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ABSTRACT

The essentials of a Sne-Gordon gas are briefly indicated. The mapping of an antiferromagnetic chain
with orthorhombic symmetry on the Sine-Gordon system is analyzed in detail. The Sne-Gordon profile
for the static domain wall is found to linearly stable. In this analysis it became clear that the hard axis
switching has to be treated carefully. The agreement between experimental data on the spin-spin

correlation function, the specific heat and the thermal conductivity is discussed.

INTRODUCTION

In this review we will discuss the occurrence amel stability of domain walls in quasi-one-dimengibn
antiferromagnetic insulators and some related phyproperties. The domain walls will be descrilbed
Solitons. These are then considered as nonltnedta@n of a system in thermal equilibrium. Spécia
attention will be given to the theoretical aspeeghich are essential for the interpretation of the
experimental data in terms of solitons.
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The statistical mechanics of a Sine-Gordon [6] Hjdystem will be indicated very briefly only tres

guantities which are needed for further discussidihbe introduced without any deviation.

Then we will show how dimensional antiferromagneti@in can be mapped on a Sine-Gordon system.
This mapping [17],[16] and [18] will be given in t@dd because it is very instructive. The range or
system parameters where the magnetic chain belawes Sine-Gordon system is related to the

approximations, made in this mapping.

When the correspondence between both systemsaislisbed it remains to prove that the Solitons are

stable entities in the magnetic system.

THEORETICAL CONSIDERATIONSAND CALCULATIONS

The Sine-Gordon system is described by the follgwin

Hamiltonian:

H=% %1, + % € (Y — Y + ’c? (1 — cos Y), (1)

where c is the velocity of the linear excitatiorighe systeme is the frequency of the linear excitations

andT, is the momentum canonically adjoint to the posifi6.

The particles on a one-dimensional array feel Igcalcosine potential and interact with each other
harmonically.[11] The system allows linear excias, which we will call magnons for further
inference. It allows solitons and anti-solitons a&nere are also the so-called breathers, muchaanedb

states of a soliton and an anti-soliton.
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The shape of a soliton in the continuum approxiomai$ given by

Y(x — vt) = 4 tart(expt wg(X — % — Vi), (2)

where v denotes the velocity of the soliton, ghs torenz factor and,xs the center of the
soliton. The cosine of Y(x-vt) differs only substiaily from zero in the vicinity of the soliton ctar.
The sine of half Y(x-vt) changes from most 1 to @tn-1 in the same region.[2]
The partition function-2f the system described by the Hamiltonian candbeulated using the transfer
matrix formalism. On the other hand a phenomenclidgheory of a non-interacting soliton gas can be
constructed. The comparison of the Phenomenolofieal energy with the classical exact free energy
leads to an expression for the solitons densitglims of the system parameteand the soliton energy
divided by KT. [110] The soliton density is given by:

NG

This is one of the basic quantities which is usedestimate the number of solitons present in the
magnetic system provided one knows the relatiowden the parameters of the magnetic system and
the Sine-Gordon parametessand E. it is clear that from the free energy the spedieat can be
obtained in function of the temperature. The staticelation function can also be obtained usirgy th
transfer matrix formalism [14] and [7].
The dynamic correlation functions require additioapproximations. In the phenomenological gas
approach the correlations between the cosine oj &(>one space time point and another space time
point are obtained by averaging over the velocisyribution of the solitons. The Sine of half Y(@an

be approximated by a step-function that changes frdo -1 at the soliton center.

The one-dimensional magnetic system which we valisider has an isotropic exchange integral J, a

single ion-anisotropy A, along the z-axis and ibjeated to a magnetic field in the x-direction whic
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together with a single ion anisotropy D, breaks ida#ropy of the X — Y plane.[9] Taking only next

neighbour interaction into account the Hamiltorfi@nthis chain is given by

H =2 JSnS: + A(S)” - D(S)° - dMeHS", )
where § means that x -component of the spin on thegsition in the chain. For J and A positive it
represents an antiferromagnetic chain with an psye. For relatively low magnetic fields it is the-

Y plane, for a high magnetic field strength theygalane becomes the Y — Z plane.

The classical equations of motion can be obtainadhe quantal commutation relations and taking the
the classical limit [17] and or via Poisson braskethich exploit the fact that spin and angular

momentum are analogous.

