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Introduction
In	2012,	more	than	22	million	people	in	the	U.S.	aged	12	or	older	
suffered	from	substance	abuse	or	dependence	[1].	The	develop-
ment	of	 addictions	 is	 associated	with	 characteristic	 changes	 in	
the	mesolimbic	pathway	(MLP)	in	the	brain	[2,	3].	Factors	known	
to	influence	the	MLP	and	increase	the	risk	of	addictions	include	
genetic	 polymorphisms	 and	 environmental	 influences	 [4,	 5].	
Foods	and	beverages	containing	high	concentrations	of	sugar	are	
examples	of	 the	 latter	 [6].	Excessive	sugar	consumption	causes	
changes	 in	 the	MLP	 that	 mimic	 the	 effects	 of	 drugs	 of	 abuse	
(DOA)	[7,	8].	Furthermore,	changes	in	the	MLP	resulting	from	the	
excessive	ingestion	of	sugar	have	been	demonstrated	to	increase	
the	likelihood	of	future	drug	use	[9,	10].	This	raises	the	question,	
can	sugar	act	as	a	gateway	drug?

Method
PubMed	and	reference	lists	were	searched	for	articles	published	
until	October	1,	2015	using	the	keywords:	sugar	and	addiction.	
Secondary	searches	 included	articles	cited	 in	sources	 identified	
by	the	previous	search.			

Addiction and the mesolimbic pathway
Drug addiction	has	been	described	as	a	chronically	relapsing	dis-
order	characterized	by	compulsion	to	take	one	or	more	drugs	of	
abuse	(DOA)	with	loss	of	control	over	drug	intake	and	continued	
use	despite	negative	consequences	[11,	12].	Kalivas	and	Volkow	
[13]	described	three	stages	of	addiction:	(1)	Acute	drug	effects,	
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(2)	A	transition	from	recreational	use	to	repetitive	use,	and	(3)	
End-stage	addiction	characterized	by	an	overwhelming	desire	to	
use	 the	drug,	a	diminished	ability	 to	control	drug-seeking,	and	
reduced	pleasure	from	other,	everyday	rewards.			

The	 biochemical	 etiology	 of	 addiction	has	 been	 linked	 to	 neu-
rochemical	 and	 neurophysiological	 changes	 in	 the	mesolimbic	
pathway	(MLP).	More	than	half	a	century	ago,	electrical	stimu-
lation	of	the	brain	was	demonstrated	to	produce	positive	rein-
forcement	in	rats	[14].	Subsequently,	the	medial	forebrain	bun-
dle	(an	older	name	for	the	mesolimbic	pathway)	was	suggested	
as	the	final	common	pathway	for	reward	messages	 involving	a	
variety	of	 forebrain	 reward	sites	 [15].	The	MLP,	also	known	as	
the	“mesolimbic	dopamine	system”	[3],	has	been	demonstrated	
to	be	involved	in	motivation,	pleasure,	and	reward	[16].	

The	MLP	is	 formed	by	dopaminergic	neurons	originating	 in	the	
ventral	 tegmental	area	(VTA)	and	projecting	to	the	nucleus	ac-
cumbens	(NAc)	[17,	18].	Dopamine	(DA)	is	known	to	be	an	impor-
tant	neurotransmitter	associated	with	reward	[19-22].	Pleasur-
able	stimuli	[23,	24]	and	natural	rewards	[25]	trigger	the	release	
of	DA	in	the	NAc	shell.					

Drugs	 of	 abuse	 (DOA)	 such	 as	 alcohol,	 nicotine,	 psychostimu-
lants,	 opiates,	 and	marijuana,	 also	 stimulate	DA	 release	 in	 the	
NAc	[24-26].	In	fact,	all	DOA	have	been	demonstrated	to	trigger	
DA	release	in	the	NAc	[3,	21,	27,	28].			
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DOA	 increase	 extracellular	DA	 in	 the	NAc	 through	 a	 variety	 of	
mechanisms.	 For	 example,	 cocaine	 blocks	 the	 DA	 transporter	
(DAT)	[29]	whereas	amphetamines	induce	DA	release	from	pre-
synaptic	neurons	[30].	Opiates	inhibit	Gamma-Aminobutyric	acid	
(GABA)	interneurons	that	in	turn	inhibit	mesolimbic	DA	neurons,	
thus	promoting	DA	release	[2].	

