
iMedPub Journals
http://journals.imedpub.com

2015
Vol. 1 No. 1: 8

Research Article

© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://drugabuse.imedpub.com/archive.php 1

DOI: 10.21767/2471-853X.10008

Journal of Drug Abuse 
2471-853X

Mitchell B Liester1 and
Jenna D Moore2

1	 Department of Psychiatry, Monument 
Canada

2	 Department of Nutrition, University of 
Colorado at Colorado Springs, Canada

Corresponding author: Mitchell B Liester

 liester@aol.com

Department of Psychiatry, Monument, CO 
80132, Canada.

Tel: 7194880024
Fax: 71904886672

Citation: Liester MB, Moore JD. Is Sugar a 
Gateway Drug?. J Drug Abuse. 2015, 1:1.

Introduction
In 2012, more than 22 million people in the U.S. aged 12 or older 
suffered from substance abuse or dependence [1]. The develop-
ment of addictions is associated with characteristic changes in 
the mesolimbic pathway (MLP) in the brain [2, 3]. Factors known 
to influence the MLP and increase the risk of addictions include 
genetic polymorphisms and environmental influences [4, 5]. 
Foods and beverages containing high concentrations of sugar are 
examples of the latter [6]. Excessive sugar consumption causes 
changes in the MLP that mimic the effects of drugs of abuse 
(DOA) [7, 8]. Furthermore, changes in the MLP resulting from the 
excessive ingestion of sugar have been demonstrated to increase 
the likelihood of future drug use [9, 10]. This raises the question, 
can sugar act as a gateway drug?

Method
PubMed and reference lists were searched for articles published 
until October 1, 2015 using the keywords: sugar and addiction. 
Secondary searches included articles cited in sources identified 
by the previous search.   

Addiction and the mesolimbic pathway
Drug addiction has been described as a chronically relapsing dis-
order characterized by compulsion to take one or more drugs of 
abuse (DOA) with loss of control over drug intake and continued 
use despite negative consequences [11, 12]. Kalivas and Volkow 
[13] described three stages of addiction: (1) Acute drug effects, 
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(2) A transition from recreational use to repetitive use, and (3) 
End-stage addiction characterized by an overwhelming desire to 
use the drug, a diminished ability to control drug-seeking, and 
reduced pleasure from other, everyday rewards.  	

The biochemical etiology of addiction has been linked to neu-
rochemical and neurophysiological changes in the mesolimbic 
pathway (MLP). More than half a century ago, electrical stimu-
lation of the brain was demonstrated to produce positive rein-
forcement in rats [14]. Subsequently, the medial forebrain bun-
dle (an older name for the mesolimbic pathway) was suggested 
as the final common pathway for reward messages involving a 
variety of forebrain reward sites [15]. The MLP, also known as 
the “mesolimbic dopamine system” [3], has been demonstrated 
to be involved in motivation, pleasure, and reward [16]. 

The MLP is formed by dopaminergic neurons originating in the 
ventral tegmental area (VTA) and projecting to the nucleus ac-
cumbens (NAc) [17, 18]. Dopamine (DA) is known to be an impor-
tant neurotransmitter associated with reward [19-22]. Pleasur-
able stimuli [23, 24] and natural rewards [25] trigger the release 
of DA in the NAc shell.     

Drugs of abuse (DOA) such as alcohol, nicotine, psychostimu-
lants, opiates, and marijuana, also stimulate DA release in the 
NAc [24-26]. In fact, all DOA have been demonstrated to trigger 
DA release in the NAc [3, 21, 27, 28].   
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DOA increase extracellular DA in the NAc through a variety of 
mechanisms. For example, cocaine blocks the DA transporter 
(DAT) [29] whereas amphetamines induce DA release from pre-
synaptic neurons [30]. Opiates inhibit Gamma-Aminobutyric acid 
(GABA) interneurons that in turn inhibit mesolimbic DA neurons, 
thus promoting DA release [2]. 

Release of DA in the NAc is associated with pleasure and reward 
[16]. The more rapidly DA levels rise, the stronger the reinforcing 
effect of the drug [31].  

Chronic or repeated use of DOA produces neurochemical and 
neurophysiological alterations in the MLP associated with addic-
tions. These changes include decreased levels of extracellular DA 
[32] and down regulation of DA 2 receptors (D2Rs) [33]. 

