interest in the properties ofvection in a porous medium. Stommel and Fed[ﬂ@} and
Linden[l6] have remarked that the length scales characteastilouble-diffusive convecting layers in the atea
may be sufficiently large so that the Earth’s riotatmight be important in their formation. Moreoy#re rotation of
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the Earth distorts the boundaries of a hexagonalvextion cell in a fluid through porous medium, athis
distortion plays an important role in the extractaf energy in geothermal regions. The forced cotioe in a fluid

saturated porous medium channel has been studiedidigl et a[lq. An extensive and updated account of

convection in porous media has been given by Naaftl Bejan[l?].

The effect of a magnetic field on the stabilitysoich a flow is of interest in geophysics, partidylén the study of
the earth’s core, where the earth’s mantle, whatsist of conducting fluid, behaves like a porowesdiam that can
become conductively unstable as result of difféatiiffusion. Another application of the resultsflow through a
porous medium in the presence of magnetic field ihe study of the stability of convective geothat flow. A

good account of the effect of rotation and magnfédid on the layer of fluid heated from below Heeen given in a

treatise by Chandrasekl{B} .

MHD finds vital applications in MHD generators, MHflow-meters and pumps for pumping liquid metals in
metallurgy, geophysics, MHD couplers and beariagsl physiological processes such magnetic thek&jith the
growing importance of non-Newtonian fluids in madéechnology and industries, investigations of sflgids are
desirable. The presence of small amounts of additivr a lubricant can improve bearing performancmbreasing
the lubricant viscosity and thus producing an iaseein the load capacity. These additives in ddaht also reduce
the coefficient of friction and increase the tengbere range in which the bearing can operate.

Darcy's law governs the flow of a Newtonian fluilrdugh an isotropic and homogeneous porous medium.
However, to be mathematically compatible and phalsic consistent with the Navier-Stokes equations,

Brinkman[6] heuristically proposed the introduction of theméliD2 g, (now known as Brinkman term) in
&

addition to the Darcian term(kﬂJ g . But the main effect is through the Darcian teBrinkman term contributes
1
very little effect for flow through a porous mediufherefore, Darcy’s law is proposed heuristicadlygovern the

flow of this non-Newtonian couple-stress fluid thgh porous medium. A number of theories of the aicr

continuum have been postulated and applied (S[&@s Lai et al[14]; Walicka[30]). The theory due to
Stokes{27] allows for polar effects such as the presenceoople stresses and body couples. StokE%ﬂ theory
has been applied to the study of some simple latioic problems (see e.g. Sinha G[Qﬂ Bujurke and Jayaraman

[7]; Lin [1@). According to the theory of Stok&?] , couple-stresses are found to appear in noticenh@mitudes
in fluids with very large molecules. Since the lodgain hyaluronic acid molecules are found as taddi in
synovial fluid, Walicki and WalickEB]] modeled synovial fluid as couple stress fluid inmtan joints. The study is

motivated by a model of synovial fluid. The synduiaid is natural lubricant of joints of the vebiates. The
detailed description of the joints lubrication hasy important practical implications; practicabyl diseases of
joints are caused by or connected with a malfunatibthe lubrication. The external efficiency oktphysiological
joint lubrication is caused by more mechanisms. §§ymvial fluid is caused by the content of thelts@nic acid, a
fluid of high viscosity, near to a gel. A layersich fluid heated from below in a porous mediumeuritde action of
magnetic field and rotation may find applications physiological processes. MHD finds applicatioms i
physiological processes such as magnetic therapgtion and heating may find applications in phifséoapy. The
use of magnetic field is being made for the clihjmarposes in detection and cure of certain diseasth the help
of magnetic field devices.

Sharma and Thak{i(ﬂ have studied the thermal convection in couplesstréuid in porous medium in
hydromagnetics. Sharma and Sharlﬁ%] have studied the couple-stress fluid heated fraiovb in porous

medium. Kumar and KumE&ﬂ have studied the combined effect of dust partjetesgnetic field and rotation on

couple-stress fluid heated from below and for thsecof stationary convection, found that dust gladi have
destabilizing effect on the system, where as thation is found to have stabilizing effect on tlystem, however
couple-stress and magnetic field are found to etk stabilizing and destabilizing effects undeataia conditions.

