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ABSTRACT 

In a thin dielectric, semiconductor or metal film in the regions or indentation there exist local "Plasmon" 

resonances of  small radius 'tn << L, where L is the "horizontal" size of the roughness. Main 

characteristics of these resonances (frequencies and widths) are discussed as dependent on the roughness 

and on the degree of the film indentation when the dependence of the dielectric constant of the film on the 

electric field strength (ε= εo(w) + αE2) in the region of the "Plasmon" resonance (i.e. at | εo(w)| << I) is 

taken into account, it leads to the appearance of new ("non-linear"} local resonances, The conditions of 

the appearance of such resonances, specially, the region of their localization, differ from analogous 

conditions for linear resonances. 

_____________________________________________________________________________________  

INTRODUCTION 

In this paper, some peculiarities of the spectrum of local resonance in thin rough films are discussed 

within the framework of macroscopic electrodynamlcs. We assume that the film thickness d is large 

compared to the characteristic microscopic lengths (the lattice constant the length of the Debye screening, 

the electron free path etc.) at which the value of the local dielectric constant can be established. Thus, the 



 kpekpo, A.  et al                                                                            Adv. Appl. Sci. Res., 2010, 1 (3):67-77 
_____________________________________________________________________________________ 

68 
Pelagia Research Library 

film may be considered to be microscopic at the same time the film thickness is assumed small compared 

to the field wavelength in the film. Therefore, inside the film we may neglect variation of the field across 

its thickness and thus the form of the basic equations for the field becomes considerably simpler that of 

analogous equations for bulk samples. 

Next assumption which also simplifies the theory refers to the inclusion of retardation, We shall not take it 

into account, assuming that the radii of the considered local states in the film are wavelength of radiation  

( λo =           , where ωo is the frequency of a local resonance). [1] 

Usually localization radii of such states are small compared to the approximation of the order of the 

“horizontal” size of roughness L and the above said means that L << λo. If the film covers a smooth 

surface Z = 0 only upper surface of the film may be considered rough. In this case the film thickness at 

different points x, y is, generally speaking, different and it may be characterized by the function Z = τ(x, 

y). We assumed that the medium over the film has the dielectric constant of ∈ = 1 (vacuum), that the local 

dielectric constant of the film is ∈1(ω) and that the dielectric constant of the substance is ∈2(ω). Assuming 

roughness to be sufficiently smooth, we also assume that |∇τ| << 1. 

Upon neglecting retardation (i.e. within the limit C → ∞, C is the velocity of light) the Maxwell equations 

for the electric field E (r, t) are known to have the form:  

rotE = 0, divD = 0 

where D is the electric displacement vector. Therefore, E = - ∇Ψ (r, t)∆Ψ = 0 and for the fields with 

frequency ω, (E(r, t) = E(r)|t|eiwt, etc.) D(r) = ∈ (ω)E(r). 

Thus, within the electrostatic limit under discussion, we must solve the Laplace equation ∆Ψ(r) = 0 of the 

three layered system being considered. The main difficulties are caused by the necessity to provide the 

known boundary conditions (Continuity of the field Et and Dn; Indices n and t denote the normal and the 

tangential components of the field) to be fulfilled, across the rough surface in particular. 

 

THEORETICAL CONSIDERATION AND CALCULATIONS 

The expressions for the potential Ψ(r) in vacuum, in the film and in the substrate in the following form: 

 Ψ(ρ, Z) = ∑Ψ(K) eikp - |K|Z, Z > τ|ρ| 

 Ψ1(ρ, Z) = ∑eikp { Ψ1(K) e|K|Z + Ψ1(K) e– |K|Z }, τ|ρ| > Z > 0 

Ψ2(ρ, Z) = ∑eikpΨ2(K) e|K|Z   Z < 0           (1) 

2πC 
  ωo 

K 

K 

K 

-1 
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where ρ(x, y) and k = (kx, ky) are two dimensional position and wave vectors, respectively. 

Since the function eikρ + |k|Z at any real k satisfies the Laplace equation the expressions written out in 

equation (1) also satisfy this equation. The function Ψ(k), Ψ1(k) and Ψ2(k) in these expression must be 

determined afterward in such a way that the above mentioned boundary conditions for the fields be 

fulfilled (at |Z|→ ∞ the potentials Ψ and Ψ2 tend to zero thus providing localization of the field near the 

film). In order to obtain the equation for the functions Ψ, Ψ2,Ψ1, Ψ2 we write out in the explicit from the 

expression for the components of the electric field strength: in vacuum (i.e. at Z > τ(ρ)) 