Reduced D2R density has been found in chronic users of DOA. 
Morphine and cocaine decrease NAc D2R mRNA in rats [34, 35]. 
D2Rs are down regulated in cocaine addicts [36], methamphet-
amine abusers [37], and alcoholics [33]. 

High numbers of D2Rs have been suggested to have a protective 
role in alcoholism [38]. In rats, artificially increasing the number 
of D2Rs reduces alcohol and cocaine intake [39-41]. These find-
ings suggest the number of D2Rs correlates inversely with self-
administration of DOA’s [26]. 

To summarize these findings, chronic use of DOA results in re-
duced levels of extracellular DA and decreased D2R density in 
the MLP. Low levels of D2Rs are associated with increased con-
sumption of DOA and addiction [37, 40, 41] whereas normal or 
high levels of D2Rs are associated with low craving behaviors and 
decreased consumption of DOA [38].

Homeostasis and the brain reward cascade
More than two decades ago, Blum and Kozlowski [42] proposed 
the existence of a “Brain Reward Cascade” or BRC. The BRC is 
an interactive cascade of neurotransmitters that influences DA 
release in the MLP. The BRC begins with the release of serotonin 
(5-HT) in the hypothalamus. 5-HT then triggers the release of 
met-enkephalin in the VTA. Binding of met-enkephalin to opiate 
receptors inhibits the release of GABA. This reduction of the in-
hibitory neurotransmitter GABA disinhibits DA release, resulting 
in increased levels of extracellular DA in the NAc [23, 43].

Under normal conditions, release of neurotransmitters along the 
BRC creates a homeostasis within the MLP. However, under ab-
normal circumstances, such as during chronic self-administration 
of DOA, this homeostasis is disrupted.  Evidence for this homeo-
stasis model comes from a study by Koob [44] who found rats 
allowed to self-administer ethanol during acute withdrawal self-
administered just enough ethanol to return extracellular DA lev-
els in the NAc to predependence baseline levels.

Reward deficiency syndrome
Genetics contribute significantly to vulnerability to addictions. 
Heritability for addiction has been estimated at 50% [45] with 
multiple genes contributing to this predisposition.  

Numerous genetic polymorphisms have been linked with the de-
velopment of addictions. These include genes for: the serotoner-
gic 2A receptor (5HT2AR), serotonergic transporter (5HTTLPR), 
dopamine D1 receptor (D1R), dopamine D2 receptor (D2R), dopa-
mine D3 receptor (D3R), dopamine D4 receptor (D4R), dopamine 
transporter (DAT), the catechol-O-methyltransferase (COMT), 
mono-amine oxidase (MOA), mu-opiate receptor (MOR), and 
GABA-B3 genes [46]. These polymorphisms produce dopaminer-
gic hypofunction in the MLP [46], which has been hypothesized 
to increase the use of DOA in order to raise DA levels [4].   

Blum and colleagues [43] proposed that genetic polymorphism of 
the D2R is associated with hypodopaminergic functioning in the 
NAc. This produces a condition they labeled “Reward Deficien-
cy Syndrome” (RDS) [47]. RDS is associated with polysubstance 
abuse [43, 46].   

D2 agonists alter extracellular DA levels and D2R density in the 
MLP.  Both the dose of the D2 agonist and the frequency of ad-
ministration of the D2 agonist are important factors that influ-
ence extracellular DA levels and D2R density. Constant stimula-
tion with low doses of D2 agonists results in proliferation of D2Rs 
[23]. However, chronic stimulation with more potent D2 agonists 
results in decreased D2R density [48]. Chronic use of DOA also re-
sults in reduced D2R density [33, 37]. Intermittent administration 
of DOA leads to a more pronounced increase in extracellular DA 
levels than occurs following acute administration of these drugs 
[25].    

Reduced D2R density produces a hypodopaminergic state that is 
functionally similar to RDS. Reduced DA levels in addicts, along 
with increased sensitivity to the DA enhancing effects of DOA, 
have been proposed as mechanisms leading to drug-seeking be-
havior and subsequent addiction [26]. 

