Available online at www.pelagiaresearchlibrary.com

4
4 4
N KR Pelagia Research Library
' Advances in Applied Science Research, 2012, 3 ()98918
Library

Library
ISSN: 0976-8610
CODEN (USA): AASRFC

Khasare’s equation of state for Hard-Sphere and Lemard-Jones
pure fluids, using Computer Algebra

S. B. Khasaré, Vrushali S. Khasaré, Shashank S.Khasare

'Department of Physics, Science College Congress Nagar,Nagpur, Maharashtra State, India
“Department of Information Technology, Indian Institute of Technol ogy,Khargpur, West Bengal, India
Department of Computer Science, College of Engineering Pune, Maharashtra Sate, India

ABSTRACT

Present work uses the concept of scaled particle along with perturbation and a variation approach, to develop an
equation of state EOS, for a mixture of hard sphere HS, Lenard-Jones LJ fluids. A suitable flexible functional form
for radial distribution function G(r) is assumed for the pure, with cavity radius parameter r as a variable. The
function G(r) has an arbitrary parameter m and the self-consistent parameter k.. Different EOS can be obtained
with a suitable choice of m. For [m = 0.75, k. =0] and [m = 0.80, k. =0.058] results are close to molecular
dynamics MD for pure HSand LJ fluid respectively.

Key Words: Equation of State (EOS), (LJ) Potentia, Hard-Sphere (HS) Potentia, liquid mixture, Computer
Simulation.

PACS: Equations of state gases, 51. 30. +i

PACS: thermodynamics, 05.70.Ce

INTRODUCTION

The hard sphere can serve as a basic reference system for many perturbation and variation theories [1- 7].With
suitable approximations, bulk and structural properties of liquids may be studied. The two parameters sigma and
epsilon are related to molecular diameter and the binding energy respectively of the molecule. In perturbation and
variation theories it is observed that, at high temperatures only repulsive part of potential is prominent, while at
lower temperatures the attractive part becomes appreciable.

For pair wise additive intermolecular potentials, al the thermodynamic functions may be expressed, in terms of the
radial distribution functions (RDF). The expressions are particularly simple for hard-core fluids, since in that case
the internal energy reduces to that of an idea gas, while in the pressure equation it is only the contact values, rather
than the full (RDF) which appear explicitly. Therefore, knowledge of the contact values g (o) of the (RDF) in hard-
core fluids where (0) is the separation at contact, between the centers of two interacting fluid particles, suffices to
obtain the equation of state (EOS) of these systems.

In present formulation, (EOS) and expressions for the contact values of the (RDF) are determined in a unique way.
The use of a precise and well defined probability distribution function [8- 12] in a perturbation theory opens up, the
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possibility of deriving a closed theoretica scheme for the determination of thermodynamic properties of a more
realistic model. The current formulation assumes surface tension, as some arbitrary function of solute cavity radius

Q)

Present paper is organized as follows. In Section 2.1 partition function approach is used for computation of
probability distribution function and related work done. Section-2.2 deals with thermodynamic work done. Equation
of state and expression for surface tension has been derived using algebra. The necessary calculation is presented in
section-2.3. Section-3 is devoted for the results corresponding to different value of an arbitrary parameter (m) and
the self-consistent parameter (kc). Lastly section-4 is devoted for the discussion and conclusion pertaining to the
derived equation of state.

Formulation of work done

Consider the formation in a hard sphere fluid of a cavity of radius (r) Let [pG(r, p)] be the concentration of the
centers of the spheres on the surface of the cavity. The cavity plays exactly the role of the hard sphere of diameter
[2r-d], since it excludes the centers of other particles from the spherical region. The function G(r) may be calcul ated
through the thermodynamic probability considerations. [dp. (r) = 4t r?p G(r) dr] is the conditional probability that a
particleis found in the spherical shell of thickness dr at distance r from the center of the cavity. The probability that
acavity of radius[r < d/2] is empty is[p(r) =1-(4/3) Ttr > p], since one particle, at most, may be located there.

