
Research Article Open Access

Quality in Primary Care (2017) 25 (5): 335-343

Research Article

2017 Insight Medical Publishing Group 

Machine Learning in the Prediction of Costs for 
Liver Transplantation
Luciana Bertocco de Paiva Haddad
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Luana Regina Baratelli Carelli Mendes
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Liliana Ducatti
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Vinicius Rocha-Santos
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Wellington Andraus
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Luiz Augusto Carneiro D'Albuquerque
Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, Brazil

Background and aim: Liver transplant is the most effective 
therapeutic option for patients with end-stage liver disease. The 
objective of this study is to develop a predictive model of costs 
after liver transplantation through machine learning using data 
obtained from the Nationwide Inpatient Sample Database.

Methods: We used the Nationwide Inpatient Sample (NIS) 
database, evaluating data from patients undergoing a liver 
transplantation procedure for the years 2011 (model training) 
and 2012 (model validation). Predictors of the total cost (using 
cost-to-charge ratios), total charges, and length of stay (LOS) 
were assessed using a combination of machine learning and 
tree regression models.

Results: A total of 2,274 individual patients met our 
inclusion criteria, 1,090 patients for the year 2011 and 1,184 for 
2012. The most important variables predicting cost and LOS 
were consistent across all models and included the Charlson 

and Van Walraven comorbidity scores. The best performing 
model predicting total cost was Support Vector Machine with 
Linear Kernel with root mean square error (RMSE) values of 
0.561 whereas for LOS was the Principal Component Analysis 
(RMSE=0.743). When evaluating predictors of total cost and 
LOS, Van Walraven score >26.5 constituted cost-drivers with 
an average total cost of 207,041 US dollars whereas scores 
ranging from 21.5-26.4 were associated with a mean increase 
in the LOS of 26 days.

Conclusion: Patient co-morbidities are major drivers of 
transplants costs, charges and LOS. Machine learning models 
allow for cost prediction of individual patients, thus allowing 
for better healthcare management and policy making.

Keywords: Liver transplant; Predictive cost model; NIS 
database; Cost drivers

ABSTRACT 

What do we know?

Liver transplant is the most effective therapeutic option for patients with end-stage liver disease. Liver transplant procedures 
are estimated to have an average cost of $577,100, with the costs distributed across 30 day pre-transplant procedures, procurement, 
hospital transplant admission, physician, procedural costs, 180 day post-transplant admission and immuno-suppressants charges. 
Several predictors of cost-of-liver transplant have been identified, including recipient factors such as MELD score, age, sex, 
Body Mass Index (BMI), pre-transplant intensive care unit status, indication for transplant, and the United Network for Organ 
Sharing (UNOS) status at the time of transplant. Other previously reported predictors of cost include primary procedure versus 
re-transplantation, liver-kidney transplantation, and laboratory parameters of both liver and kidney functions. Although many 
studies have evaluated predictors of cost after liver transplantation, to the best of our knowledge, no previous studies have used 
novel machine learning to predict these costs with increased accuracy levels, allowing for prognostic predictions that largely 
surpass traditional statistical models.

What does this paper add?

Patient co-morbidities are major drivers of transplant costs, charges and length of stay. The most important variables for 
predicting cost and length of stay across all models were the Charlson and Van Walraven comorbidity scores. High Charlson 
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Introduction

Chronic liver disease is an important cause of morbidity and 
mortality worldwide. In the US, around 150,000 people were 
diagnosed with chronic liver disease annually between 1999 and 
2001 [1]. In 2010, liver cirrhosis alone led to over one million 
deaths, another million deaths caused by liver cancer and acute 
hepatitis [2]. Besides its morbidity and mortality risk, chronic 
liver disease leads to an enormous financial burden. In 2007, 
the combined cost for the treatment of chronic liver disease and 
cirrhosis across different nations ranged from 14 million to 2 
billion dollars depending on the disease etiology and the country 
where the treatment occurred [3]. Also, the burden of end-stage 
liver disease has been projected to increase as a function of the 
corresponding increment in the prevalence of Hepatitis type C 
(HCV) infection and non-alcohol fatty liver disease (NAFLD) 
[4]. This increase in burden is related to the overall increase 
in liver transplantations related to conditions such as non-
cholestatic liver cirrhosis, cholestatic liver cirrhosis, biliary 
atresia, acute hepatic atresia, metabolic diseases, malignant 
neoplasms, among others. 