Dopaminergic hypofunction has been proposed as a common eti-
ologic factor contributing to a number of impulsive, compulsive, 
and addictive disorders [47]. The proposed mechanism involves 
the utilization of substances and/or behaviors that stimulate the 
release of mesolimbic DA in order to compensate for the under-
lying dopaminergic hypofunction, thus restoring homeostasis to 
this system [23]. This seeking out of DA may underlie the craving 
and binging that occur with DA-stimulating substances [23].  

Allostasis
Koob and Le Moal [49] conceptualized addiction as a “cycle of 
spiralling dysregulation of brain reward systems that progres-
sively increases, resulting in compulsive use and loss of control 
over drug-taking” (p. 97). These investigators proposed that a 
continuous process of hedonic homeostatic dysregulation alters 
DA’s normal set point, resulting in stabilization at a new, patho-
logical set point.  This occurs through allostasis, which they de-
fined as “the process of maintaining apparent reward function 
stability by changes in brain reward mechanisms” [49] (p. 97). 
In other words, repeated stimulation of DA by DOA results in a 
restabilization of MPL dopaminergic tone at a lower, pathological 
set point.  
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Food’s effects on the MLP 
The same neurobiological pathway involved in addiction to DOA 
modulates food consumption and can result in addiction to food 
[50-53]. Food triggers DA release in the MLP [25]. This effect di-
minishes, however, when the food is no longer novel due to re-
peated access (unless the animal is food deprived) [54-56]. Thus, 
extracellular DA levels in the MLP adapt to repeated presentation 
of the same food reward, whereas novel foods continue to stimu-
late DA release [25]. 

Overconsumption of palatable food results in downregulation of 
D2Rs and a state of reward hyposensitivity that mimics the ef-
fects of chronic administration of DOA. This reduction in D2Rs is 
similar in magnitude to the reduction reported in drug-addicted 
subjects [57].  

Sugar’s effects on extracellular DA levels in the 
MLP
Sugar produces biochemical changes in the MLP similar to those 
produced by DOA. For example, Hajnal et al. [58] found that rats 
fed oral sucrose solutions at concentrations of 0.03 M, 0.1 M, 
and 0.3 M experienced a concentration-dependent increase in 
extracellular DA levels in the NAc that was statistically significant 
(P<0.01). Also, Rada et al. [56] showed that sucrose-dependent 
rats released more DA in the NAc following sucrose ingestion 
than control rats that were not sucrose-dependent. The differ-
ence in DA release was statistically significant (P<0.03).  

Acute administration of D2 antagonists causes a dose-dependent 
inhibition of sucrose intake in rats [59-61]. 	

Habituation to the stimulatory DA response in the NAc shell oc-
curs after a single pre-exposure to the same taste or food in rats 
[54]. However, rats fed sucrose intermittently continue to pro-
duce increased levels of DA [56, 62]. Also, the amount of DA re-
leased in the NAc is proportional to the sucrose concentration, 
rather than the volume of sucrose ingested [58]. Foods with 
higher concentrations of sucrose trigger greater amounts of DA 
release than foods with lower concentrations of sugar, and inter-
mittent exposure to sucrose produces higher levels of DA than 
continuous exposure.  

Sugar’s effects on DA receptors
Intermittent ingestion of sugar has been demonstrated to reduce 
D2Rs in rats. Colantuoni and colleagues [7] found that rats fed a 
25% glucose solution with chow for 12 hours each day doubled 
their glucose intake in 10 days. After 30 days, receptor binding 
was evaluated and compared with chow-fed controls. D2R bind-
ing decreased significantly in the glucose-fed rats. Bello et al. [63] 
found that food-restricted rats fed a diet supplemented with su-
crose (0.3 M) for 2 hours a day exhibited decreased D2R binding 
in the NAc shell after 7 days. Spangler et al. [64] reported rats 
placed on a chronic schedule of intermittent binging on a 10% 
sucrose solution exhibited decreased levels of D2R mRNA in the 
NAc compared with ad libitum chow controls.

Cross-sensitization between sugar and drugs of 
abuse
Drug-induced sensitization may lead to increased self-admin-
istration of the same drug. Sensitization has been suggested to 
play a role in drug addiction [65]. Additionally, sensitization to 
one drug can lead to increased self-administration of another 
drug, a process known as “cross-sensitization” [6].   