Sunil et al.[29] have studied the global stability for thermal cection in a couple-stress fluid heated from below

and found couple-stress fluids are thermally maaeble than the ordinary viscous fluids. Gupta e[ﬂ.@ have
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studied the effect of )y -irradiation on thermal stability of CR-39 polymehere as the effect of thickness of the
porous materials on the peristaltic pumping, whes tube wall is provided with non-erodible poroirsnlg has
been investigated by Reddy et[%&[)]. The effect of magnetic field and rotation on thesolutal convection in

Walters B’ elastico-viscous fluid has been consdeby Kango and Rarli]aZ]. Saravana et al[2]] have

considered the heat and mass transfer on the dystéscoelastic second order Rivlin-Ericksen flipdst an
impulsive started infinite vertical plate in theepence of a foreign mass and constant mass flualong into
account of viscous dissipative heat at the plateunhe influence of a uniform transverse magnigicl. The
electrically conducting flow of couple-stress fluid a vertical porous layer has been investigate@&teenadh et

al [26]. The above studies were helpful in studying poroaserials and thermal stability.

Pellow and Southwe[ll9] proved the validity of PES for the classical RayfheBénard convection problem.

Banerjee et :{B] gave a new scheme for combining the governing teapsaof thermohaline convection, which is
shown to lead to the bounds for the complex grawaté of the arbitrary oscillatory perturbationsytmal or unstable
for all combinations of dynamically rigid or freeundaries and, Banerjee and Bane[ﬂ}sestablished a criterion on

characterization of non-oscillatory motions in hgdlynamics which was further extended by Gupta etHl.
However no such result existed for non-Newtoniandflconfigurations, in general and for couple-srésid
configurations, in particular. Ban){eﬂ] have characterized the non-oscillatory motionsople-stress fluid.

Keeping in mind the importance of couple-stresgdfitand magnetic field in porous media, as statewve, this
article attempts to study the couple-stress fligdtbd from below in a porous medium in the presefiaeiform
magnetic field, with more realistic boundaries d@ndas been established that the onset of instalilia couple-
stress fluid in a porous medium heated from belmwthe presence of uniform vertical magnetic fied@dnnot
manifest itself as oscillatory motions of growinmg@litude if the thermal Rayleigh number R, the detgiress

parameter of the fluid F, the medium permeabilly, the porosity of the porous medidmand the magnetic

T Ve
Prandtl numbep,, satisfy the inequality,RSF(1+ 277‘2F)+— , for any combination of perfectly
| én;

conducting dynamically free and rigid boundaries.

2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS
Here we consider an infinite, horizontal, incompikeke electrically conducting couple-stress fllaer, of

thickness d, heated from below so that, the tentyperand density at the bottom surface z = 0 Tarend 0, and

at the upper surface z = d aré, and p, respectively, and that a uniform adverse tempezatu

gradientﬂ(= dr
dz

j is maintained. The fluid is acted upon by a umiforertical magnetic fieldH (0,0, H). This

fluid layer is flowing through an isotropic and hogeneous porous medium of porogityand of medium
permeabilityk; .

Let o, p, T/, U, and q(u,V,W) denote respectively the fluid density, pressuesnperature, resistivity,

magnetic permeability and filter velocity of theifl, respectively Then the momentum balance, maksbe, and
energy balance equation of couple-stress fluidiagwell’s equations through porous medium, govegritre flow

of couple-stress fluid in the presence of uniforentical magnetic field (Stoké27]; Josep ; Chandrasekhar

[8]) are given by

1109, 3(4n); =-D(£]+a[1+@j_i(v-ﬂmzja+A<mxﬁ>xﬁ, @
el ot ¢ o Po) K\ P 41,
Dq :O, 2
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ar -
E—+(q.0)T =40°T @)
dt
0.H =0, (@)
dH e
£—aF—:(H.D)q+£nD2H, 5)
d o -
Wherea - E +& q . , Stands for the convective derivatives. Here

_ PsCs
E=c+(1-¢) , is a constant, whilgQs, Cgand O, C,, stands for the density and heat
0™v

capacity of the solid (porous matrix) material atite fluid, respectively, € is the medium porosity
andl (X, Y, 2).

