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ABSTRACT

In a thin dielectric, semicongtor or metal filmin the regions bindertation there eist local "Plasmon”
resonances d small radius 't, << L, whee L is the"horizontal" size of the roughress. Main
characteristics of these remances (frequenciesand widths) are dscussed as dependent on thaghness
and onthe degee of theifm indentation when the dependencktbe dieletric constant othe film o, the
electic field strength &= &(w) + aE?) in the region oftie "Plasmonresorance (.e. & | &Ww)| <<1) is
taken into accounit leadsto the appearance of newnon-lineat'} local resorances, The condions of
the appeaance d suchresorances specidly, the regionof their localization differ from analogos

conditions for linear resamances

INTRODUCTION

In this paper, som peculiarties of the speaum of local resonance thin rough films ae discused
within the framewak of macoscopic &ctrod/namics. We assime that the filmthickness dis large
compaedto the charactéstic microsopic lengths (the latice constant the lengof the Debye screening
the e@ectron free path etc.) athich the vaue ofthe local dielectriccondant @n be established. Thus, the
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film may be congleredto be microscopic at the same tathe film thickness $ assumedmall compaed
to the field wavelength in the film. Therefore, indde the film we mayneglect variation of the field acioss
its thickness and thushé form of the basic equations for thefield becomes comderebly simpler that of
analogous equations for bulk saegl
Next assumptiowhich also simplifies the theory refers to thelusion of retardationWe shdl not take it
into account, assuming thide radii of the consideredotd states in the film i@ wavelergth of radation
(Ao = 2nc. , Wherewy, is the frequengof a local resonance). [1]
Usuallyui%calization radii of such states are snwalinpared to the approximation of the order of the
“horizontal” size of roughness L and the above saghns that L<< A,. If the film covers a smooth
surface-Z= 0 only upper surface of the film may be consderough. In this case the film thickness at
different points x, y is, generally speaking, diffiet and it may be characterized by the function ¥X,
y). We assumed that the medium over the film hagltalectric constant @ff = 1 (vacuum), that the local
dielectric constant of the film iS;(w) and that the dielectric constant of the subst@ntig(w). Assuming
roughness to be sufficiently smooth, we also asdhatg 11| << 1.
Upon neglecting retardation (i.e. within the lifGit— oo, C is the velocity of light) the Maxwell equations
for the electric field E (r, t) are known to have form:

E=0,  divD=0
Where>D Is the electric displacement vector. Trmfaef% = -0y (r, YAy = 0 and for the fields with
frequencyw, (%(r, t) :>IE(r)|t|@", etc.)%(r) =0 (oo)%(?).
Thus, within the electrostatic limit under discossiwe must solve the Laplace equatldf(f) = 0 of the
three layered system being considered. The mafitudifes are caused by the necessity to provide th
known boundary conditions (Continuity of the fidfdand 0; Indices n and t denote the normal and the
tangential components of the field) to be fulfill@tross the rough surface in particular.

THEORETICAL CONSIDERATION AND CALCULATIONS

The expressions for the potentir) in va?uum, in the film and in the substratehia following form:
W(p, 2) = ;w(?) &0 K2 25 1)
i3, =T (i) &+ i) e K2y, B> 250 >
Wi 2 = Tl & 2 <0 ®
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whereg(x, y) and’k = (k ky) are two dimensional position and wave vectorspeetively.

