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Summary
The circulating renin-angiotensin system (RAS)
plays an important role in the maintenance of blood
pressure and fluid homeostasis. Recently, there has
been a shift of emphasis from the circulating RAS
to the local RAS in the regulation of individual
tissue functions via a paracrine and/or autocrine
mechanism. In fact, a local RAS has been
proposed to be present in an array of tissues
including the brain, heart, kidney and gonads. Our
previous studies have provided solid evidence that
several key elements of the RAS, notably
angiotensinogen and renin, are present in the rat
pancreas. The data support the existence of an
intrinsic RAS in the pancreas and this local RAS
may be important for the exocrine/endocrine
functions of the pancreas. Interestingly, such a
pancreatic RAS has been demonstrated to be
markedly activated by experimental rat models of
chronic hypoxia and acute pancreatitis. The
activation of the pancreatic RAS by chronic
hypoxia and experimental pancreatitis could play a
role in the physiology and pathophysiology of the
pancreas. The significant changes of pancreatic
RAS may have clinical relevance to acute
pancreatitis and hypoxia-induced injury in the
pancreas.

Introduction

The circulating renin-angiotensin system (RAS)

plays a crucial endocrine role in the physiology of
blood pressure and electrolyte balance [1].
Recently, there has been a shift of emphasis from
an endocrine role of RAS to an autocrine/paracrine
control of tissue functions which is becoming critical
to the understanding of regulatory mechanisms in
individual tissues. The presence of key RAS
component genes particularly at the level of
angiotensinogen and renin which, in turn, are
indispensable for the existence of a local RAS in a
variety of tissues, has been previously documented
[2, 3, 4]. The existence of locally formed RAS
components in multiple tissues including the brain,
heart, kidney and gonads has led to the assumption
that angiotensin II may act as a local hormone. It
may either potentiate the systemic functions or have
entirely separate activities which meet the tissue
needs [5, 6]. In the reproductive tissues, a local
RAS has been proposed and it may be important in
the regulation of various reproductive functions [7,
8, 9]. Such a local RAS has been recently reported
in the rat epididymis [10, 11] with a paracrine or
autocrine control of epididymal and sperm
functions [12]. Interestingly, the gene expression of
the epididymal RAS was regulated developmentally
[13] as well as by testicular-hormones [14].

Pancreatic RAS and its Potential Functions

In the pancreas, the notion of a local RAS and its
potential role have been previously reported in the
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dog [15, 16], the rat [17] and in humans [18]. The
data suggested that the pancreatic RAS may play
an autocrine/paracrine role in the regulation of the
endocrine/exocrine functions of the pancreas. The
RAS has recently been shown to regulate islet
blood flow and thus the endocrine function of
insulin secretion in the rat pancreas [19]. The effect
of the RAS on oxygen tension and blood flow in
transplanted pancreatic islets were also
demonstrated [20]. In addition, the RAS was
highly activated in shock states and was suggested
to be involved in the pathophysiology of the
markedly deteriorated splanchnic circulation
including the pancreas [21].
The existence of a pancreatic RAS and its potential
role in the regulation of exocrine function have been
studied in our laboratory. Our previous studies
showed that angiotensin II receptor subtypes,
namely AT1 and AT2 [22] and angiotensin II [23]
were predominantly localized in the epithelia and
endothelia of the pancreatic ducts and blood
vessels respectively of the rodent pancreas. The
existence of such a pancreatic RAS has been
further consolidated based on the expression and
localization of key RAS component genes, which
were localized coincidentally in the endothelia of
the vasculature and epithelia of pancreatic ducts
[24]. All these data suggest that a pancreatic RAS
may play a paracrine/autocrine role in the regulation
of pancreatic microcirculation and ductal anion
secretion. In fact, our recent results have
demonstrated that such a local RAS could mediate
pancreatic blood flow (data not yet published) and
ductal anion secretion [25] in the rat pancreas.

Activation of Pancreatic RAS by Chronic
Hypoxia and by Acute Pancreatitis

The regulation of the major RAS component genes
is controlled by an array of factors such as
hormones, ions and stress [6]. One of these
factors, namely hypoxic stress has been shown to
result in the activation of the local RAS in tissues
including the kidney [26], lung [27] and heart [28].