There are several methods to map Hamiltonian osihe- Gordon Hamiltonian.[3] In all of them some
approximations are involved and the algebra oftfagping is tedious and even not always straight
forward. Therefore another variation, which triecombine the advantage of the other methods pwill
given. It should be remarked that the Hamiltoniabilinear in the spin variables. The nonlineanity
the equations of motion arises from the rotatiomsetry of the generous’SS”, S? For reasons of
convenience it is preferred to have the non-lingdn the Hamiltonian, while the generators of the

equation of motion behave linear.

The villain transformation [12] represents the spommutation relations by operator functions of

canonically adjoint local operators. These opesatoe very similar to the well-known position and

momentum operators of a quantum particle. If onesdwot bother about the domain of the operators,
the classical equivalent is straightforward, tieisults is replacing by h [S(S+1) %2 ] by S, the deigth

and obtaining the following representation of tpasalgebra
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S% =S ®)

S*;=S'expY;(1-S%)"”
(6)
S=S(1- SZJ) %exp‘m

Where S; and Y ; are canonically adjoint. Denoting the square rbgtw the following

expression for the Hamiltonian [16] is obtainedha new variables.

H = JS (Nexchange* Manisotropy* Nzeemay) (7)
Nexchange= Zj (§ +1§ +10) +163 €OS(Ya+1— Yj)) 8
Ranisotropy= Z; % = 5) w?® cogY, 9)
hZeeman:Zj% wy cosY, (10)

The equations of motion are then obtained usindPtiieson- bracket: [13]

(§.Y) =9 (11)

5, oY, oY, &S

(12)

The equation for;Ss then

_ _ OH
6I|D—t|3 =S H)= 5, (13)
SY. - 38631 6y sin (Yia— V) - & -iysin(Y; — Yj ) +
j
gI(J:]B;Sj wsinY; +% oqsinij:| (14)
The equation for Yis then:
_ OH oW
DiY= 5o = - 38| 5o 41 COS(Yur— Y)) + 31 COS(Y = ¥; 1) +
j j
SutSiton 2D codv,- gio. %L] (15)
J ] j
where
0wy =- S (16)
0S; W
90

Pelagia Research Library



Ekpekpo, A et al Adv. Appl. Sci. Res,, 2010, 1 (3): 86-97

It is clear that S= Ss1 = 0 for all j is a solution of equation (15) thexpresses that;¥is time
independent
D=0 17)

The static solution for jYcan then be obtained from the following equation.

sin(Yj+1—Yj) - sin(Y; — Yj-1) +.J£ Sin2Y + gus .Jl_é sinY=0 (18)
This equation determines the orientation of theaxspn the plane given by equation (17), which
indicates that we are looking for solutions without-of-plane components.

Now we will define new variables as

1
Yy = _g +6;+ —26,- ) (19)
T
Y2j+1 - - 2 +9,- - 291 (20)

For the j cell; measures the average of the anglgsalvd Y,+1, 6; measures the deviation fromto
their difference for a relatively large exchangéh¢ adjacent spins will be almost antiparallels thi
implies thatd is small. In order to derive from equation (1&xctable expressions we substittands;

and linearize with respect 8, 6;:1 — 6; .1 and 61 + 6; .1 — 28,. The result of this calculation is the
following set of coupled equations which are noredr in6; the variable that describes the absolute

orientation of the spins in th8 gell:

A D :
20i6j41 - 61 ‘/2(9,-+1 —061) — 2._]_ sing; - g.lg%ej sing; =0 (22)
40, + 0j+1 —6j1) + 2 0.1 +6j+1— X, — ZJEGJ- 1C0S B+ 2 s
i =0 22
JS 0% (22)
In the continuum limit these equation becomes
£0+0+22 sing+ H swe=0 23
3 Gls 35 (23)
40+ 20 + 20— 22 Bcosd + 215 _H cos= 0 (24)
J JS
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where a the spacing between the particles. Theledw@guations require two additional approximations
afore we arrive at a Sine- Gordon profile for ttetis domain wall. [4]
The underlined term in equation (24) is at leaskeorsmaller than the other terms provided that the
exchange integral j is large quantity, indeed trapprtion TDis then small and al€b,This term is
neglected completely in all mapping procedures ¢mission limits the validity range of the mapping
to chains where the neighbouring spins are strooglpled via the exchange interaction and to chain
where the local spin intersect weakly with an ainguc
perturbation coming from the single ion anisotropid the magnetic field. If we follow Mikeska, we
neglect all derivatives & and the first order derivative 6f this leads to:

&0 - ((gusH)? — BJSD) sin® = 0 (25)
where é = (2Saf

If we follow (leung et al), we will neglect the sex derivative 0B and then we obtain

¢?8 - ((gusH)? — 8J3D) sin® = 0 (26)
2
where é = %

Theoretically, this is amazing result. For compamisvith experiment, it is no problem because irhbot
cases c or c is the limiting group velocity of thagnon. It should be noted that depending on tye si
of (gugH)? — 8J%D), we have to addg— t&hin order to obtain the same shape as equation().