Since the function%’ + Rz at any real k satisfies the Laplace equation ttressions written out in
equation (1) also satisfy this equation. The fum:HJ(ﬁ), Wl(i) and Wz(?) in these expression must be
determined afterward in such a way that the aboeationed boundary conditions for the fields be
fulfilled (at |Z|- o the potential$P andW¥; tend to zero thus providing localization of theldi near the
film). In order to obtain the equation for the ftioas ¥, %@1, ¢z we write out in the explicit from the

expression for the components of the electric fegtdngth: in vacuum (i.e. atir(ﬁ))

E'y(p, 2) = —i%nyW(R)eiKp - Ikiz

E'(B 2) “SIKwReR R (22)
In the film (i.e. att(@) > Z > 0)
EloB, 2) = 5Ky P WRISE + W) (2b)

ELB,2) = —i;(?)xy P R)RE + w,R)eR
In the substrate (i.e. at<Z0)

E(B. ) = Ky WaR)E” Rz

B3, 2) = - (R)e™ R (20)
First we consider the film substrate interface<(®). From the continuity condition forFi.e. from the
condition By(B, 0) = E,(g, 0) we find

WoR) = Wi(K) + W) ©)
If now we require continuity of the normal compohehthe electric displacement vectof, Bhen from
the condition, E/@, 0) =01 E(8, 0)
We obtain

01 [WaR) - Wa(R) = 0 Wo(R)] (4)
To obtain analogous relationship for the film-vacuinterface one should take into account that & th
interface the unit vector of the normal to the aoefi(x, y) is not directed along the axisad
accordingly the tangential unit vectads, (1, are no more parallel to the plane (x, y). In tase unit

vector of the normal directed into vacuum is deteed by the known relationship

6T ’-ar ]1 [1 -2
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(x, y)

(X, y)

Figurel

Figure 1: Function of the film profile so that teetfirst order of small gradientd 17 << 1

_|_or or
1 [8x ’ oy ’jl ©)

In the same approximation two tangential unit vectarye written out below:

t= (1,0, 0T (6a)
OX
t, = @ 1; %yrj (6b)

It is clear that the direction of the vectgid close to that of the axis x, whereas the dwaddf t, is close
to that of the y axis. According to equation (5 tiormal electric displacement component at£ D7) is

determined by the relationship.

A _n 0T -0T _ Dr
Dn= D, = DAL . =D- 7
OX 3 oy . op B @

In this relationship two components of electricpthsement vector are taken on the film surfacecesin

film is assumed to be thin, the approximation

Dy(F, 1) = Du(F, 0) + 1(P) ?Z;-‘ .

D«(7, 1) = D7, 0), D(F, 7) = Dy(p, 0),

=0
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must be used in equation (7) to an accuracy asealdbmow we recall the equation div D = 0 and thus

take into account that

D, _ _ 9D, 8DM --0Dz

oz X P
Then equation (7) may also be written in the form
BR(8. p) = D7, 0) ——0% £ () DB, 0)} (7a)

In this relationship the normal electric displacetn@mponent on the outer surface of the film @teZ =
7 (p)) is expressed through its value-at D

In vacuum, according to equation (2a)
DY@, 1) = ZIKI‘P(k)E"‘p+ ka‘P(T?)E""‘} +Ad {Zk \P(T?)E"‘p}
=y \P(T?)E'kp{% + [kx—dt + ly—dlj Z‘P(?)E'kpl?l

Doing so we have neglected the terms of the orﬂ{sﬁmand 7. since 7] << 1 and also, according to
the assumption, the main contribution tpdmes front k for which kd << 1, using equation)@ad (2b)

we find analogously that the normal electric displaent at component inside the film

D, 2=17=- Dl(w){lzﬁ)ﬁ‘kp (¥ - T) + i% @é“’ k(¥ + ?ﬁﬂ

+% Ezkzﬁ’ ky(P1 + ?ﬂ}
or, if we take into account (3) and (4)
D', (@, 1) =- 0, %(ﬁ) W, 0% + Oy idiv {T(B)gk{a‘kp \yz(ﬁ)}
No equating I, (3, 7) with D', (, 1) as expressed above, we obtain the equation
%\P@){a‘@@) - - & %ﬁq Wo(R) R +i00, idliv {(%)%kzikp \yz(?o} 8)

To obtain the last of the relationships which wedewe shall use the continuity of tangential field

components on the film surface, since, accordirgpimation (6a)

En@ 0=7EGH =E@.Y +%(L ER Y
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We obtain analogously with the above procedurevatidthe required accuracy.

