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ABSTRACT  

The essentials of a Sine-Gordon gas are briefly indicated. The mapping of an antiferromagnetic chain 

with orthorhombic symmetry on the Sine-Gordon system is analyzed in detail. The Sine-Gordon profile 

for the static domain wall is found to linearly stable. In this analysis it became clear that the hard axis 

switching has to be treated carefully. The agreement between experimental data on the spin-spin 

correlation function, the specific heat and the thermal conductivity is discussed.  

___________________________________________________________________________________ 

INTRODUCTION 

In this review we will discuss the occurrence and the stability of domain walls in quasi-one-dimensional 

antiferromagnetic insulators and some related physical properties. The domain walls will be described as 

Solitons. These are then considered as nonltnear excitation of a system in thermal equilibrium. Special 

attention will be given to the theoretical aspect, which are essential for the interpretation of the 

experimental data in terms of solitons.  
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The statistical mechanics of a Sine-Gordon [6] and [1] system will be indicated very briefly only those 

quantities which are needed for further discussion will be introduced without any deviation.  

Then we will show how dimensional antiferromagnetic chain can be mapped on a Sine-Gordon system. 

This mapping [17],[16] and [18] will be given in detail because it is very instructive. The range or 

system parameters where the magnetic chain behaves as a Sine-Gordon system is related to the 

approximations, made in this mapping.  

When the correspondence between both systems is established it remains to prove that the Solitons are 

stable entities in the magnetic system.  

 

THEORETICAL CONSIDERATIONS AND CALCULATIONS 

The Sine-Gordon system is described by the following  

Hamiltonian: 

  H= Σ ½ πnπn + ½ c2 (Yn+1 – Y)2 + ω2c2 (1 – cos Yn),     (1) 

where c is the velocity of the linear excitations of the system, ω is the frequency of the linear excitations 

and πn is the momentum canonically adjoint to the position Yn.  

The particles on a one-dimensional array feel locally a cosine potential and interact with each other 

harmonically.[11] The system allows linear excitations, which we will call magnons for further 

inference. It allows solitons and anti-solitons and there are also the so-called breathers, much are bound 

states of a soliton and an anti-soliton.  
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The shape of a soliton in the continuum approximation is given by  

Y(x – vt) = 4 tan-1(exp± ωg(x – xo – vt)),           (2)   

where v denotes the velocity of the soliton, g is the Lorenz factor and xo is the center of the 

soliton. The cosine of Y(x-vt) differs only substantially from zero in the vicinity of the soliton center. 

The sine of half Y(x-vt) changes from most 1 to almost -1 in the same region.[2] 

The partition function Z of the system described by the Hamiltonian can be calculated using the transfer 

matrix formalism. On the other hand a phenomenological theory of a non-interacting soliton gas can be 

constructed. The comparison of the Phenomenological free energy with the classical exact free energy 

leads to an expression for the solitons density in terms of the system parameter ω and the soliton energy 

divided by kT.[10] The soliton density is given by: 

n =            ω                    exp  -      .       (3)  

This is one of the basic quantities which is used to estimate the number of solitons present in the 

magnetic system provided one knows the relation between the parameters of the magnetic system and 

the Sine-Gordon parameters ω and Esol. it is clear that from the free energy the specific heat can be 

obtained in function of the temperature. The static correlation function can also be obtained using the 

transfer matrix formalism [14] and [7].   

The dynamic correlation functions require additional approximations. In the phenomenological gas 

approach the correlations between the cosine of Y(x) at one space time point and another space time 

point are obtained by averaging over the velocity distribution of the solitons. The Sine of half Y(x) can 

be approximated by a step-function that changes from 1 to -1 at the soliton center.  

The one-dimensional magnetic system which we will consider has an isotropic exchange integral J, a 

single ion-anisotropy A, along the z-axis and is subjected to a magnetic field in the x-direction which 
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together with a single ion anisotropy D, breaks the isotropy of the X – Y plane.[9] Taking only next 

neighbour interaction into account the Hamiltonian for this chain is given by                                                                                                       

H = Σ JSn+1Sn + A(Sn
2)2 – D(Sn

x)2 - gµBHSj
x ,                                            (4) 

where Sj
x means that x -component of the spin on the jth position in the chain. For J and A positive it 

represents an antiferromagnetic chain with an easy plane. For relatively low magnetic fields it is the X – 

Y plane, for a high magnetic field strength the easy plane becomes the Y – Z plane.  

The classical equations of motion can be obtained via the quantal commutation relations and taking then 

the classical limit [17] and or via Poisson brackets which exploit the fact that spin and angular 

momentum are analogous.  

There are several methods to map Hamiltonian on the Sine- Gordon Hamiltonian.[3] In all of them some 

approximations are involved and the algebra of the mapping is tedious and even not always straight 

forward. Therefore another variation, which tries to combine the advantage of the other methods, will be 

given. It should be remarked that the Hamiltonian is bilinear in the spin variables. The nonlinearity in 

the equations of motion arises from the rotation symmetry of the generous S x, S y, S z,  For reasons of 

convenience it is preferred to have the non-linearity in the Hamiltonian, while the generators of the 

equation of motion behave linear.  