Liver transplant is the most effective therapeutic option 
for patients with end-stage liver disease [5,6]. Physicians 
can stratify patients with end-stage liver disease for various 
interventions including liver transplant [7] with the introduction 
of the Model End State Liver Disease (MELD) score. Although 
expensive, liver transplantation is effective in improving the 
quality of life as well as the chances of survival in those with 
chronic liver disease [6,8]. Also, the waiting time for patients 
with end-stage liver disease to receive a deceased donor's 
liver has significantly decreased in comparison with previous 
years [9,10]. In 2016, a liver transplant was the second most 
common transplant procedure, representing 23.3% (7,481) of 
all transplant procedures conducted in the United States [11]. 
Procedures are estimated to have an average cost of $577,100, 
with the costs distributed across 30-day pre-transplant 
procedures, procurement, hospital transplant admission, 
physician, procedural costs, 180-day post-transplant admission 
and immuno-suppressants charges [11].

Several predictors of cost-of-liver transplant have been 
identified, including recipient factors such as MELD score, 
age, sex, Body Mass Index (BMI), pre-transplant intensive care 
unit status, indication for transplant and the United Network for 
Organ Sharing (UNOS) status at the time of transplant [12-14]. 
Other previously reported predictors of cost include primary 
procedure versus re-transplantation, liver-kidney transplantation 

and laboratory parameters of both liver and kidney functions 
[8,13,15]. Although many studies have evaluated predictors of 
cost after liver transplantation, to the best of our knowledge, none 
of them used novel machine learning algorithms to predict these 
costs with increased accuracy levels, allowing for prognostic 
predictions that largely surpass traditional statistical models and 
that can be applied for the prediction of individual patient costs 
[16]. Machine learning is useful in clinical decision support, 
predictor ranking, outcome forecasting, disease classification 
and preemptive complication detection [16,17].

Given this gap in the literature, the objective of this 
study is to develop a machine predictive cost model for liver 
transplantation through machine learning using data obtained 
from the Nationwide Inpatient Sample Database, as well as to 
determine the most significant predictors.
Methods

Our manuscript is reported in alignments with the 
recommendations of the TRIPOD Statement [18].
Ethics

The Institutional Review Board of the University of Sao 
Paulo approved our study.
Setting

We used data from the Nationwide Inpatient Sample (NIS) 
database, containing observations for the years 2011 (model 
training) and 2012 (model validation). The NIS is part of the 
Health Cost and Utilization Project (HCUP) database, developed 
by the Agency for Healthcare Research and Quality (AHRQ) in 
collaboration with the Federal-State-Industry. These databases 
use a sampling design having the United States as the target 
population, while also stratifying the sample by geographic 
region, urban versus rural areas, teaching status and bed size. 
Patients' information is de-identified, with the procedure 
and diagnostic codes encoded according to the International 
Classification of Diseases, Ninth Edition, Clinical Modification 
(ICD-9-CM), which was used in the United States during the 
years analyzed in this study.
Participants

We included patients who had undergone a liver 
transplantation procedure in 2011 or 2012 (ICD-9 V42.7).
Outcomes

Our primary outcomes of interest were total cost and total 

comorbidity scores increased the risk of gastrointestinal bleeding, acute respiratory failure and complications of biliary 
anastomosis, whereas high Van Walraven comorbidity scores increased the risk of septic or hypovolemic shock, gastrointestinal 
bleeding, acute respiratory failure, and hemorrhage complicating a procedure.

How this fits in with quality in primary care?