Cross-sensitization has been demonstrated between various 
DOA. Amphetamines cross-sensitize to cocaine or phencyclidine 
[66]. Cocaine cross-sensitizes to alcohol [67] Heroin cross-sensi-
tizes to the synthetic cannabinoid receptor agonist WIN55212.2 
[68].  

Several studies have found intermittent sugar intake cross-sen-
sitizes to drugs of abuse. Rats fed a 10% sucrose solution cross-
sensitize to amphetamine [8] and rats given access to granulated 
sucrose cross-sensitize to cocaine [69]. Rats provided intermit-
tent access to 10% sucrose, then forced to abstain, show in-
creased intake of alcohol [9]. Also, rats that prefer sweet-taste 
will self-administer cocaine at a higher rate [70]. These studies 
indicate that sugar cross-sensitizes to DOA.  

Avena & colleagues [6] have suggested that cross-sensitization 
between sugar and DOA may contribute to addiction by enhanc-
ing responsiveness to DA in the MLP. When one drug leads to the 
increased use of another drug, this is referred to as “consumma-
tory cross-sensitization” or “gateway effect” [6].  

The gateway hypothesis
The idea that developmental stages and sequences of drug use exist 
was first proposed nearly four decades ago [71-73]. This idea sug-
gests that a progressive and hierarchical sequence of stages of drug 
use can be described [74-76]. The basic premise of the developmen-
tal stage hypothesis is that involvement in various classes of drugs 
follows definite pathways and individuals who ingest one drug are 
at risk of progressing to the use of another drug [74].    

The term gateway drug appeared in the 1980’s. This term was 
initially used to refer to alcohol and cigarettes, two licit drugs 
that were used prior to the use of illicit drugs. Later, the term 
gateway drug was applied to illicit drugs, such as marijuana, as 
well [74].

The Gateway Hypothesis suggests the use of some drugs (i.e., 
gateway drugs) increases the subsequent risk of using other 
drugs [74, 77]. There are three propositions to the Gateway Hy-
pothesis: (1) a developmental sequence of involvement with dif-
ferent classes or categories of drugs exists, (2) the use of a drug 
earlier in the sequence is associated with an increased risk or 
likelihood of use of a drug later in the sequence, and (3) the use 
of a drug earlier in the sequence causes the use of a drug later in 
the sequence [74]. Examples include the use of tobacco or alco-
hol leading to marijuana use [74] or nicotine leading to cocaine 
use [78].   

The mechanism by which the use of one drug leads to the in-
creased use of another drug remains controversial. Degenhardt 
et al. [79] suggested etiological factors might include drug avail-
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ability and attitudes of drug users. Schenk [77], on the other 
hand, suggested sensitization provides a mechanism for the pro-
gression of drug use both within and across drug classes. Numer-
ous studies have demonstrated that exposure to certain drugs 
produces a sensitized behavioral response to those same drugs, 
and also produces neuroadaptive changes in DA neurotransmis-
sion [77]. Nicotine and alcohol, for example, have been demon-
strated to produce a sensitized response to DA [77]. 

Cross-sensitization may contribute to the process of a gateway 
drug increasing the risk of subsequent use of other drugs [77]. 
Cross-sensitization occurs when administration of one substance 
results in sensitization to another drug [6]. This cross-sensitiza-
tion involves one drug priming the MLP, so that subsequent use 
of a different drug produces greater than expected release of DA. 
One example would be pretreatment with nicotine sensitizing 
mice to alcohol, resulting in a greater release of DA than would 
otherwise be expected [80]. 

Is sugar a gateway drug?
Erickson [18] defined a drug as “any chemical other than food 
or water that produces a therapeutic or nontherapeutic pharma-
cological action in the body” (p. 93). Based upon this definition, 
sugar would not be classified as a drug, because it is generally 
considered to be a food, and foods are excluded from the cat-
egory of drugs.

However, as Tupper [81] has emphasized, definitions of “drugs” 
and “foods” are strongly influenced by political and cultural fac-
tors. Whether we define sugar as a drug or a food is strongly 
influenced by factors other than the existing scientific evidence 
regarding its pharmacological effects.