The equation of state is

p:po[l_a(T_To)]' (6)

Where the suffix zero refer to the values at tieremce level z = 0. Herg(0,0,—g) is acceleration due to gravity

and @ is the coefficient of thermal expansion. In wiithe equation (1), we made use of the Boussinesq
approximation, which states that the density vemmst are ignored in all terms in the equation otiotoexcept the

external force term. The kinematic viscodtty, couple-stress viscositgd , magnetic permeability/, , thermal

diffusivity &, and electrical resistivity7, and the coefficient of thermal expansiéfi are all assumed to be
constants.

The basic motionless solution is
q=(000). p=p,L+aB2), p=p@, T ==L2+T,, )
Here we use the linearized stability theory and lbemal mode analysis method. Assume small pertioriz

around the basic solution, and ledp, &, &, q(u,v,w) and h= (hx,hy,hz) denote respectively the

perturbations in densiig , pressure p, temperature T, veloc}ty0,0,0) and the magnetic fieldl = (0,0, H ) The
change in densitgp, caused mainly by the perturbatiéhin temperature, is given by

p+dp=p[l-a(T+6-T,)]=p-ap,6. ie. Jo=-ap,8. @)

Then the linearized perturbation equations of tgpte-sress fluid reduces to

lﬁ=—iDd)—éaﬁ—i(v—i‘mzj&L(DXHJXQ : (9)

£ ot o K, b 41,

D.a =0 (10)

E%=ﬁw+m29, 1)

ot

L. H =0, (12)
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5%:(I:I .Dja+ end?h 13)

3. NORMAL MODE ANALYSIS
Analyzing the disturbances into two-dimensional esvand considering disturbances characterizedgaytacular
wave number, we assume that the Perturbation diesrire of the form

lw,8,h, |=W(z),0(z), K (2)]explik, x +ik,y +nt), (14)

1
WhereK, Kk, are the wave numbers along the x- and y-directi@spectively K = (kx2 + kyzﬁ, is the resultant
wave number, n is the growth rate which is, in gahean complex constant anWy(z),©(z) andK(z) are the
functions of z only.

Using (14), equations (9)-(13), Within the framelwaf Boussinesq approximations, in the non-dimemalidorm
transform to

(D2 —azﬂf +ij—£(D2 —az)}w = -Ra’0+QD(D? -a?)K . (15)

e R) P
(D? -a? - p,o)k =-DW, (16)
and
(D?-a?-Epoo=-w, (17)

Where we have introduced new coordina(tx's, y', Z') = (x/d, y/d, z/d) in new units of length d alfd = d /dz'.
nd?

Vv
For convenience, the dashes are dropped hereafserwe have substituted = kd, o = , P =—, isthe
K

Vv k
thermal Prandtl numberp, = —, is the magnetic Prandtl numbds; = d—lz is the dimensionless medium

1(p,d? apd*
permeability, F =M, is the dimensionless couple-stress viscosity rpater; RI%, is the
vV KV
L H?d?
thermal Rayleigh number arf@ = ————, is the Chandrasekhar number. Also we have SutetitV/ =W,
Arpvne

2
o= (ﬁd j@u K = (H_d]KD , andD, = dD, and droppec{D) for convenience.
K &r

We now consider the case where the boundariesgaderigid or rigid-free or free-rigid or free-feeat z=0 and z=1,
as the case may be, and are perfectly conducting.bbundaries are maintained at constant temperatws the
perturbations in the temperature are zero at thendaries. The appropriate boundary conditions wégpect to
which equations (15)-(17), must possess a solatien

W =0=0, on both the horizontal boundaries, (18)
DW=0, on a rigid boundary, (29)
D*W =0, on a dynamically free boundary, (20)
K =0, on both the boundariestasregions outside the fluid

are perfectly conducting, (21)

Equations (15)-(17) and appropriately adequate tharynconditions from (18)-(21), pose an eigenvawablem for
0 and we wish to characterize, wheng, = 0.
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4. MATHEMATICAL ANALYSIS
We prove the following theorem:

Theorem 1. If R) 0, F)0, P)0, p,)0,0, 20 and g; # 0 then the necessary condition for the existence of

non-trivial solution (W,@,K) of equations (15) - (17) and the boundary comast (18), (21) and any
combination of (19) and (20) is that

T (1+ 2n2F)+i .