The study demonstrated that transplantation in patients with more co-morbidities and a higher risk of death or readmission 
represent a greater economic burden on the healthcare system. Machine learning models allow for cost prediction of individual 
patients, thus allowing for better healthcare management and policy making. Therefore, future liver transplantation strategies 
should take into account the Charlson and Van Walraven scores to yield more cost-effective outcomes.
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was performed using the 2011 data set, while validation was 
performed using the 2012 sample, thus mimicking the clinical 
scenario where past data are used to predict future clinical 
events.

The following machine-learning algorithms were used to 
predict numeric variables, including cost, charges, and length of 
stay: Linear Regression, Principal Components Analysis, Support 
Vector Machines, Decision Tree, and Nearest Neighbors. The 
following classification models were tested for the presence of 
complications: Regularized Least Squares, Linear Regression, 
Principal Components Analysis, Support Vector Machines, 
Decision Tree, and Nearest Neighbors. Regression models for 
the classification of numeric variables included Support Vector 
Machines, Decision Tree, and Nearest Neighbors. Comparison 
across models was performed using metrics for the area under 
the curve, sensitivity, specificity, Kappa as well as positive and 
negative predictive values.

For both numeric and categorical variables, we used 
regression trees (recursive partitioning) with the same set of 
outcomes and predictors. Regression trees complement the use 
of machine learning models as they are not only transparent 
(individual predictors are visible) but equally provide 
information on individual predictors after considering previous 
predictors. This sequence mimics clinical reasoning, thus adding 
to the overall understanding of cost driver hierarchy. Tree 
regression pruning was based on the following algorithm: At 
each pair of nodes from a common parent, we assessed the error 
based on the testing data, especially evaluating whether its sum 
of squares would decrease if both nodes were removed. In the 
case of a positive answer, nodes were removed; otherwise, they 
were left intact. Although tree regression models represent the 
best cut-points for values predicting outcomes, in contrast with 
linear regression models their results cannot be described in a 
single equation. However, they have a graphical representation 
which we present along with our results' interpretation.

All calculations were performed using the statistical 
language R [27] and packages ggplot2, caret and rpart.
Results

In our overall description, we stratified results between 2011 
and 2012, since we used the former for model training and the 
latter for model validation. A total of 2274 patients met our 
inclusion criteria, 1,090 patients for the year 2011 and 1,184 
for the year 2012. Most patients were Caucasian (68%), male 
(64.5%), with a mean age of 51.8 (± 15.33) years. The average 
Charlson comorbidity score was 5.57 (± 2.04), and the average 
Van Walraven comorbidity score was 22.83 (± 8.13). The rate 
of elective hospital admissions was relatively lower in 2012 
(26.5% vs. 30.2%), whereas annual total cost increased in 2012 
(140151.5 (± 122394.7) vs. 138800.2 (± 129439.8). The median 
length of stay was 21.73 (± 26.15) days, with a higher number 
of hospital discharges in 2011. For the year 2011, 31.5% of 
patients presented a median household income in the range of 
0-25th percentile whereas 27.4% of patients in 2012 were in a 
range of 76-100th percentile (Table 1).

charges. Charges represent what the hospital received for 
providing care, while costs represent what the hospital spent 
to provide that care. Costs were calculated from charges using 
a cost-to-charge ratio available from the Healthcare Cost and 
Utilization Project database. Both charges and costs were 
adjusted to dollars using the 2016 dollars Customer Price Index 
(https://www.minneapolisfed.org/community/teaching-aids/
cpi-calculator-information/consumer-price-index-and-inflation-
rates-1913, last accessed February 2017).

Also, we included variables that are directly associated with 
the two primary variables, including length of hospital stay and 
surgical complications directly related to liver transplant: Injury 
to adjacent structures (998.2), hemorrhage complicating a 
procedure (998.11), septic or hypovolemic shock (998.0), portal 
vein thrombosis (452), complications of biliary anastomosis 
(997.4), adult respiratory distress syndrome (518.5), pulmonary 
edema (518.4), acute respiratory failure (518.81) and 
gastrointestinal bleeding (578.9).
Predictors