The probability, that a spherical shell contains the molecule may be represented as
dp(r) =-p(r)dp(r),dp(r)=-p(r) pG(r)[4nr?dr]

Above two expressions for (HS) lead to

anrdp|] 2
B

Work done for (r < d/2):
Let us consider a cavity of volume (v) in liquid having volume (V) about, a specific point. The probability p(v) of
finding amoleculein the cavity may be expressed as

p(v) =vp.p= 1. P, = [1 - p(V)]

And the probability of cavity being empty isp;.

We state general expression for probability p (d) for cavity being empty as under
R
e P 1amr?)dr s )
p(d) =" R G| By
jR[4nr2] dr n T
0 D

In above equation interaction pair-potential u(r)) can be treated as hard sphere potentia uys if (r < d), and u(r) is
treated as uy 5 potential for (r>d)
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Therefore we have the interaction pair-potential,

u(r)=u,r<du(r)=uy(r),dsr

HS’

@)
12 6

ul(r):4s{012—06}0:a d,BE=¢
r r

And BE=epsilon is depth of LJ potential apharelates HS parameter d to the corresponding LJ parameter sigma.
With the help of hard sphere potential, we define foll owing heavi-side function as follows.
(-Bu,J)

" = Heavisidg(r - d) @

Heavisidgr —d) =0, r <d, Heavisiddr —d) =1,d<r

Now p (d) is evaluated using algebra, by removing higher order terms O (d®) . The expression for a probability p(d)
is stated as sum of two parts, po(d) namely for hard sphere potential and [p;(d) and p,(d)] are grouped together as
LJ potential.

Nd*f(Be)

p(d) =p(d) +[p,(d) +p,(d)]. p(d) =1 =3

Where pyo(d) isrelated to hard sphere parameter d, and [p.(d), p» (d)] arerelated to the variable epsilon and d

N d2 F,Nd® F,Nd®
po(d)=[1-R3}p1(d)=[lR3}pz(d){ 2R3 }

6 _ 6
HEZDPEC b (a)=- o BPe?a? [15a%2 - 4200 + 35]

F(a)=

f(Be)=1- Fl(O() - Fz(cx)
For hard sphere, py(r) is probability [7] that acavity is empty.
General expression for probability p(r) can be now as under.

Nrif(Be) _d
R3 S 2
And the probability that a spherical shell contains the molecule may be represented as

dp(r) =-p(r) dp(r), dp(r) =-p(r) pG(r) [4nr?dr]

p(r) =py(r) + [py(r) +p(r)l. p(r)=1- T

4)

Where
N3 F,Nre FNT3
po(r):[l—RZ} pl(r):{le}, pz(r):[ZRg}
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F ()N F(a)Nr
a0 5 | P oo {1

In terms of reduced number density [n = (1/6)p d°], number density, [p = N/V], and N is the Avogadro number,
above equation can be expressed as

8nrif(Be)

p(r) =p(r) +[p(r) +p, ()], p(r)=1-——3"—"r1=<5
d 2 ©)
Where
3 8F (a)nr? 8F (a)nr?
o =[1- 55 Jn= "0 e G|
Therelation [6] givesthe reversible work
BW(r) =-In(p(r)),r<-
(6)

W(r), necessary to create a cavity of radiusr in the real fluid. p(r) , W and G depend exclusively upon [r,n,e].W(r)
is obtained by removing higher order terms [O (n?)], and split into two parts as follows.

d
2

8F (a)nr 8F (a)nr?
BWOU):—In[l—S”r = [d} BW(r) = {d}

BW=BW, +[BW, +BW,],r<
()

W corresponds to hard sphere interaction potential, while [W1,W,] relatesto perturbing LJ potential part.