Release	of	DA	in	the	NAc	is	associated	with	pleasure	and	reward	
[16].	The	more	rapidly	DA	levels	rise,	the	stronger	the	reinforcing	
effect	of	the	drug	[31].		

Chronic	 or	 repeated	 use	 of	 DOA	 produces	 neurochemical	 and	
neurophysiological	alterations	in	the	MLP	associated	with	addic-
tions.	These	changes	include	decreased	levels	of	extracellular	DA	
[32]	and	down	regulation	of	DA	2	receptors	(D2Rs)	[33].	

Reduced	D2R	density	has	been	 found	 in	chronic	users	of	DOA.	
Morphine	and	cocaine	decrease	NAc	D2R	mRNA	in	rats	[34,	35].	
D2Rs	are	down	regulated	in	cocaine	addicts	[36],	methamphet-
amine	abusers	[37],	and	alcoholics	[33].	

High	numbers	of	D2Rs	have	been	suggested	to	have	a	protective	
role	in	alcoholism	[38].	In	rats,	artificially	increasing	the	number	
of	D2Rs	reduces	alcohol	and	cocaine	intake	[39-41].	These	find-
ings	suggest	the	number	of	D2Rs	correlates	 inversely	with	self-
administration	of	DOA’s	[26].	

To	summarize	 these	findings,	 chronic	use	of	DOA	results	 in	 re-
duced	 levels	 of	 extracellular	DA	 and	 decreased	D2R	 density	 in	
the	MLP.	Low	levels	of	D2Rs	are	associated	with	increased	con-
sumption	of	DOA	and	addiction	[37,	40,	41]	whereas	normal	or	
high	levels	of	D2Rs	are	associated	with	low	craving	behaviors	and	
decreased	consumption	of	DOA	[38].

Homeostasis and the brain reward cascade
More	than	two	decades	ago,	Blum	and	Kozlowski	[42]	proposed	
the	existence	of	 a	 “Brain	Reward	Cascade”	or	BRC.	 The	BRC	 is	
an	 interactive	 cascade	of	neurotransmitters	 that	 influences	DA	
release	in	the	MLP.	The	BRC	begins	with	the	release	of	serotonin	
(5-HT)	 in	 the	 hypothalamus.	 5-HT	 then	 triggers	 the	 release	 of	
met-enkephalin	in	the	VTA.	Binding	of	met-enkephalin	to	opiate	
receptors	inhibits	the	release	of	GABA.	This	reduction	of	the	in-
hibitory	neurotransmitter	GABA	disinhibits	DA	release,	resulting	
in	increased	levels	of	extracellular	DA	in	the	NAc	[23,	43].

Under	normal	conditions,	release	of	neurotransmitters	along	the	
BRC	creates	a	homeostasis	within	the	MLP.	However,	under	ab-
normal	circumstances,	such	as	during	chronic	self-administration	
of	DOA,	this	homeostasis	is	disrupted.		Evidence	for	this	homeo-
stasis	model	comes	 from	a	study	by	Koob	 [44]	who	 found	 rats	
allowed	to	self-administer	ethanol	during	acute	withdrawal	self-
administered	just	enough	ethanol	to	return	extracellular	DA	lev-
els	in	the	NAc	to	predependence	baseline	levels.

Reward deficiency syndrome
Genetics	 contribute	 significantly	 to	 vulnerability	 to	 addictions.	
Heritability	 for	 addiction	 has	 been	 estimated	 at	 50%	 [45]	with	
multiple	genes	contributing	to	this	predisposition.		