The villain transformation [12] represents the spin commutation relations by operator functions of 

canonically adjoint local operators. These operators are very similar to the well-known position and 

momentum operators of a quantum particle. If one does not bother about the domain of the operators, 

the classical equivalent is straightforward, this results is replacing by h [S(S+1) ½ ] by S, the spin-length 

and obtaining the following representation of the spin- algebra  
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 S z 
j = S sj            (5) 

 S + 
j = S I expY j (1 - S 2 

j) 
½  

S - j = S (1 - S 2 
j) 

½ exp –iYj    

Where S j and Y j are canonically adjoint. Denoting the square root by ωj the following 

expression for the Hamiltonian [16] is obtained in the new variables.  

H = JS2 (hexchange + hanisotropy + hZeeman)        (7) 

hexchange = Σj (Sj +1Sj +1ωj +1ωj cos(YJ+1 – Yj))      (8) 

hanisotropy = Σj           –        ωj
2  cos2Y j         (9)  

hZeeman =Σj                  ωj cosYj                                                                       (10) 

The equations of motion are then obtained using the Poisson- bracket: [13] 

(Sj , Yj) = δij            (11) 

(A, B) = Σ       .              –               .         

 (12) 

The equation for Sj is then   

DtSj = (Sj, H) =           (13) 

       = JS2 ωj+1 ωj sin (Yj+1 – Yj) - ωj - iωjsin(Yj – Yj – 1) +  

           ωjsinYj +           ωjsin2Y j              (14) 

The equation for Yj is then:   

DtY=         = - JS2              (ωj+1 cos(Yj+1 – Yj) + ωj –1 cos(Yj – Yj – 1)) + 

Sj+1 + Sj -1 +  +    cos2Y j - gµB .      (15) 

where    

  = –                    (16) 

(6) 

A 
Sj

 2 
D 
J 

gµBHSj 
  (JS) 

δA 
δSj 

δB 
δYj 

δA 
δYj 

δB 
δSj 

δH 
δYj δH 

δYj 
gµBHSj 
  (JS) 

 D 
δωj 

δH 
δSj 

δωj 
δSj 

2A 
JSj 

2D 
JSj 

δωj 
δSj 

δωj 
δSj 

 Sj  
 ωj 



Ekpekpo, A et al                                                                          Adv. Appl. Sci. Res., 2010, 1 (3): 86-97 
___________________________________________________________________________________ 

91 
Pelagia Research Library 

It is clear that Sj = Sj+1 = 0 for all j is a solution of equation (15) that expresses that Yj is time 

independent  

 DtY j = 0           (17) 

The static solution for Yj can then be obtained from the following equation. 

 sin(Yj+1 – Yj) - sin(Yj  – Yj –1 ) +       sin2Yj + gµB           sin Yj = 0             (18) 

   

This equation determines the orientation of the spins in the plane given by equation (17), which 

indicates that we are looking for solutions without out-of-plane components.  

Now we will define new variables as 

Y2j =        + θj +           (19)  

Y2j+1 = –          + θj –          (20) 

For the j cell θj  measures the average of the angles Y2j and Y2j+1, θj measures the deviation from π to 

their difference for a relatively large exchange j the adjacent spins will be almost antiparallel, this 

implies that θ is small. In order to derive from equation (18) tractable expressions we substitute θj and θj, 

and linearize with respect to θj, θj+1 – θj -1 and θj+1 + θj -1 – 2θj. The result of this calculation is the 

following set of coupled equations which are non-linear in θj, the variable that describes the absolute 

orientation of the spins in the jth cell:  

 2θjθj+1 - θj-1 
-½(θj+1 – θj-1) – 2         sin2θj - gµB          θj sinθj = 0       (21) 

 4θj + (θj+1 – θj-1) + ½ (θj -1 + θj +1 – 2θj – 2       θj -1 cos 2θj + 2 gµB  

        cos θj = 0             (22) 

In the continuum limit these equation becomes  

 a2θ + aθ +2        sin2θ + gµB           sinθ = 0       (23) 

4θ + 2aθ + a2θ – 2        θcos2θ + 2gµB            cosθ= 0     (24) 
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where a the spacing between the particles. The coupled equations require two additional approximations 

afore we arrive at a Sine- Gordon profile for the static domain wall. [4] 

The underlined term in equation (24) is at least order smaller than the other terms provided that the 

exchange integral j is large quantity, indeed the proportion         is then small and also, θ. This term is 

neglected completely in all mapping procedures, this omission limits the validity range of the mapping 

to chains where the neighbouring spins are strongly coupled via the exchange interaction and to chain 

where the local spin intersect weakly with an anisotropic  

perturbation coming from the single ion anisotropic and the magnetic field. If we follow Mikeska, we 

neglect all derivatives of θ and the first order derivative of θ, this leads to:  

 c2θ - ((gµBH)2 – BJS2D) sin2θ = 0        (25) 

where c2 = (2jSa)2  

If we follow (Ieung et al), we will neglect the second derivative of θ and then we obtain  

 c2θ - ((gµBH)2 – 8JS2D) sin2θ = 0        (26) 

where c2 =  

Theoretically, this is amazing result. For comparison with experiment, it is no problem because in both 

cases c or c is the limiting group velocity of the magnon. It should be noted that depending on the sign 

of (gµBH)2 – 8JS2D), we have to add       tan θ in order to obtain the same shape as equation (2). The 