 Ev
xy(ρ, Z) = –i∑KxyΨ(K)eiKρ - |K|Z, 

 Ev
z(ρ, Z) =∑|K|Ψ(K)eiKρ - |K|Z,         (2a) 

In the film (i.e. at τ(ρ) > Z > 0) 

 Ef
xy(ρ, Z) = –i∑Kxy e

iKρ{ Ψ1(K)e|K|Z + Ψ1(K)e|K|Z}       (2b) 

 Ef
z(ρ, Z) = –i∑(K)xy e

iKρ{ Ψ1(K)e|K|Z + Ψ1(K)e|K|Z}  

In the substrate (i.e. at Z < 0)   

 Es
xy(ρ, Z) = –i∑Kxy Ψ2(K)eikp + |K|Z  

 Ex
z(ρ, Z) = –i∑|k|Ψ2(K)eikp + |K|Z            (2c) 

First we consider the film substrate interface (Z = 0). From the continuity condition for Exy i.e. from the 

condition Exy(ρ, 0) = Ef
xy(ρ, 0) we find 

  Ψ2(k) = Ψ1(k) + Ψ(k)              (3) 

If now we require continuity of the normal component of the electric displacement vector Dn, then from 

the condition ∈2 Ez(ρ, 0) = ∈1 E
f
2(ρ, 0) 

We obtain  

  ∈1 [Ψ1(k) - Ψ1(k) = ∈2 Ψ2(k)]             (4) 

To obtain analogous relationship for the film-vacuum interface one should take into account that on this 

interface the unit vector of the normal to the surface η(x, y) is not directed along the axis z and 

accordingly the tangential unit vector ∈1, ∈2  are no more parallel to the plane (x, y). In this case unit 

vector of the normal directed into vacuum is determined by the known relationship  

 η =           ,         ,1  [1 + |∇τ|2]-1/2  
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     Figure 1 

Figure 1: Function of the film profile so that to the first order of small gradients   |∇τ| < < 1  

   η = –        , –            ,    1        (5) 

 

In the same approximation two tangential unit vectors are written out below:  

  t1 =   1; 0;          (6a) 

   

t2 =   0; 1;                  (6b) 

It is clear that the direction of the vector t1 is close to that of the axis x, whereas the direction of t2 is close 

to that of the y axis. According to equation (5) the normal electric displacement component at Dn = (Dn) is 

determined by the relationship.  

 Dn = Dz = Dx          - Dy          = Dz -          Dρ      (7) 

In this relationship two components of electric displacement vector are taken on the film surface. Since 

film is assumed to be thin, the approximation  

 Dz(ρ, τ) = Dz(ρ, 0) + τ(P)             z = 0 

 Dx(ρ, τ) = Dx(ρ, 0),  Dy(ρ, τ) = Dy(ρ, 0),   
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must be used in equation (7) to an accuracy as above. If now we recall the equation div D = 0 and thus, 

take into account that  

  =   –              –            = 

Then equation (7) may also be written in the form  

         Dη (ρ, ρ) = Dz(ρ, 0) –           {τ (ρ) Dρ(ρ, 0)}       (7a) 

In this relationship the normal electric displacement component on the outer surface of the film (i.e, at Z = 

τ (ρ)) is expressed through its value at Z = 0 

In vacuum, according to equation (2a) 

 Dη (ρ, τ) = ∑|K|Ψ(k)ℓikp +          τ∑kxΨ(k)ℓikp     +          τ∑kxΨ(k)ℓikp       

       = ∑ Ψ(k)ℓikp  |k| + i  kx       + ky           –τk2   = ∑Ψ(k)ℓikp|k| 

Doing so we have neglected the terms of the order of |k|τ and |∇τ|. since  |∇τ| << 1 and also, according to 

the assumption, the main contribution to Dη comes from k for which kd << 1, using equation (7a) and (2b) 

we find analogously that the normal electric displacement at component inside the film  

 Dη(ρ, z = τ) = - ∈1(ω)  ∑(k)ℓikp (Ψ1 – Ψ1) + i         τ∑ℓikp k(Ψ1 + Ψ1)   

   +          τ∑ℓikp ky(Ψ1 + Ψ1)   

or, if we take into account (3) and (4) 

 Dƒ
η (ρ, τ) = - ∈2 ∑(k) Ψ2(k)ℓikp + ∈1 idiv  τ(ρ)∑kℓikp Ψ2(k)  

No equating Dvη (ρ, τ) with Df
η (ρ, τ) as expressed above, we obtain the equation  

 ∑Ψ(k)ℓikp(k) = - €2 ∑|k| Ψ2(k)ℓikp +i∈1 idiv  τ (ρ)∑kℓikp Ψ2(k)    (8) 

To obtain the last of the relationships which we need, we shall use the continuity of tangential field 

components on the film surface, since, according to equation (6a)  

  Eτ1 (ρ, τ) = τ1E(ρ, t) = Ex (ρ, t) +         Ez (ρ, t) ∂τ 
∂x 
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We obtain analogously with the above procedure and with the required accuracy. 