Expression for [(dWy/dr), (dW./dr), (dW,/dr)] can be written as

BAW,  24nr2 Baw, 24n F (o) r? Bdw, 24n F(a)r?
ar 37 dr 3 Codr 3
dg[l_Snsr} d d
d

Normally W(r) is related to the thermodynamic work done against external force (pressure) and interna force
(surface tension). Combining two equations eqg. (4) and eqg. (6) we have.

d__ -Bdw, d_ —-4mp G(r)rdr,r<
p p 2 8)
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Now we can express G(r) as
B[dw}
_Plav _ 1 d
G(r) R G(r)=———3="F,\(a) —Fz(a),rsf
2.2 Work done for r > d/2:

[1 _8n rT
d?
)
Work doneis stated as

dW(r) =P dV - SdA, dW(r) =k, T p G(r) dV

(10)
Here [dA] and [dV] isincrease in surface area and volume respectively.

For real fluid, hard sphere potentia along with perturbing potential LJ contributes effective net positive value for
surfacetension S.

Therefore, from above equation we have following expression for G(r).

-t

p kB T a

But an equation of state for afluid in terms of hard sphere diameter d and binding energy epsilonis expressed [7]
as

Bpp=[1+4m_aj(cl)]
(12)

In order to achieve more accurate EOS for LJ fluid at critical temperature over entire reduced density range than
Barker-Henderson result[1,3,7] and earlier result[13-15] ,found following condition as given below.

(= [Fy(c) + F(@)]n)
g(d) =G(ged),ge=e (13)

Because empty sphere of radius d affects the remainder of the fluid precisely like another molecule, and [ge] is self-
consistent function. If [k, = 0] then we have old condition [g (d) =G (d)].

Thus eg. (12) can be written as

BP _[1+4nG(ged)]

P (14)

To proceed further, we need to know the dependence of r on surface tension S(r). For surface tension, r is not too
smdl but finite.
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We assume [9] following expression.

S(r):80[1+26(?jm}gsr

(15
Surface tension, suggested by Kirkwood and Buff [10] can be obtained for [m =1] as.
20d7 d
S(r)=80[1+ },Zsr
(16)

(Scaled Particle Theory, page 618 eq.(5.8) )Rev. Mod. Phys, 48,(1976).)

Here efforts are taken to obtain the EOS by using agebra. As a starting point, we assume following functional form.

mr? _ (1+m)r|d
12—

S(r)=A+B[ —<r
d* d (17)

Where, [A] and [B] are constants to be determined.

On substitution of S(r), we get corresponding G(r) as given below.

_BP_Ad _mrigd
G(r)= D . +[1+m g }B,Zsr

For [r/d = ge] we have following result.

G(ged)=BpP—:e+[1+m—gem] B,%sr

Evaluation of [A] and [B]:
We use condition of continuity [G(r) and dG(r)/dr] for the evaluation of [A] and [B] at [r=d/2 ](contact point). We
have expression for G(r).

1

8nrd
-]

We d so have following expressions for G(r) as below.

1 N 4n _d
-1+4n |ge(-1+4n) r

Anm(ge-1) mr __4n d
+[ ~1+4n g tirm —1+4n}B’2Slr

G(r) = —Fl((x)—Fz((X),rSg

G(r) =-

(18)
Thevauesfor [A] and [B] are worked out using computer agebra as under.

A=as0l0 + asol1, B = bsol0 + bsol 1 (19)
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Where

asoIO:=%(4ma1Flr]3+4ma2F2r]3+24ger]2m—15r]2m—9ma2F2r]2
-9ma F n’+6ma,F,n-6n+6maF n-maF -ma,F,)ge/
(n-1)*(-4genm+4n ge’ m+nm-ge))

1 ge(-1+4n)mF,

asoll == 5
4 -4genm+4ngem+nm-ge

bsol0:=(4a,F,gen®-9a F gen’-6n°-a F ge-a F,ge+6a F gen

+9gen®+6a,F,gen+4a F gen®*-9a,F,gen?) /((n-1)
(-4genm+4nge’m+nm-ge))

(-1+4n)F, ge

bsoll := 5
-4genm+4nge m+nm-ge

[Zero] represents reference potential, and [One] is used for perturbing LJ potential .