We included the following variables as potential predictors: 
Age, admission type (elective or emergency), sex, quartile 
classification of the estimated median household income of 
residents based on patient's ZIP Code, admission day over 
the weekend, hospital bed size, race, the total number of 
discharges from this hospital, and co-morbidities (AIDS, 
alcohol consumption, anemia, arthritis, hemorrhage, congestive 
heart failure, chronic lung disease, coagulopathy, depression, 
diabetes without complication, diabetes with complications, 
drug addiction, hypertension, hypothyroidism, liver disease, 
lymphoma, electrolyte imbalance, metastatic cancer, 
neurological disorders, obesity, paraplegia, peripheral vascular 
disease, psychiatric disorders, pulmonary circulation disorders, 
renal failure, tumors, peptic ulcer disease excluding bleeding, 
valvular heart disease, weight loss) summarized by the Deyo-
Charlson Comorbidity Index [19] and the Elixhauser-van 
Walraven Comorbidity Index [20]. Both indices are validated 
for their ability to predict mortality [21,22]. The Charlson 
Comorbidity Index is a weighted score derived from the sum of 
the scores for each of the co-morbidities [19,20]. The Elixhauser-
van Walraven Comorbidity Index includes a set of 30 acute and 
chronic comorbidity indicators, and the index score is based on 
the total number of comorbidity categories required to predict 
in-hospital mortality [20,23]. We used a median cut point of 5 
for the Charlson score and 23 for Van Walraven score to ensure 
an equal number of subjects within each category, following a 
convention from previous publications [24,25]. 
Data analysis

We started the analysis by performing a graphical exploratory 
analysis evaluating the frequency, percentage and near-zero 
variance for categorical variables, distribution for numeric 
variables, and missing values and patterns of all variables [26]. 
Since the numeric variables total cost and length of stay did 
not present a normal distribution, all models were run with log-
transformed variables and then subsequently exponentiated so 
that results could be clinically interpretable. Model training 

https://www.minneapolisfed.org/community/teaching-aids/cpi-calculator-information/consumer-price-index-and-inflation-rates-1913
https://www.minneapolisfed.org/community/teaching-aids/cpi-calculator-information/consumer-price-index-and-inflation-rates-1913
https://www.minneapolisfed.org/community/teaching-aids/cpi-calculator-information/consumer-price-index-and-inflation-rates-1913
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Model results

Predicted means: In each of the subsequent analyses, we 
report a median cost and length of stay for each comorbidity 
category. The cutoffs of 5 for Charlson score and 23 for Van 
Walraven score were chosen to represent the median. Results 
are interpreted as significant when confidence intervals do not 
overlap. When evaluating the outcomes comparing the use of 
the Charlson versus Van Walraven comorbidity index scores, 
higher scores for both Charlson and Van Walraven comorbidity 
index were associated with increased total cost and length of 
stay (Table 2).

Van Walraven co-morbidity score presented a relatively 

stable relationship with the number of co-morbidities till 30 to 
40, after which the length of stay started increasing (Figure 1). A 
similar relationship was found between the Van Walraven score 
and total cost (Figure 2).

In each of the subsequent analyses, we report odds ratio (OR) 
as a measure of the risk of complications. Confidence intervals 
are interpreted as significant when they do not exceed a value 
of 1.0. When evaluating the adjusted risks, we associated a high 
Charlson score with an enhanced risk of gastrointestinal bleeding 
(2.09, 95% CI; 1.04, 4.33), acute respiratory failure (1.82, 95% 
CI; 1.4, 2.36) and complications of biliary anastomosis (1.76, 
95% CI; 1.02, 3.05). Whereas, we correlated the higher Van 

Variable [Missing] Total (2274) 2011 (1090) 2012 (1184) p
Age [1] 51.8 (± 15.33) 52.65 (± 13.75) 51.02 (± 16.62) 0.011
Female [0] 808 (35.5%) 388 (35.6%) 420 (35.5%) 0.986
Race [134] 0.075
- White 1447 (67.6%) 712 (68.9%) 735 (66.5%)
- Black 216 (10.1%) 114 (11%) 102 (9.2%)
- Hispanic 277 (12.9%) 128 (12.4%) 149 (13.5%)
- Asian or Pacific Islander 55 (2.6%) 20 (1.9%) 35 (3.2%)
- Native American 9 (0.4%) 2 (0.2%) 7 (0.6%)
- Other 136 (6.4%) 58 (5.6%) 78 (7.1%)
Median Household Income for ZIP 
Code [60] <0.001