  Et1 (ρ, τ) = Ex(ρ, 0) + τ          z = 0   +          Ez (ρ, 0) 

From ωtE = 0 it follows that  

   = 

and thus  

 Et1 (ρ, τ) = Ex(ρ, 0) + τ         {τ(ρ)Ez(ρ, 0)}       (9a)  

In the same way we find that  

Et2 (ρ,τ) = Ey(ρ, 0) +        {τ(ρ)Ez(ρ, 0)}       (9b)  

In vacuum, according to equation (9) and (2a) 

 Evt1 (ρ, τ) = -i∑kxΨ(k)ℓikp +        {τ(ρ) ∑(k) Ψ(k)ℓikp} 

 Ev
t2 (ρ, t) = -i∑kxΨ(k)ℓikp +        {t(ρ) ∑(k) Ψ(k)ℓikp} 

and again we neglect for the reasons given above small values of the order of τ|k| and |vτ| compared to 

unity and obtain finally 

 Ev
t1 (ρ, τ) = -∑iΨ(k)ℓikpkx 

 Ev
t2 (ρ, τ) = -∑iΨ(k)ℓikpky         (10) 

Using now (9a, b) and also (2b), (3) and (4) we find that inside the film 

 Eƒ
t1 (ρ, τ) = -i∑kxΨ2(k)ℓikp -          τ(ρ)             ∑|k|Ψ2 (k)Ψ2(k)ℓikp 

and analogously for Eft2. Thus, the last of the relationships we require are  

 ∑Ψ(k)ℓikp(-ikx) = -i∑kxΨ2(k)ℓikp –                      τ (ρ) ∑|k|(k)ℓikp 

 ∑Ψ(k)ℓikpk = ∑kΨ2(k)ℓikp - ∇          τ (ρ) ∑|k|Ψ2 (k)ℓikp     (11) 

We shall be interested below in the region of frequencies ω Ω ωo, where ωo is the frequency of 

longitudinal field vibration in the film material ∈1(ω) = 0. For the stated frequency region the second term 
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in the right-hand side of equation (8) may be considered to be small. If it is omitted, it follows directly 

from equation (8) that approximately 

 Ψ2(k) = -          Ψ(k) 

Using this relationship together with equation (11) we find that the function Ψ(k) which determines the 

field in vacuum over the rough surface of the film (see in figure 1) satisfies the following integral 

equation: 

 -i∑kΨ2(k)ℓikp  1 +            =            ∇   τ(ρ)∑|kΨ(k)ℓikp| 

This equation may also be rewritten as  ∇E(ρ) = σ 

where F(ρ) = ∑Ψ(k)ℓikp  1 +            +             ∑|k|Ψ(k)ℓikp 

Thus, F(ρ) = constant. This constant is determined by the choice of the potential value at infinity and 

therefore it may be assumed to be zero. Consequently, the equation for the function Ψ(k) may be written 

in its final form as  

 1 +            ∑Ψ(k)ℓikp =                          ∑|k|Ψ(k)ℓikp      (12)  

Before we proceed with its analysis we shall generalize this equation for the case when the dielectric 

constant of the film (but not of the substrate) depends on the electric field strength: 

 ∈1 (ω, ρ, z) = ∈1 (ω) + ∝|E( ρ, z)|2        (13)  

RESULT AND DISCUSSION 

For the above mention generalization it is reasonable to consider first of all equation (12) of the linear 

theory. 

In this the small parameter τ(k) is present in the combination z =τk/∈1, since we analyze a region of small 

∈1 (ω), then though τk << 1, the parameter z may already be generally speaking, of the order of unity. 

Naturally, in the nonlinear theory we are also interested only in the terms of the order of z and not τk. [3]. 