Sine Gordon parameter is then: 

 ω2c2 = (gµBH)2 – 8JS2D)         (27) 

Treating the spins as classical vectors and introducing the angle variables of Mikeska the compounds of 

the spin in the ith position on the chain are given by:  
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J 
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 Si
x = ( -1)i  S sin(θi + (-1)i  θj) cos (θi + (-1)i θi)      (28) 

 Si
y = ( -1)i  S sin(θi + (-1)i  θj) cos (θi + (-1)i θj)      (29) 

 Si
z = ( -1)i  S cos(θi + (-1)i  θj)          (30) 

If we make the continuum approximation, assume that θi and θj are small compared with θi and θy the 

following Hamiltonian density is obtained: 

 H =  ½ js2 ∫dz/θ (hexchange + hanisotropy + hzeeman        (31) 

hexchange = θ2φ2 + 4θ2 + [θ2φ2 + 4Ψ2] sin 2θ       (32) 

hanisotropy = 2A/J cos2θ - 2D/J cos2φsin2θ        (33) 

hzeeman = –2gµBH/JS (θcosφ cosφ – Ψsinθ sinφ)       (34)  
 

The equation of motion for the angle variables are then given by  

 Dtθ = 4JSΨ sinθ + 2gµBH sin θ        (35) 

 Dtφ = 4JSθ/ (sinθ) + gµBH cosφ cotφ        (36) 

 Dtθ = -JSθ2φ sinθ – JScos[2θ2φΦ + 4θΨ] + DS sinθ sin2φ + gµBHΨ cos θ       (37) 

 

DtΨ =            (38) 

 

 

 

 

     JSθ2φ sinφ 
sinθ + 4 JSθ2 cosθ 

(sin2) – [JSθ2φ2 + 4 JSΨ2] + 2AS cosθ + 2 Ds              
cosθ cos2 Φ – gµBH θcosφ 
 
                             (sin2 θ) 
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RESULTS AND DISCUSSION 

The ideal gas soliton theory gives the following expression for the magnetic part of the specific heat  

 CH =        -          –  -             –       2n,        (39) 

where n is given by equation (3) and 2n represents the total soliton and anti-soliton density. If the 

proportionality factor between Esoi and the magnetic field is used as a parameter which can be fitted the 

agreement with the data is reasonable certainly from the qualitative viewpoint. This is used as an 

argument in favour of the Soliton description of propagative domain waits. However, one should bare in 

mind that equation (39) is the specific heat of a system described by Hamiltonian (1). Using numerical 

transfer matrix methods the thermodynamical quantities generated by Hamiltonian (4) can also be 

calculated in the classical approach. It is found that there is a serious discrepancy between the ideal 

soliton gas and the transfer operator results for the complete system. It is believed that the good 

agreement of the experimental results with the sollton gas theory is accidental in the sense that 

contributions arising from out-of-plane degrees of freedom of the spins are somewhat compensated by 

the quantum corrections.[8] 

The neutron scattering and NMR experiment measure spin-spin correlation function. This dynamic 

correlation function has been calculated classically on the basis that soutons act independently and that 

their density is low, indeed Poisson statistics can then be used. The theoretical parameter, which 

controls the Poisson distribution, is the mean number of solitons on a given interval and during a given 

lapse of time. The mean number of solitons is like the density controlled by E soi: This energy is used 

again as a fitting parameter. [5] 

Heat conductivity experiments on TMMC and DMMC [(CH3)2 NH2MnCl3] show in the magnetic field 

dependence a reduction which could be caused by the presence of domain walls. Using a model which 

allows resonant scattering between phonons and solitons, it is possible to fit the experimental data quite 
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well. The soliton parameters here have the same 20% reduction as those of the neutron scattering 

experiments. This reduction is found with respect to be theoretical calculated parameters, obtained from 

measurements of the magnon dispersion for example. 

CONCLUSION 

The interpretation of experimental results on propagative domain walls in quasi one dimensional 

antiferromagnetic chain relies on the ideal soliton gas picture as far as the dynamic spin-spin correlation 

functions are concerned.[15] The key quantity in this analysis is the soliton-energy-the formulation 

energy of a domain wall-measured via the soliton density. The energy can be obtained from theory 

within 20%. 

There are however difficulties with the specific heat in the sense that an approximative calculation (the 

ideal soliton gas) gives apparently a better agreement with experiment than a classical but numerical 

exact calculation of the same quantity via the transfer matrix method for the antiferromagnetic chain  

Also the heat conductivity gives an indication that there are domain walls involved. The interaction 

mechanisms which are proposed is still speculative, with the merit however that the data are fitted well. 
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