- 0-25th percentile 606 (27.4%) 335 (31.5%) 271 (23.5%)
- 26th to 50th percentile 535 (24.2%) 272 (25.6%) 263 (22.8%)
- 51st to 75th percentile 538 (24.3%) 236 (22.2%) 302 (26.2%)
- 76th to 100th percentile 535 (24.2%) 220 (20.7%) 315 (27.4%)
Elective Hospital Admission [0] 643 (28.3%) 329 (30.2%) 314 (26.5%) 0.059
Admission at Weekend [0] 528 (23.2%) 251 (23%) 277 (23.4%) 0.875
Hospital bed size [0] <0.001
- Small 55 (2.4%) 0 (0%) 55 (4.6%)
- Medium 275 (12.1%) 106 (9.7%) 169 (14.3%)
- Large 1944 (85.5%) 984 (90.3%) 960 (81.1%)

Total Hospital Discharges [0] 29951.8 (± 30941.48) 54112.38 (± 
29151.45) 7709.38 (± 4921.22) <0.001

Charlson Score [0] 5.57 (± 2.04) 5.54 (± 2.03) 5.59 (± 2.04) 0.574
Van Walraven Score [0] 22.83 (± 8.13) 22.54 (± 8.06) 23.09 (± 8.2) 0.106
Length of Stay [4] 21.73 (± 26.15) 22.93 (± 29.38) 20.62 (± 22.74) 0.037
Length of Stay Log [4] 2.68 (± 0.83) 2.71 (± 0.85) 2.66 (± 0.8) 0.112

Total Charge (US dollars) [4] 506753.2 (± 
502706.7)

526811.3 (± 
553702.8) 488322.8 (± 450245) 0.071

Total Charge Log [4] 12.86 (± 0.69) 12.87 (± 0.72) 12.85 (± 0.66) 0.489

Total Cost (US dollars) [105] 139537.2 (± 
125618.8)

138800.2 (± 
129439.8)

140151.5 (± 
122394.7) 0.804

Total Cost Log [105] 11.62 (± 0.61) 11.61 (± 0.61) 11.63 (± 0.61) 0.457

Table 1: Patient characteristics stratified by year.

Outcome variables Charlson Score <=5 Charlson Score >5 Van Walraven Score 
<=23

Van Walraven Score 
>23

Average Total Cost (US 
dollars)

122.083 (101.573, 
142.592)

167.762 (146.833, 
188.691)

114.340 (94.000, 
134.681)

174.106 (153.518, 
194.694)

Length of Stay 16.1 (11.8, 20.4) 25.3 (20.9, 29.7) 14.5 (10.2, 18.7) 26.6 (22.3, 30.9)

Table 2: Association between outcomes and comorbidity score index.



Machine Learning in the Prediction of Costs for Liver Transplantation 339

Walraven scores with an increased risk of septic or hypovolemic 
shock, gastrointestinal bleeding, acute respiratory failure and 
hemorrhage complicating a procedure (4.75, 95% CI 1.88, 13.7; 
3.63, 95% CI 1.79, 7.84; 2.58, 95% CI 1.99, 3.36; and 1.42, 
95% CI 1.08, 1.86, respectively) (Table 3).

Model performance: The model representing the lowest 
root mean square error (RMSE) value designates better 
performance. When predicting the total cost, Support Vector 
Machine with Linear Kernel model presented a superior 
performance when compared to Principal Component Analysis 
(PCA), Radial Basis Function Kernel Regularized Least Squares, 
k-Nearest Neighbors and Classification and regression trees 

(CART) with RMSE values of 0.561, 0.570, 0.570, 0.576 and 
0.587, respectively. Finally, models with the best performance 
for the length of stay included Principal Component Analysis 
(RMSE=0.743), Radial Basis Function Kernel Regularized 
Least Squares (RMSE=0.747), Linear regression with a forward 
selection (RSME=0.748), Linear regression with a backward 
selection (RSME=0.748), and Support Vector Machine with 
Linear Kernel (RMSE=0.781). It is worth noticing that the 
lowest RMSE was similar for the models using Charlson and 
Van Walraven scores. However, the range of RMSE given 
by different models was wider in the case of those using Van 
Walraven score as a variable.