More important than semantics, however, is the understanding 
of the research previously cited in this article that indicate sugar’s 
effects on the MLP mimic the effects of numerous drugs of abuse 
including cocaine, heroin, nicotine, and alcohol. If we are willing to 
consider the possibility that sugar acts like a drug on the MLP, we 
can then begin to examine whether sugar acts as a gateway drug.  

As previously discussed, the Gateway Hypothesis consists of 3 
propositions. Do these propositions apply to sugar? We can look 
at each of these three propositions individually in relationship to 
sugar.  

Proposition 1 - “There is a developmental 
sequence of involvement with different classes 
or categories of drugs.”
Much of the research on the addictive nature of sugar has been 
performed on rats in a laboratory setting. This makes it challeng-
ing to determine whether a developmental sequence exist involv-
ing different classes or categories of drugs. Rats in a laboratory 
setting do not generally have access to a wide range of different 
classes of drugs. However, evidence suggests that the ingestion 
of sugar does increase the subsequent use of drugs of abuse.  

Avena et al. [9] found that rats given intermittent access to 10% 
sucrose subsequently consumed more ethanol than rats given ad 
libitum access to sucrose (P<0.05). Rats provided intermittent ac-

cess to sugar also show signs of cross sensitization with amphet-
amine [8] and cocaine [69]. 

These studied suggest the use of sugar can lead to the increased 
use drugs of abuse. 

Proposition 2 - “The use of a drug earlier in 
the sequence is associated with an increased 
risk or likelihood of use of a drug later in the 
sequence.”
Studies have demonstrated that a rat’s level of sucrose prefer-
ence can predict its desire to self-administer cocaine [82]. Fur-
thermore, studies have demonstrated cross-sensitization be-
tween sugar and drugs of abuse [8, 9, 70, 83].  

Several studies have reported a positive correlation between the 
intake of sugar or saccharin solutions and the self-administration 
of morphine, cocaine, and amphetamine [69, 83-85]. Also, the 
acquisition of amphetamine self-administration has been shown 
to be more rapid in high sucrose feeder rats than in low sucrose 
feeders [84]. Sugar has also been demonstrated to produces a 
gateway effect for alcohol [9] and cocaine [70].  

These findings support the proposition that sugar intake is asso-
ciated with an increased likelihood of using drugs of abuse.  

Proposition 3 - “The use of a drug earlier in the 
sequence causes the use of a drug later in the 
sequence.”
Evidence supporting this proposition comes from previously cit-
ed research demonstrating that increased release of DA in the 
NAc following the ingestion of high concentrations of sugar leads 
to down-regulation of D2Rs [7, 63, 64]. This produces a hypodo-
paminergic state of allostasis [49]. The behavioral consequence 
of this state is an increased use of substances that trigger DA re-
lease in an effort to regain homeostasis in the MLP [23]. Ingestion 
of DOA releases DA in the NAc [3, 21, 24-28]. Thus, the ingestion 
of food and drinks containing high concentrations of sugar would 
be expected to contribute to the repeated use of DOA in an at-
tempt to restabilize MLP DA levels at a homeostatic level.   

Discussion
Although sugar is not ordinarily viewed as a drug of abuse, in-
termittent binging with sugar triggers neurochemical responses 
in the MLP that parallel those produced by DOA. Furthermore, 
evidence has demonstrated sugar may be addictive when con-
sumed in a binge-like manner [6].  

Although quantitatively different, the neurochemical changes 
produced by the intermittent ingestion of sugar are qualitatively 
similar to the changes produced by DOA in the MLP [6]. These 
include increased release of DA [54, 56, 58], reduced D2R mRNA 
[64], and down-regulation of D2Rs [7, 63]. The resultant hypodo-
paminergic state is associated with increased drug seeking [49].

Cross-tolerance has been demonstrated between sugar and DOA 
[8, 9, 70, 83]. These findings suggest the repeated ingestion of 
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sugar, particularly in high concentrations, may lead to “gateway 
effects,” resulting in increased use of DOA. Withdrawal effects of 
sugar parallel those observed with drugs of abuse [6, 86]. Thus, 
tolerance and withdrawal, the two hallmarks of dependence, 
have been demonstrated to occur following the repeated inges-
tion of sugar.  