Since these terms appear through the use of the relationships equation (9) and the continuity of the z 
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component of electric displacement generalization of equation (12) is quite trivial. It turns out that in 

equation (12) in order to take into account nonlinearity. It is necessary to substitute ∈1(ω) with the value 

equation (13) at Z = 0. Thus, when €1 depends on ρ (it is clear that the relationship equation (13) 

corresponds only to a specific case of this dependence) the equation for Ψ(k)  becomes: 

 1 +            ∑Ψ(k)ℓikp =                     ∑|k|Ψ(k)ℓikp      (14)  

If nonlinearity for equation (13) is taken into account 

  ∈1(ω, ρ) = ∈1(ω) + ∝|E(ρ, 0)| 

and since, due to |∈1| << 1, | Eƒ
z | =           =            =             >> |Ev

x,y| 

We have  

∈1(ω, ρ) = ∈1(ω) +                  |Evz(ρ, 0)|2        (15) 

where Ev
z(ρ, 0) = ∑|k|Ψ(k)ℓikp 

Thus, in the frequency region under discussion (|∈1(ω)|<< 1) nonlinearity may be important at relatively 

smaller field values in vacuum since here the effective value of the nonlinearity coefficient α increase 

sharply instead of α there appears α = α/∈2
1 (ω),|∝|>>|∝|. It may be convenient to rewrite equation (14) in 

such a way where its nonlinear part is written in the explicit form, if we introduce the following notations: 

 ∈1 (ω) = ∈1 (ω)  1 + 

 β = ∝ 1 +            

this equation may be written as follows: 

 ∈1 (ω) ∑Ψ(k)ℓikp + τ(ρ)∑|k|Ψ(k)ℓikp = – L[Ψ]          (16) 

where 

 – L[Ψ] =                 {∑|k|Ψ(k)ℓikp } 2 ∑Ψ(k)ℓikp           (17) 
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We shall analyze equation (16) and try to use it to clarify possible existence of so called nonlinear local 

resonances i.e. those vibrations in the film polarization localized in the rough region the very existence of 

which is conditioned by the nonlinear term in equation (16). First of all, similarly to the case of the linear 

theory, we assume that τ= τ (x) and seek the local states of all small radius r << L. Besides, in the 

expression equation (16) we substitute the field square by its value averaged over the local state. In this 

approximation equation (16) becomes the linear, i.e., it goes over into equation of the form equation (16) 

with L = 0; however, instead of ∈(ω) there appears a new “effective” value independent of x. [4] 

 ∈1
NL (ω) = ∈1(ω) +                 An

2        (18) 

where An
2 = ∫|Ψn(x)|2|Ev

n(x)|2 dx         (19) 

Ψn(x) is the potential distribution in the n th local state. In this approximate the Fourier components of the 

function satisfy the equation 

 

 ∈1
NL (ωn) ∑(k)ℓikx + τ(x) ∑|k|Ψn(k)ℓikx = 0       (20) 

In this approximate we obtain an equation for ρ(k) which coincides with the Schrodinger equation for the 

S-state (ℓ = 0) of the election in a hydrogen atom: 

 –                       –          ρ = Eρ        (21) 

where 

 E = – τ(0)η”(0)                 , Q= K                       ,                                                 (22) 

From the quantization condition E = –           we find that the frequencies of nonlinear resonance are 

determined by the relationship: 

  ∈1
NL (ωn) = n√2τ(0)| )η”(0)|,       n = 1,2,3 

or taking into account equation (18) and (17) 

  ωn – ωo +                   A2 = – nΩ                (23) 
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where Ω = ∆√2τ(0)|η”(0)|, so that ωn → ωo at large n. From the relationship, it follows first of all that the 

frequencies ωn stop being equidistant as they become function of the square amplitude of vibration A2. In 

particular, at sufficiently small A2. 

 ωn = ωo – nΩ –           (24)  
 
 

CONCLUSION 

The appearance of the dependence on A2 of the frequencies ωo which are connected genetically with the 

frequencies ωn from the linear theory is a rather evident result of the nonlinearity influence. Possible 

appearance of such resonance of small radii, which are absent within the framework of the linear theory, is 

less trivial. [6] 

In the frequency region ωo < ω < ωo
NL the value ∈ NL (ω) < 0 and it is this region that the above mentioned 

nonlinear resonance of small radius may be present. From equation (24) it follows that formally their 

number is infinitely large (at large n: ωn
NL – ωo =                   .However, due to broadening only the states 

with small n may be of interest. In this connection, let us evaluate |β|A2 for such a situation when ω1
NL – 

ωo = Γo. If Γo < Ω, then for |β|A2 we find, using equation (24) at n= 1, that  

 |β| A2 Ω(Ω + Γo)            Ω          Γo
2 

and at Γo Ω 0.1 eV, Ω = 0.4eV, ∆Ω 2eV 

the value |β|A2 = 5 x 10-4 which lies in the region of obtainable values. Thus, this evaluation shows that the 

appearance of nonlinear local resonance is possible. 

Possible existence of nonlinear local resonances means that with regards to optical nonlinearity e.g. 

colours of the films or surface must change with varying intensity of incident radiation on the surface and 

generally speaking, these changes may be modelled. It is clear that the same resonance in the above 
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conditions must contribute to Raman scattering enhancement on the surface processes of generation of 

harmonics at reflection etc. 
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