Figure 1: Association between Van Walraven score and length of stay.

Figure 2: Association between Van Walraven score and total cost in US dollars.
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The most important variables for predicting cost were 
consistent across all models including Charlson and Van 
Walraven score, age, and the total number of discharges from 
this hospital whereas the most significant predictive variables 
for the length of stay across all models were Charlson and Van 
Walraven scores.

Tree regression model: Finally, a tree regression model was 
used to evaluate how subsequent combinations of predictors 
would affect the outcomes. We found that a Van Walraven score 
greater than 26.5 constituted cost-drivers with an average total 
cost of 207,041 US dollars whereas scores ranging from 21.5-
26.4 were associated with a mean increase in the length of stay 
of 26 days (Figures 3 and 4).

While evaluating the total costs on the Charlson score, a 
score of less than 6.5 coupled with an age less than 16.5 years 
was the predictor of the highest average cost of 167,052 US 
dollars. In contrast, Charlson scores greater than 6.5 were 
associated with an increased average length of stay (20 days).
Discussion

To our knowledge, this is the first report using machine 

learning to analyze the cost of liver transplantation based on 
patient baseline characteristics. We used data from a nationwide 
sample of 2,274 patients to predict the cost associated with liver 
transplant. Our results indicate that patient co-morbidities are 
major drivers of transplant costs, charges and LOS. Also, we 
found that co-morbid states heighten the risk of complications 
during and after the procedure. We discuss our findings in the 
context of recent policy changes regarding organ allocation.

Co-morbidity is a predictor of higher liver transplant costs. 
Increased expenses were associated with patients with higher 
Charlson and Van Walraven scores. Previous reports established 
that factors including kidney injury were even more important 
than the degree of liver impairment in determining the cost of 
liver transplant [15]. However, the authors hypothesized that 
renal injury might be a surrogate for severe co-morbidities 
and therefore lead to higher rates of complications, which is 
in line with our findings. On the other hand, recent research 
found that patients with higher MELD scores augmented the 
charges of liver transplantation [8,12,14,28] because they 
increased morbidity [29], also making hospitalizations more 
frequent [8,30]. Interestingly, when the post-surgery period only 
accounted for the analysis, no increased expenses were recorded 

Complications Charlson Score >5 Van Walraven Score >23
Injury to Adjacent Structures 1.06 (0.51, 2.2) 1.44 (0.7, 2.95)
Hemorrhage Complicating a Procedure 1.23 (0.93, 1.63) 1.42 (1.08, 1.86)
Septic or Hypovolemic Shock 1.3 (0.54, 3.15) 4.75 (1.88, 13.7)
Portal Vein Thrombosis 1.29 (0.94, 1.76) 1.34 (0.98, 1.83)
Complications of Biliary Anastomosis 1.76 (1.02, 3.05) 1.59 (0.93, 2.72)
Adult Respiratory Distress Syndrome 1.1 (0.78, 1.55) 1.29 (0.91, 1.82)
Pulmonary Edema 0.98 (0.49, 1.94) 1.45 (0.74, 2.86)
Acute Respiratory Failure 1.82 (1.4, 2.36) 2.58 (1.99, 3.36)
Gastrointestinal Bleed 2.09 (1.04, 4.33) 3.63 (1.79, 7.84)

Table 3: Adjusted risk for complications.

Figure 3: Tree regression model representing sequential Van Walraven score and average total cost in US dollars.
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among patients in more severe stages of the disease [28,31]. 
This discrepancy may result from the use of charges instead of 
costs in the former study [28] and the analysis of a period after 
the implementation of a healthcare policy presumably leading 
to better pre-surgical care in the case of the latter [31]. Since 
co-morbidities impact the cost of liver transplant differently 
depending on when the intervention was delivered, future studies 
should assess the cost of liver transplant before, during, and 
after surgery to optimize costs. The appropriate management of 
co-morbidities before the surgery will be critical to decreasing 
the costs of the liver transplant.

