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ABSTRACT 
 
Present work uses the concept of scaled particle along with perturbation and a variation approach, to develop an 
equation of state EOS, for a mixture of hard sphere HS, Lenard-Jones LJ fluids. A suitable flexible functional form 
for radial distribution function G(r) is assumed for the pure, with cavity radius parameter r as a variable. The 
function G(r) has an arbitrary parameter m and the self-consistent parameter kc. Different EOS can be obtained 
with a suitable choice of m. For [m = 0.75, kc =0] and [m = 0.80, kc =0.058] results are close to molecular 
dynamics MD for pure HS and LJ fluid respectively. 
 
Key Words: Equation of State (EOS), (LJ) Potential, Hard-Sphere (HS) Potential, liquid mixture, Computer 
Simulation. 
PACS: Equations of state gases, 51. 30. +i 
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INTRODUCTION 
 
The hard sphere can serve as a basic reference system for many perturbation and variation theories [1- 7].With 
suitable approximations, bulk and structural properties of liquids may be studied. The two parameters sigma and 
epsilon are related to molecular diameter and the binding energy respectively of the molecule. In perturbation and 
variation theories it is observed that, at high temperatures only repulsive part of potential is prominent, while at 
lower temperatures the attractive part becomes appreciable. 
 
For pair wise additive intermolecular potentials, all the thermodynamic functions may be expressed, in terms of the 
radial distribution functions (RDF). The expressions are particularly simple for hard-core fluids, since in that case 
the internal energy reduces to that of an ideal gas, while in the pressure equation it is only the contact  values, rather 
than the full (RDF) which appear explicitly. Therefore, knowledge of the contact values g (σ) of the (RDF) in hard-
core fluids where (σ) is the separation at contact, between the centers of two interacting fluid particles, suffices to 
obtain the equation of state (EOS) of these systems.  
 
In present formulation, (EOS) and expressions for the contact values of the (RDF) are determined in a unique way. 
The use of a precise and well defined probability distribution function [8- 12] in a perturbation theory opens up, the 
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possibility of deriving a closed theoretical scheme for the determination of thermodynamic properties of a more 
realistic model. The current formulation assumes surface tension, as some arbitrary function of solute cavity radius 
(r) 
 
 Present paper is organized as follows. In Section 2.1 partition function approach is used for computation of 
probability distribution function and related work done. Section-2.2 deals with thermodynamic work done. Equation 
of state and expression for surface tension has been derived using algebra. The necessary calculation is presented in 
section-2.3. Section-3 is devoted for the results corresponding to different value of an arbitrary parameter (m) and 
the self-consistent parameter (kc). Lastly section-4 is devoted for the discussion and conclusion pertaining to the 
derived equation of state. 
  
Formulation of work done 
Consider the formation in a hard sphere fluid of a cavity of radius (r) Let [ρG(r, ρ)] be the concentration of the 
centers of the spheres on the surface of the cavity. The cavity plays exactly the role of the hard sphere of diameter 
[2r-d], since it excludes the centers of other particles from the spherical region. The function G(r) may be calculated 
through the thermodynamic probability considerations. [dpc (r) = 4π r2 ρ G(r) dr] is the conditional probability that a 
particle is found in the spherical shell of thickness dr at distance r from the center of the cavity. The probability that 
a cavity of radius [r < d/2] is empty is [p(r) =1-(4/3) π r 3 ρ], since one particle, at most, may be located there. 
 
The probability, that a spherical shell contains the molecule may be represented as 
 

, = ( )dp r − ( )p r ( )dp
c

r  = ( )dp r − ( )p r ρ ( )G r [ ]4 π r2 dr  

 
Above two expressions for (HS) lead to  
 

, = ( )G r
1









 − 1

4 π r3 ρ
3

 < r
d
2

 

 
Work done for (r < d/2):  
Let us consider a cavity of volume (v) in liquid having volume (V) about, a specific point. The probability p(v) of 
finding  a molecule in the cavity  may be expressed as  
 

, , = ( )p v v ρ  = ρ N
V

 = p
c

[ ] − 1 ( )p v  

 
And the probability of cavity being empty is pc . 
 
We state general expression for probability p (d) for cavity being empty as under  
 

, , = ( )p d
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0
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B
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In above equation interaction pair-potential u(r)) can be treated as hard sphere potential uHS  if (r < d), and u(r) is 
treated as uLJ, potential for ( r > d )  
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Therefore we have the interaction pair-potential, 
 

, , , = ( )u r u
HS

 < r d  = ( )u r ( )u
1

r  ≤ d r
                                                                                 (2) 

 

, , = ( )u
1

r 4 ε 






 − σ12

r12

σ6

r6
 = σ α d  = BE ε  

 
And BE=epsilon is depth of LJ potential alpha relates HS parameter d to the corresponding LJ parameter sigma. 
 
With the help of hard sphere potential, we define following heavi-side function as follows. 
 