R)—
R £p,

Proof: Multiplying equation (15) byWD (the complex conjugate of W) throughout and iratigg the resulting
equation over the vertical range of z, we get

(Z + iijD(DZ - a% iz —EIWD(DZ - a®Jwdz = —RaszDGdz+ QjWDD(DZ - a%)Kdz,
& P| 0 IDI 0 0 0

(22)
Taking complex conjugate on both sides of equatlan, we get
(D? -a? - Ep,c”)@” = -W", 23)
Therefore, using (23), we get
1 1
IWDGdz = —j (9(D2 -a’ - EleD)GDdz, (24)
0 0
Also taking complex conjugate on both sides of €gng16), we get
D% -a% - p,o"|K = -DW", (25)
Therefore, using (25) and using boundary conditi8), we get
1 1 1
[wD(D? -a? )kdz = -[ DW"(D? - a* JKdz = [ K (D? - a* \D? - a? - p,o° )k “dz, (26)
0 0 0
Substituting (24) and (26) in the right hand siflequation (22), we get
1 1
(g + i]jWD(D2 - aZ)Ndz —E_[WD(D2 - aZ)Z\Ndz
€ R Ro
1 1
=Ra’[0(D? -a’ - Ep,o” P dz+Q[K(D? -a*D? - a? - p,0”)K "dz, (27)
0 0

Integrating the terms on both sides of equatior) @7 an appropriate number of times by making oée¢he
appropriate boundary conditions (18) - (21), we get

1 1
(Z+;JNDW2 +a2M2}dz+;£(DZW2 +2a?|DW|° +a4\w\2)dz

|
1 1 2 1

= e [{pef* +a7(@f* + Eno7le) hiz -] (|D7K| + 207(DK[* + K * az-@p,0° (DK + a7 K iz
0 0 0

(28)
And equating the real and imaginary parts on batbssof equation (28), and cancellidg (# 0) throughout from
imaginary part, we get
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1 1 5
(%o [Hlowt el ([0t +2atow st ez = ooy + o)
e R Ry 0

‘QJE(DZK2 +2a?|DK|’ +a“K2)dz+ar[Ra2Epljl‘@2dz—Qp2J1'([DK2 +a2K2)dz}
0 0 0

(29)
And
17 2 oran2l 2 b2 h 2, 202
;j DW|* +a*W|* jdz = ~Ra’Ep, [|©]" dz+Qp, [ {DK|* +a’|K|” dz. (30)
0 0 0
Equation (30) implies that,
1 1
RaZEplﬂe\zdz—QpZNDK\z +a2\K\2)dz, (31)
0 0
is negative definite and also,
offoK|? +azkJizs 2 fjwez. (32)
0 ng 0

We first note that sindd/, © and K satisfy W(0) =0=W(@),0(0) =0=0@) and K(0)=0=K () in
addition to satisfying to governing equations ardde we have from the Rayleigh-Ritz inequa[%Z]

1 1 1 1 1 1

[[oW[*dz> 77 [W|*dz; [|DE["dz= 7°[|@]"dz and  [|DK|’dz 2 7 [|K|"dz (33)
0 0 0 0 0 0

Further, forWW (0) =0 =W () andK (0) = 0 = K (1) , Banerjee et aI[Z] have shown that

ﬂDZW\Zdzz n2J1'|DW|2dz AndﬂDzK\zdzz n2J1'|DK|2dz, (34)
0 0 0 0

Further, multiplying equation (17) b@D (the complex conjugate dD ), integrating by parts each term of the

resulting equation on the right hand side for aprapriate number of times and making use of boundandition

on © namely®(0) =0=0(1), it follows that

1 1 1

WD@F + a2|9|2}jz +0, Eplj-|9|2dz =Real part O{IG)E\NdZ},
0

0 0

<

j@E\Ndz‘ < [loWiz < [|ewidz.

1 1
1 1 2 (1 2
< [Jejwidz < { j|®|2dz}2{ j|\lv|2dz}2 , (35)
0 0 0
(Utilizing Cauchy-Schwartz-inequality),

This gives that

-

E|D®|2dz < {(l[|@|2dz}2{:[|vv|2dz}; .