LOS also increased in patients with higher Charlson and 
Van Walraven scores, indicating that patient comorbidity is 
important to predict the hospitalization period. Prior studies 
found an association between increased MELD scores and 
higher LOS [32]. Moreover, LOS has proven to raise costs of 
liver transplant [12]. These results support the notion that liver 
transplant generates increased costs among sicker patients.

Gastrointestinal bleeding, acute respiratory failure, and 
hemorrhage during surgery were complications observed at 
increased rates among patients with greater Charlson and 
Van Walraven scores. Additionally, portal vein thrombosis, 
complications of a biliary anastomosis, and pulmonary edema 
were more frequent in patients with higher Van Walraven 
scores. Past findings support the notion that more complications 
after liver transplant correspond to greater costs [13]. Moreover, 
complications occur more frequently in patients with higher 
MELD scores [33]. Therefore, the increased incidence of 
complications during or following the period after surgery may 
account for the higher costs observed in patients with more co-
morbidity.

Our analysis highlights that the highest expenses are present 
among patients under 16.5 years old. These high costs are 
consistent with other reports [34,35] and may be explained 

by the increased risk children present to vascular and biliary 
complications during a liver transplant. Former studies 
excluded pediatric populations [36], making these observations 
of great value. Studies [37] demonstrated that lower costs in 
this population might result from factors including whole organ 
liver transplant and the white race while associating hepatic 
artery thrombosis and older age with higher expenses.

Our results represent a significant contribution to the field 
of liver transplant cost analysis for several reasons. First, we 
used a different methodology that validates previous findings 
of multiple regression analyses. Second, we included a nation-
wide sample size that is more representative of different ethnic 
and socioeconomic backgrounds, which is in contrast with the 
use of a single or just a few centers. The former is relevant in 
the face of previous studies demonstrating that different centers 
incur expenses by means independent of patient characteristics 
[38]. Moreover, we were able to separately analyze total costs 
and total charges, a difference that has limited other reports [28].

Despite filling an important gap in the literature, our study 
does have limitations usually associated with an observational 
design. First, since this is a national administrative database, our 
cost estimates were based on cost-to-charge ratios. While this 
methodology has an inherent assumption that charges are related 
to costs based on some modifiers (academic status, rural versus 
urban, among others), true cost data are not unavailable but also 
display important differences in how they are calculated across 
hospitals. Second, our database did not have information on 
MELD and other liver-specific conditions. Another limitation 
is that we did not analyze the relation of donor characteristics 
to transplantation cost. This variable has, however, been 
found to be inconsistent in its contribution to higher costs. For 
instance, donors over the age of 40 years increased the costs of 
transplantation in one report [39], and presented no such impact 
in other analyses [12].

Figure 4: Tree regression model with Van Walraven score and length of stay.
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Conclusion

Another consideration for future studies is the use of data 
from the period after the MELD era and the implementation of 
healthcare policies, evaluating their impact on the economics of 
liver transplants. For example, although a single center study 
did not find an increase in the cost of care after liver transplant 
in the period following the implementation of these policies, 
authors hypothesized that this was due to adequate care in the 
pre-transplantation period [31]. Studies using national samples 
are however required to confirm this hypothesis.

In summary, we used several statistical methods to 
demonstrate that liver transplant costs are higher in patients 
with more co-morbidity. Our findings add arguments to 
the discussion on how to allocate livers in transplantation 
programs. Recently-implemented policies prioritize more 
acutely and severely ill patients to receive organs first. 
However, we confirmed that transplantation in patients with 
more co-morbidities and a higher risk of death or readmission 
represent a greater economic burden on the healthcare system. 
Therefore, future liver transplantation strategies should take 
into account the Charlson and Van Walraven scores to yield 
more cost-effective outcomes.
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