 = eeee
( )−β u

HS
( )Heaviside  − r d                                                                                                   (3) 

                                              
              

, , , = ( )Heaviside  − r d 0  < r d  = ( )Heaviside  − r d 1  ≤ d r  
 
Now p (d) is evaluated using algebra, by removing higher order terms O (d6) . The expression for a probability p(d) 
is stated as sum of two parts, p0(d) namely for hard sphere potential and   [p1(d) and p2(d)] are grouped together as 
LJ potential. 

    

, = ( )p d  + ( )p
0

d [ ] + ( )p
1

d ( )p
2

d  = ( )p d  − 1
N d3 ( )f β ε

R3
         

 
Where p0(d)  is related to hard sphere parameter d, and [p1(d), p2 (d)]  are related to the variable epsilon and d 
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For hard sphere, p0(r) is probability [7] that a cavity is empty.  
 
General expression for probability p(r) can be now as under. 
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                                            (4)

 

And the probability that a spherical shell contains the molecule may be represented as 
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In terms of reduced number density [η = (π/6)ρ d3], number density, [ρ = N/V], and N is the Avogadro number, 
above equation can be expressed as  
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The relation [6] gives the reversible work  

 

, = β ( )W r − ( )ln ( )p r  ≤ r
d
2                                                                                                              (6)

 

 
W(r), necessary to create a cavity of radius r in the real fluid. p(r) , W and G depend exclusively upon [r,η,ε].W(r)  
is obtained by removing higher order terms [O (η2)], and split into two parts as follows. 
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W0 corresponds to hard sphere interaction potential, while [W1,W2] relates to perturbing LJ potential part.  
 
Expression for [(dW0/dr), (dW1/dr), (dW2/dr)] can be written as  
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Normally W(r) is related to the thermodynamic work done against external force (pressure) and internal force 
(surface tension). Combining two equations eq. (4) and eq. (6) we have. 
 

 , , = dp
p

−β dW  = dp
p

−4 π ρ ( )G r r2 dr  ≤ r
d
2                                                                              (8)
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Now we can express G(r) as 
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2.2 Work done for r > d/2: 
Work done is stated as 
 
  , = ( )dW r  − P dV S dA  = ( )dW r k

B
T ρ ( )G r dV

                                                                    (10)
 

  
Here [dA] and [dV] is increase in surface area and volume respectively. 
 
For real fluid, hard sphere potential along with perturbing potential LJ contributes effective net positive value for 
surface tension S.  
 
Therefore, from above equation we have following expression for G(r). 
 

  = ( )G r







 − P

2 S
r

ρ k
B

T
                                                                                                                          (11)

 

 
But an equation of state for a fluid in terms of hard sphere diameter d and binding energy epsilon is   expressed [7] 
as 
 

 = β P
ρ [ ] + 1 4 η ( )g d

                                                                                                                     (12)
 

 
In order to achieve more accurate EOS for LJ fluid at critical temperature over entire reduced density range than 
Barker-Henderson result[1,3,7] and earlier result[13-15] ,found  following  condition as given below. 
 

, = ( )g d ( )G ge d  = ge eeee
( )−k

c
[ ] + ( )F

1
α ( )F

2
α η

                                                                              (13) 

 
 Because empty sphere of radius d affects the remainder of the fluid precisely like another molecule, and [ge] is self-
consistent function. If [kc = 0] then we have old condition [g (d) =G (d)]. 
 
Thus eq. (12) can be written as 
 

 = β P
ρ [ ] + 1 4 η ( )G ge d

                                                                                                               (14)
 

 
To proceed further, we need to know the dependence of r on surface tension S(r). For surface tension, r is not too 
small but finite.  
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We assume [9] following expression. 
 

, = ( )S r S
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Surface tension, suggested by Kirkwood and Buff [10] can be obtained for [m =1] as. 
 

, = ( )S r S
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2 δ d
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2
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                                                                                                      (16)

 

 
(Scaled Particle Theory, page 618 eq.(5.8) )Rev. Mod. Phys, 48,(1976).)                                      
   
Here efforts are taken to obtain the EOS by using algebra. As a starting point, we assume following functional form. 
 

, = ( )S r  + A B
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


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2

r
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Where, [A] and [B] are constants to be determined.  
 
On substitution of S(r), we get corresponding G(r) as given below. 
 

, = ( )G r  −  + β P
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A d
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For [r/d = ge] we have following result. 
 

, = ( )G ge d  −  + β P
ρ

A
ge

[ ] +  − 1 m ge m B  ≤ d
2

r
 

  
Evaluation of [A] and [B]: 
We use condition of continuity [G(r) and dG(r)/dr] for the evaluation of [A] and [B] at [r=d/2 ](contact point). We 
have expression for G(r). 
 

, = ( )G r  −  − 1
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  We also have following expressions for G(r) as below. 
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The values for [A] and [B] are worked out using computer algebra as under.  
 