Despite the evidence supporting sugar’s role as a gateway drug, 
several limitations to this review must be noted. First, some re-
searchers have challenged the validity of the Gateway Hypoth-
esis. In a prospective study, Tarter et al. [87] found that 22.4% 
of subjects who used marijuana did not exhibit the gateway se-
quence. In these individuals, marijuana use was not preceded by 
the use of licit substances, leading the authors to conclude the 
gateway sequence is not an invariant pattern among drug-using 
youth.  

Morral et al. [88] proposed an alternate “common factor model” 
of drug use. This model suggested that progression from marijua-
na to other drugs could be explained by the order in which indi-
viduals have the opportunity to use these drugs, without assum-
ing that marijuana contributes to the risk of using “hard drugs.” 

Degenhardt et al. [79] analyzed drug use patterns using World 
Health Organization (WHO) and World Mental Health (WMH) 
Surveys. In this study of 85,088 individuals from 17 countries, 
the authors found factors other than the Gateway Effect contrib-
uted to the ordering and progression of drug use. These factors 
included: exposure or access to certain drugs, attitudes toward 
certain drugs, background prevalence of drug use, age of onset, 
and degree of exposure to certain drugs. 

Another limitation of this study is the use of the term “drug” 
when referring to sugar.   This application of the term “drug” 
is likely to provoke controversy, as sugar has historically been 
viewed as a food, rather than a drug. However, numerous studies 
have demonstrated that sugar produces effects on the MLP simi-
lar to those produced by drugs of abuse. Thus, a reexamination of 
sugar’s potential role as a drug appears warranted, based upon 
the evidence provided in the afore-referenced articles.  

Quantitative studies are needed to determine whether a thresh-
old dose exists which transforms sugar from a pleasure-inducing 
food to a MLP-priming drug. Such studies should evaluate wheth-
er a dose or concentration of sugar can be identified that pro-
duces sufficient DA release in the MLP to cause allostasis, with 
the subsequent triggering of drug craving and drug seeking be-
haviors.  

Also, a lack of specificity regarding the use of the term “gate-
way drug” is problematic. Some studies limit the definition of a 
gateway drug to licit substances only (e.g., alcohol and tobacco) 
whereas others include illicit substances (e.g., cannabis). In this 
article, the term “gateway drug” is used to refer to sugar, a sub-
stance that many would not consider to be a drug at all.  There-
fore, identifying sugar as a gateway drug is likely to be contro-
versial.    

Another limitation of this review is that the majority of research 
cited involves studies using rats as subjects.  Although rats may 
respond to sugar as a gateway drug, additional studies are need-
ed to determine if sugar exhibits similar effects in humans. 

Variability in the types and concentrations of sugar utilized in ref-
erenced studies is a further limitation of this article. Additional 
studies are needed to clarify whether different sugars (e.g., 
monosaccharides, disaccharides, and polysaccharides) have simi-
lar or different effects on the MLP. 

Most existing studies investigate only sugar’s short-term effects 
on the MLP and the subsequent use of DOA. Long-term studies 
are needed to investigate whether sugar’s effects on the MLP 
and on the subsequent use of DOA persist over longer periods of 
time (e.g., years). 

Finally, the implication of the findings in this paper would indi-
cate that any substance that triggers DA release in the MLP has 
the potential to be a gateway drug. Further research is needed 
to clarify whether all substances that trigger DA release in the 
MLP act as gateway drugs, or if only specific substances function 
as gateway drugs. The degree to which substances trigger DA re-
lease and the rate at which DA levels rise influence the reinforc-
ing effects of these substances. Therefore, studies designed to 
evaluate sugar’s quantitative effects on DA levels in the MLP are 
likely to yield useful data. 

Conclusion
If sugar acts as a gateway drug, what implications does this have 
for future generations? Per capita soft-drink consumption has in-
creased nearly 500% in the past 50 years [89] and consumption 
of high-fructose corn syrup increased >1000% from 1970 to 1990 
[90]. The full impact of this increase in sugar intake on the BRC, 
the MLP, and addictive behaviors remains to be determined. Fur-
ther research is needed to clarify sugar’s role as a gateway drug. 
Additionally, further research examining strategies for minimiz-
ing sugar’s adverse impact on the MLP and the subsequent de-
velopment of addictions is recommended.  
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