B, 0= B 0) + riE»«Lzo + L ER0)
P S

From mtE = 0 it follows that

JE, = JE,
and thus o
Et (3, ) = B(F, 0) + r% {P)E, O)} (9a)

In the same way we find that

EL (3,1 = B3, 0) +§3 TRER, 0)) (9b)

In vacuum, according to equation (9) and (2a)
B @ 0 = ATk F R+ {r(%) Z® ¥
B2, 1) = -quX\P&)z'kp —— {t@) 2R ¥R

and again we neglect for the reasons given abowd sadues of the order oflk| and |v] compared to

unity and obtain finally
B, 1) = -Zki%@)zikpﬁx
B (. 0 = TR, (10)

Using now (9a, b) and also (2b), (3) and (4) wd fimat inside the film

a0 = ATk - 2 {@ = i &)wz(?)f‘kp}
7

and analogously for'g. Thus, the last of the relationships we requiee ar
SR CP(-iky) = kPR 0P - —9{&@) zrr?@)ﬁp}
k k & | L k
SRk = Sk R0 - i{ﬁr(p) STk, (T?)ﬁp} (11)
k k L], k

We shall be interested below in the region of fesgueso Q o, where w, is the frequency of

longitudinal field vibration in the film materidli(w) = 0. For the stated frequency region the secend t
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in the right-hand side of equation (8) may be cder®d to be small. If it is omitted, it follows eatly
from equation (8) that approximately
-_1
b =- Y(k
oK) ¥

Using this relationship together with equation (W8 find that the functio®!(k) which determines the

field in vacuum over the rough surface of the fijsee in figure 1) satisfies the following integral

}

equation:

F ikp 1 _1 ikp
%%Pz(k)z E+T] . ﬁ{T(p)%F‘P(ﬁ)E

This equation may also be rewritten %E(E) =0
_ ik 1 *T(g) R
where Fg) = %\P&)z P[l +—= ] o %n?ry(?)z

Thus, Ff) = constant. This constant is determined by theicehof the potential value at infinity and

therefore it may be assumed to be zero. Consegquém! equation for the functiofi(k) may be written

- - . >
in its final form as

[ 1+ —]Z\P@)Elkp T 7([%_ Z?HJ(?)E% (12)

Before we proceed with its ana|y5|s we shall gdrerahis equation for the case when the dielectric
constant of the film (but not of the substrate)etegs on the electric field strength:

Dh (0,3, 2) =01 (0) + OIE(B, DF (13)

RESULT AND DISCUSSION

For the above mention generalization it is reaskenti consider first of all equation (12) of thedar
theory.
In this the small paramete@) Is present in the combinatierrzk/[];, since we analyze a region of small
[; (w), then thoughtk << 1, the parameter may already be generally speaking, of the ordeuruty.
Naturally, in the nonlinear theory we are alsoliested only in the terms of the order-cdrmd nottk. [3].
Since these terms appear through the use of thaorehips equation (9) and the continuity of the z
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component of electric displacement generalizatibrequation (12) is quite trivial. It turns out thex
equation (12) in order to take into account nowiitg. It is necessary to substituig(w) with the value
equation (13) at-Z 0. Thus, when £depends o (it is clear that the relationship equation (13)
corresponds only to a specific case of this depare)ethe equation foy(?) becomes:

F +g1—2] RICTY :%@))—an?%f‘kp (14)
If nonlinearity for equation (13) is taken into acot