, = A  + asol0 asol1  = B  + bsol0 bsol1                                                                                       (19) 
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Where 
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( )−  + 1 4 η F

1
ge

−  +  +  − 4 ge η m 4 η ge2 m η m ge  
 
[Zero] represents reference potential, and [One] is used for perturbing LJ potential. 
 
Equation of state for model fluid can now be stated as 
 

, = β P
ρ eq  = eq  + eq0 eq1

                                                                                                                (20)
 

 
In above equation if perturbing LJ potential is absent then equation is obtained for hard sphere liquid. On the other 
hand if we introduce perturbing LJ potential, equation represents the LJ liquid only and hard sphere reference 
potential does not have any role to play. 
 

 := eq0
−  +  + ge ( ) +  + m ( )−  − 2 4 m ge 4 ge2 m η ( ) +  +  + 6 2 m ( )−  − 9 8 m ge 8 ge2 m η2

( ) − ( )−  +  + 4 ge m 4 ge2 m m η ge ( ) − 1 η 2
(21)

 

 
 

 := eq1
( ) −  −  + 4 ge2 m 4 ge m 4 ge m η ( ) + F

1
F

2

−  +  +  − 4 ge η m 4 η ge2 m η m ge                                                                    (22)

 

  
RESULTS 

 
In this section we have carried out the comparative study of compressibility factor Z for   different EOS. Results are 
presented in tabular form for hard sphere (Table-1) as well as for Lennard-Jones liquid (Table-2).  
 
Z1 = Z(SBK) = [ eq0m=0.75], Z2 = Z(CS) be denoting different EOS in the (Table-1) and  
 
 
 Z1 = Z(SBK) = [ eq0m=0.80 + eq1m=0.80], Z2=Z(BH2), be denoting different EOS in the Table-2 only. 
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Case A:  Hard Sphere Potential  
Comparative study of (Table-1) suggest that EOS presented for gives values of Z(SBK) well in agreement with 
Z(MD). 
 

, , = ( )Z SBK eq0  = m
3
4

 = ( )Z CS
[ ] +  +  − 1 η η2 η3

( ) − 1 η 3
                                                            (23)

 

      Table-1: Equation of State (EOS)for Hard-Sphere potential [m = 0.75, kc =0] 
   
    S.No, eta,  Z(SBK), Z(MD),  Z(CS) 
     1,   0.052,  1.24,  1.24,  1.240 
     2,   0.105,  1.55,  1.55,  1.550 
     3,   0.157,  1.97,  1.97,  1.970 
     4,   0.209,  2.52,  2.52,  2.520 
     5,   0.262,  3.27,  3.27,  3.260 
     6,   0.314,  4.30,  4.29,  4.280 
     7,   0.367,  5.74,  5.71,  5.710 
     8,   0.419,  7.79,  7.73,  7.750 
     9,   0.471, 10.77, 10.70, 10.750 
    10,   0.524, 15.26, 15.00, 15.300 
  
3.2 Case B: Lennard-Jones (L-J) potential 
 
The comparison in Table-2 shows the closeness of values of Z with molecular dynamics Z(MD) results. 
 
For [m=0.80, α= (3/2)(1/6)]  we have following results for equation of state. 
  

, , , , = β P
ρ Z  = Z  + eq0 eq1  = m 0.80  = ge eeee







−k

c






−  − 3 β ε 69

70
β2 ε2 η

 = k
c

0.58
                      (24)

 

   
With a critical constant are given below. 
 

, = β ε
c

0.750242034658  = η
c

0.157972241500
                                                                  (25)

 

 
 It is observed that [rms-deviation(SBK) = 0.036835], while  [rms-deviation(BH) = 0.041593].   
 
       Table-2: Equation of State (EOS) for Lennard-Jones fluid [m = 0.80, kc =0.58] 
 
     S.No,   eta, Z(MD), Equ[m0], Z(BH) 
 
     1,    0.052,  0.72,  0.75,  0.740 
     2,    0.105,  0.50,  0.54,  0.520 
     3,    0.157,  0.35,  0.38,  0.360 
     4,    0.209,  0.27,  0.30,  0.260 
     5,    0.262,  0.30,  0.35,  0.270 
     6,    0.288,  0.41,  0.45,  0.350 
     7,    0.340,  0.80,  0.87,  0.740 
     8,    0.393,  1.73,  1.73,  1.640 
     9,    0.445,  3.37,  3.35,  3.360 
    10,    0.497,  6.32,  6.33,  6.320 
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CONCLUSION 
 
It is thus seen that, we have same mathematical result, for physical property such as compressibility factor [(βP/ρ) 
=Z (SBK)] , which corresponds to present axiomatic form. With [m = 0.75, kc =0] and [m = 0.80, kc =0.58] for Z 
(HS), Z (LJ) in above formulation, for entire density region there is close agreement (see appendix) with Z (MD) 
results. 
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Appendix:    
 
 
 

    
 
    Note:  [Y= ββββP/ρ ,ρ ,ρ ,ρ ,X =η].=η].=η].=η].    
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