Sine Gordon parameter is then:

w’c? =|(qusH)? — 8J$D) (27)

Treating the spins as classical vectors and intioduthe angle variables of Mikeska the compourfds o

the spin in the ith position on the chain are gilsgn
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§*=(-1) Ssin@; + (-1) 6) cos 6 + (-1 6) (28)
S =(-1) Ssin@; + (-1) 6) cos 6 + (-1} §) (29)
§*=(-1J S cos@ + (-1) §) (30)

If we make the continuum approximation, assume @hahd®; are small compared with and@, the

following Hamiltonian density is obtained:

H = % j& [*¥y (hexchanget Manisotropy* Nreeman (31)
Nexchange= 8°¢° + 40% + [0%¢F + 4W] sin 20 (32)
Ranisotropy= 213 0S8 - ?°/; coS@sin’® (33)
hseeman= —2*2"/;5 (Bcogp cosp— Wsind sing) (34)

The equation of motion for the angle variablesthem given by

DO = 4J3V sid + 2gugH sin® (35)

D9 ="/ (sirg) + GHeH cosp cotp (36)

Di® = -J9%p sind — JScos[R%pd + 40W] + DS sird sin2p + gugHWY cosB (37)
JS6%¢ sing

DW = sin@ + 4 JS6” cosh (38)

(sin®) — [JS0%¢® + 4 JSW?] + 2AS cosB + 2 Ds
cos8 cos® ® — glgH Bcos@

(sin® )
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RESULTSAND DISCUSSION

The ideal gas soliton theory gives the followingeession for the magnetic part of the specific heat

2
Cy = K - Esol — - 1 _1 2n, (39)
a KT 2 2

where n is given by equation (3) and 2n represtmstotal soliton and anti-soliton density. If the
proportionality factor betweensgand the magnetic field is used as a parameterhwda@o be fitted the
agreement with the data is reasonable certainlyn ftbe qualitative viewpoint. This is used as an
argument in favour of the Soliton description abagative domain waits. However, one should bare in
mind that equation (39) is the specific heat ofsteam described by Hamiltonian (1). Using numerical
transfer matrix methods the thermodynamical quastipenerated by Hamiltonian (4) can also be
calculated in the classical approach. It is foulat there is a serious discrepancy between the idea
soliton gas and the transfer operator results fier complete system. It is believed that the good
agreement of the experimental results with thet@ollgas theory is accidental in the sense that
contributions arising from out-of-plane degreedreédom of the spins are somewhat compensated by
the quantum corrections.[8]

The neutron scattering and NMR experiment measpie-spin correlation function. This dynamic
correlation function has been calculated classiaail the basis that soutons act independently laaud t
their density is low, indeed Poisson statistics taen be used. The theoretical parameter, which
controls the Poisson distribution, is the mean nemdb solitons on a given interval and during aegiv
lapse of time. The mean number of solitons is the density controlled by E; This energy is used
again as a fitting parameter. [5]

Heat conductivity experiments on TMMC and DMMC [(§HNH,MnCl3] show in the magnetic field
dependence a reduction which could be caused bgrédsence of domain walls. Using a model which
allows resonant scattering between phonons antbssliit is possible to fit the experimental datigte
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well. The soliton parameters here have the same @@faction as those of the neutron scattering
experiments. This reduction is found with respedbe theoretical calculated parameters, obtaired fr
measurements of the magnon dispersion for example.

CONCLUSION

The interpretation of experimental results on pgapge domain walls in quasi one dimensional
antiferromagnetic chain relies on the ideal solgas picture as far as the dynamic spin-spin catiosl

functions are concerned.[15] The key quantity iis thnalysis is the soliton-energy-the formulation
energy of a domain wall-measured via the solitonsdg. The energy can be obtained from theory

within 20%.

There are however difficulties with the specifiahen the sense that an approximative calculatiba (
ideal soliton gas) gives apparently a better agestmwith experiment than a classical but numerical

exact calculation of the same quantity via thedfanmatrix method for the antiferromagnetic chain

Also the heat conductivity gives an indication thia¢re are domain walls involved. The interaction

mechanisms which are proposed is still speculatitd, the merit however that the data are fitted.we
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