Dy(w, B) = Di(0) + OE@, 0)f
I

_ D', DY, EY,
and since, due t@l}j| << 1, | E,| = oS0 Th >> |Eyl
We have
O
Du(o, ) = Du(o) + 77,755y~ 16, OF (15)

where E,(@, 0) =Y RWER) (¥
Thus, in the frequenkcy region under discussidn(¢)|<< 1) nonlinearity may be important at relatively

smaller field values in vacuum since here the éffecvalue of the nonlinearity coefficient increase

sharply instead od there appears = o/00% (o),|J/>>[]. It may be convenient to rewrite equation (14) in

such a way where its nonlinear part is writterhi@ éxplicit form, if we introduce the following ragtons:
U1 (w) =01 (w) E"‘

i
-

this equation may be written as follows:

P (o) ZWR)( + BT = N (16)
where
0 B .
—_ = h) 2 I%
L =T TRHERIPY XeR (17)
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We shall analyze equation (16) and try to use itl#oify possible existence of so called nonlinieaal
resonances i.e. those vibrations in the film paktron localized in the rough region the very exise of
which is conditioned by the nonlinear term in egquai(16). First of all, similarly to the case oktlinear
theory, we assume that 1 (x) and seek the local states of all small radius< L. Besides, in the
expression equation (16) we substitute the fieldasg by its value averaged over the local staté¢him
approximation equation (16) becomes the linear, it goes over into equation of the form equatibé)

with L = 0; however, instead af(w) there appears a new “effective” value independént [4]

B

NL _ 2
1™ (o) = Uy(w) +W P (18)
where AZ = [[¥n(X)FIE »(x)F dx (19)

Yn(x) is the potential distribution in the n th locdhte. In this approximate the Fourier componehthe

function satisfy the equation B
o ™= N2
[C4(w)]

02N (0n) 2(K)E* +1(x) 2 |KWh(k) €< = (20)

In this approximate we obtain an equation k) which coincides with the Schrodinger equationthe

S-state { = 0) of the election in a hydrogen atom:

_ 1 d? 1 >
"I o ToPT . (21)
where ,
E = —r(om"(O{—m.—l ] Q= +—D1NL(°°) 2%
0 (w) n"(0) ’
From the quantization condition E = T fivel that the frequencies of nonlinear resonanee ar

determined by the relationship:

L (0n) = V2t(0)| n"(0), n=1,2,3

or taking into account equation (18) and (17)

thy

n wO

A=-m (23)

®n— W +
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whereQ = AV2t(0)[ln”(0)|, so thatw, — o, at large n. From the relationship, it follows ficf all that the
frequenciesy, stop being equidistant as they become functiothefsquare amplitude of vibratiorf.An
particular, at sufficiently small A

3 A2
On = 0o — NQ — B_gzﬁp\z_ (24)

CONCLUSION
The appearance of the dependence dofAhe frequencies, which are connected genetically with the
frequenciesn, from the linear theory is a rather evident resilthe nonlinearity influence. Possible
appearance of such resonance of small radii, wdnielabsent within the framework of the linear tye®
less trivial. [6]
In the frequency regiom, < ® < 0, - the valued " (0) < 0 and it is this region that the above mentibne
nonlinear resonance of small radius may be pre$entn equation (24) it follows that formally their

A 2
number is infinitely large (at large ®;"" — wo __AIBIA” .However, due to broadenintydhe states

\VnQ

with small n may be of interest. In this connectiet us evaluateBJA? for such a situation whem " —
wo = Io. If T < Q, then for f|A% we find, using equation (24) at n= 1, that

2 r Q

Bl A”Q(Q +T) Ag Q A3

and atl’, Q 0.1 eV,Q = 0.4eV,AQ 2eV

o2

the valuefj|A% = 5 x 10* which lies in the region of obtainable values. §this evaluation shows that the
appearance of nonlinear local resonance is possible

Possible existence of nonlinear local resonancesnmé¢hat with regards to optical nonlinearity e.qg.
colours of the films or surface must change withyway intensity of incident radiation on the sudaand

generally speaking, these changes may be modétlesi.clear that the same resonance in the above
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conditions must contribute to Raman scattering pod@ent on the surface processes of generation of
harmonics at reflection etc.
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