And thus, we get

2309
Pelagia Research Library



Ajaib S. Banyal Adv. Appl. Sci. Res., 2012, 3(4):2303-2311

ﬁ|@|2dz}2 < %{Jj\/vfdz}z | )

Sinceg, =20, E)Oandp,)0, hence inequality (35) on utilizing (36), gives

lﬂ 2 o1 y2 1 o2
j DE|” +a%9| zs—J'|\N| dz, (37)
0 7T2 0
Now R ) 0 andQ) 0, utilizing the equalities (31) — (34) and thedumality (37), the equation (29) gives,
1 27°F nzj R |F\, 02
|, +a°|| —+—+— |—— dz (o, (38)
1 HF’. R ﬂzkw
Where

1 1 1
I, :ﬁﬂDW\ZdZ+ J.UDZW‘2 +a4\W\2)dz +QaZIQDK\2 +32‘K‘2)dz
£y 0 0

F
R
is positive definite.

Therefore, we get

4
R 1+ 2r7F )+ 2. (39)
R &,
Thus, we must have
A
0. >0 andg, 20, thenR) {1+ 277F )+ 7 (40)
R &,

And this completes the proof of the theorem.

Presented otherwise from the point of view of exiske of instability as stationary convection, thewe theorem
can be put in the form as follow:-

Theorem 2: The sufficient condition for the validity of thexchange principle’ and the onset of instabilityaason-
oscillatory motions of non-growing amplitude in @uple-stress fluid in a porous medium heated frefow, in the
A

T T
presence of uniform vertical magnetic field is tRa€ F(1+ 2772F)+—, where R is the thermal Rayleigh
| 2

number£ is the porosity of the porous mediuRithe medium permeability anja, the magnetic Prandtl number,
for any combination of perfectly conducting dynaatiig free and rigid boundaries.

Or

The onset of instability in a couple-stress fluidai porous medium heated from below, in the preseficiniform
vertical magnetic field, cannot manifest itselfaillatory motions of growing amplitude if the theal Rayleigh

number R, the couple-stress parameter F, the pp&%f the porous medium the medium permeability and the

s Ve
magnetic Prandtl numb¢d,, satisfy the inequalityR < F(l-l- 277‘2F)+— , for any combination of perfectly
| 2
conducting dynamically free and rigid boundaries.

In the context of existence of instability in ‘oéafory modes’ and that of ‘overstability’ in thergsent
configuration, we can state the above theorem|sie

Theorem 3: The necessary condition for the existence of inltyain ‘oscillatory modes’ and that of ‘overstdity’
in a couple-stress fluid in a porous medium heé&tauh below, in the presence of uniform vertical metic field is
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that, the thermal Rayleigh number R, the couplesstparameter of the fluid F, the medium permegbH , the

porosity of the porous mediugn and the magnetic Prandtl numij@gy, satisfy the inequality the must satisfy the
. T %8 - . . .
mequahtyR}F 1+ 277°F |+ ——, for any combination of perfectly conducting dyreafly free and rigid
| 2
boundaries.
CONCLUSION

This theorem mathematically established that theebof instability in a couple-stress fluid in theesence of
uniform vertical magnetic field, cannot manifesseif as oscillatory motions of growing amplitude ttie

Chandrasekhar numbédp, £ is the porosity of the porous medium &byl the magnetic Prandtl number, satisfy
. LT ' - o -
the inequalityR < F 1+ 277°F |+ — , for any combination of perfectly conducting dyrieally free and rigid
| 2

boundaries and it provided significant improvemerthe regime of ‘PES’ tBanyaland Singf{26].

The essential content of the theorem, from thetpafiview of linear stability theory is that foretconfiguration of
couple-stress fluid of infinite horizontal extensibeated form below, having any combination of oy bottom
horizontal bounding surfaces as free-free or figiehor rigid-free or rigid-rigid, and the regiorutside is perfectly
conducting, in the presence of uniform vertical metie field parallel to the force field of gravitgn arbitrary

'

n.2
neutral or unstable modes of the system are deffjniton-oscillatory in characteriR < F(l-l- 2772F)+—,
| &,

and in particular PES is valid.
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