These data suggest that activation of the RAS by
chronic hypoxia should be important for the
physiological and pathophysiological changes of
these tissue functions. It has been thought that
prolonged hypoxia causes decreased blood flow to
the tissues, which may in turn lead to tissue
inflammation and injury. For example, alcohol was
believed to induce hypoxia in the pancreas which
could, in turn, provide a mechanism for pancreatic
injury such as pancreatitis [29]. It has also been
shown that angiotensin II-mediated selective
pancreatic vasoconstriction results in significant
pancreatic ischemia/hypoxia during exposure to
stress such as cardiogenic shock [30]. In fact,
chronic hypoxia has been known to cause some
forms of tissue injury such as inflammatory synovitis
[31]. However the influence of hypoxia on the
pancreatic RAS and its pathophysiological
significance are far less clear. Interestingly, our
recent study demonstrated that the pancreatic RAS
was subject to the activation by chronic hypoxia,
notably at the levels of its locally formed
angiotensinogen, AT1b and AT2 receptor subtypes
[32]. Such activation of pancreatic RAS by chronic
hypoxia could play a role leading to hypoxia-
induced pancreatic injury such as acute
pancreatitis.
Although the etiology of acute pancreatitis is
believed to be multifactorial, the activation of
proteolytic enzymes, lipase, kinins and other active
peptides may be some of the crucial mediators
responsible for alterations of RAS expression [33,
34]. In fact, previous studies have shown that the
activity of the plasma RAS significantly increased in
acute pancreatitis [35, 36]. In addition, the severity
of acute pancreatitis is correlatively associated with
the impairment of pancreatic microcirculation [37].
Nevertheless, the association between acute
pancreatitis and the RAS, with particular reference
to a local RAS in the pancreas, has received little
attention. Interestingly, our recent study established
this linkage by showing that acute pancreatitis
dramatically induces the expression of the
pancreatic RAS components, particularly the
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angiotensinogen, and AT1a and AT2 receptor
subtypes [38]. Such activation could play a role in
the pathophysiology of acute pancreatitis.

The Role of RAS in the Regulation of Free
Radicals and Apoptosis, and its Implications
to the Pancreatic Injury

The data prompt us to speculate that the activation
of the pancreatic RAS by chronic hypoxia and by
acute pancreatitis could have a prominent role in
the physiology and possible pathophysiology of the
pancreas. Inflammation/injury of the pancreas can
be initiated by several means, including excess
alcohol intake, probably involving an alcohol-
induced hypoxia mechanism [29], pancreatic duct
obstruction resulting from a migrating gallstone,
pancreatic ischemia/hypoxia [30] or by a vast array
of mediators [39, 40]. One significant feature of
many of these mediators, however, is that reactive
oxygen species (ROS) and reactive nitrogen
species (RNS) may be involved in their mechanism
of action and free radicals are known to induce
apoptotic cell death in various cell types such as
endothelial and smooth muscle cells [41]. In the
pancreas, free radicals were also previously
reported to be involved in the pathophysiology of
acute pancreatitis [42].
The RAS has recently been shown to play a role in
mediating the ROS and RNS species in various cell
types such as the vascular cells [43, 44].
Moreover, RAS, in particular with the AT2

receptor subtype, was previously addressed in the
regulation of vascular injury [45] and in the control
of apoptosis [46]. Although the physiological role
of AT2 receptor subtype in many tissues, especially
in the pancreas remains unsettled, the upregulation
of this receptor subtype is associated with
apoptotic cell death and pathogenesis in tissues
including the heart [47, 48], lung [49] and ovary
[50]. Interestingly, the ROS were reported to be
synthesized by endothelial and vascular smooth
muscle cells using NADPH oxidase and, in turn,
angiotensin II could stimulate enhanced ROS

production via the increased activity of NADPH
oxidase [51]. The role of the RAS in the regulation
of the ROS via increased activity of NADPH
oxidase and the role of vascular apoptotic cell
death in the pathogenesis of atherosclerosis have
recently been demonstrated [52, 53].
Nevertheless, the significance of activation of the
pancreatic RAS and its association with the
regulation of free radicals and apoptosis in the
pancreas has yet to be investigated.

Conclusion

Our recent studies, which focused on the pancreas,
have provided solid evidence for the presence of a
local RAS in the pancreas, which may be important
for the regulation of the exocrine/endocrine
functions of the pancreas. Such a pancreatic RAS
was subject to activation by chronic hypoxia and
acute pancreatitis. The significance of the activation
of the pancreatic RAS by chronic hypoxia and
acute pancreatitis, and its role in the induction of
free radicals and apoptotic cell death in the
pancreas may have physiological and
pathophysiological relevance to the pancreas.
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