Equation of state for model fluid can now be stated as

P
PP - eq eq=eq0+ et
P (20)

In above equation if perturbing LJ potentia is absent then equation is obtained for hard sphere liquid. On the other

hand if we introduce perturbing LJ potential, equation represents the LJ liquid only and hard sphere reference
potential does not have any roleto play.

._-ge+(m+(-2-4m)ge+4ge’m)n +(6+2m+(-9-8m)ge+8ge’m)n’

0
™ ((-4gem+4ge”m+m)n -ge) (1-n)? (21)
(4gem-4gem-4ge+m)n (F +F,)
eql =
-4genm+4nge?m+nm-ge 22)
RESULTS

In this section we have carried out the comparative study of compressibility factor Z for different EOS. Results are
presented in tabular form for hard sphere (Table-1) as well as for Lennard-Jones liquid (Table-2).

Z1=27Z(SBK) =[ eq0n=075], Z2 = Z(CS) be dencting different EOS in the (Table-1) and

Z1=27(SBK) =[ e90m=080 + €91lm=080], Z2=Z(BH2), be dencting different EOS in the Table-2 only.
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Case A: Hard Sphere Potential
Comparative study of (Table-1) suggest that EOS presented for gives values of Z(SBK) well in agreement with
Z(MD).

[1+n+n*-n°]
(1-n)° (23)
Table-1: Equation of State (EOS)for Hard-Sphee potential [m = 0.75, k =0]

Z(SBK) = eqQ, m=§1, Z(CS) =

S.No, eta, Z(SBK), zZ(MD), Z(CS)

1, 0.052, 1.24, 1.24, 1.240
2, 0.105, 1.55, 1.55, 1.550
3, 0.157, 1.97, 1.97, 1.970
4, 0.209, 2.52, 2.52, 2.520
5, 0.262, 3.27, 3.27, 3.260
6, 0.314, 4.30, 4.29, 4.280
7, 0.367, 5.74, 5.71, 5.710
8, 0.419, 7.79, 7.73, 7.750
9, 0.471, 10.77, 10.70, 10.750
10 0.524, 15.26, 15.00, 15.300

3.2 Case B: Lennard-Jones (L-J) potential
The comparison in Table-2 shows the closeness of values of Z with molecular dynamics Z(MD) resullts.

For [m=0.80, a= (3/2)*®] we have following resilts for equation of state.

e

E=z,z=eqo+eq1,m=o.80,ge=e ¢ .k =058

P (24)
With acritical constant are given below.
B €. = 0.750242034658 N.= 0.157972241500 (25)

It is observed that [rms-deviationsgky = 0.036835], while [rms-deviationg, = 0.041593].
Table-2: Equation of State (EOS) for Lennarelones fluid [m = 0.80, k =0.58]

S. No, eta, Z(MD), Equ[nD], Z(BH

1, 0.052, 0.72, 0.75, 0.740
2, 0.105, 0.50, 0.54, 0.520
3, 0.157, 0.35, 0.38, 0.360
4, 0.209, 0.27, 0.30, 0.260
5, 0.262, 0.30, 0.35, 0.270
6, 0.288, 0.41, 0.45, 0.350
7, 0.340, 0.80, 0.87, 0.740
8, 0.393, 1.73, 1.73, 1.640
9, 0.445, 3.37, 3.35, 3.360
10 0.497, 6.32, 6.33, 6.320
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CONCLUSION

It is thus seen that, we have same mathematica result, for physical property such as compressibility factor [(BP/p)
=Z (SBK)] , which corresponds to present axiomatic form. With [m = 0.75, k. =0] and [m = 0.80, k. =0.58] for Z
(HS), Z (LJ) in above formulation, for entire density region there is close agreement (see appendix) with Z (MD)
results.
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Appendix:
TRED oo ) [SER Noache ), [BHNcross ) Y -ases—F X-ases—ela™
: -
E —
5]
a
] =
3 —]
]
1
] . =]
. -] ™ =] ﬂ
o1 o= TS 0.4 05
Note: [Y=BP/p ,X =n].
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