Numerous	genetic	polymorphisms	have	been	linked	with	the	de-
velopment	of	addictions.	These	include	genes	for:	the	serotoner-
gic	 2A	 receptor	 (5HT2AR),	 serotonergic	 transporter	 (5HTTLPR),	
dopamine	D1	receptor	(D1R),	dopamine	D2	receptor	(D2R),	dopa-
mine	D3	receptor	(D3R),	dopamine	D4	receptor	(D4R),	dopamine	
transporter	 (DAT),	 the	 catechol-O-methyltransferase	 (COMT),	
mono-amine	 oxidase	 (MOA),	 mu-opiate	 receptor	 (MOR),	 and	
GABA-B3	genes	[46].	These	polymorphisms	produce	dopaminer-
gic	hypofunction	in	the	MLP	[46],	which	has	been	hypothesized	
to	increase	the	use	of	DOA	in	order	to	raise	DA	levels	[4].			

Blum	and	colleagues	[43]	proposed	that	genetic	polymorphism	of	
the	D2R	is	associated	with	hypodopaminergic	functioning	in	the	
NAc.	This	produces	a	condition	 they	 labeled	“Reward	Deficien-
cy	Syndrome”	(RDS)	 [47].	RDS	 is	associated	with	polysubstance	
abuse	[43,	46].			

D2	agonists	alter	extracellular	DA	levels	and	D2R	density	in	the	
MLP.		Both	the	dose	of	the	D2	agonist	and	the	frequency	of	ad-
ministration	of	 the	D2	agonist	are	 important	 factors	 that	 influ-
ence	extracellular	DA	levels	and	D2R	density.	Constant	stimula-
tion	with	low	doses	of	D2	agonists	results	in	proliferation	of	D2Rs	
[23].	However,	chronic	stimulation	with	more	potent	D2	agonists	
results	in	decreased	D2R	density	[48].	Chronic	use	of	DOA	also	re-
sults	in	reduced	D2R	density	[33,	37].	Intermittent	administration	
of	DOA	leads	to	a	more	pronounced	increase	in	extracellular	DA	
levels	than	occurs	following	acute	administration	of	these	drugs	
[25].				

Reduced	D2R	density	produces	a	hypodopaminergic	state	that	is	
functionally	similar	to	RDS.	Reduced	DA	levels	 in	addicts,	along	
with	 increased	 sensitivity	 to	 the	DA	enhancing	 effects	of	DOA,	
have	been	proposed	as	mechanisms	leading	to	drug-seeking	be-
havior	and	subsequent	addiction	[26].	

Dopaminergic	hypofunction	has	been	proposed	as	a	common	eti-
ologic	factor	contributing	to	a	number	of	impulsive,	compulsive,	
and	addictive	disorders	[47].	The	proposed	mechanism	involves	
the	utilization	of	substances	and/or	behaviors	that	stimulate	the	
release	of	mesolimbic	DA	in	order	to	compensate	for	the	under-
lying	dopaminergic	hypofunction,	thus	restoring	homeostasis	to	
this	system	[23].	This	seeking	out	of	DA	may	underlie	the	craving	
and	binging	that	occur	with	DA-stimulating	substances	[23].		

Allostasis
Koob	and	Le	Moal	 [49]	 conceptualized	addiction	as	a	 “cycle	of	
spiralling	 dysregulation	 of	 brain	 reward	 systems	 that	 progres-
sively	 increases,	resulting	in	compulsive	use	and	loss	of	control	
over	 drug-taking”	 (p.	 97).	 These	 investigators	 proposed	 that	 a	
continuous	process	of	hedonic	homeostatic	dysregulation	alters	
DA’s	normal	set	point,	resulting	in	stabilization	at	a	new,	patho-
logical	set	point.		This	occurs	through	allostasis,	which	they	de-
fined	as	 “the	process	of	maintaining	apparent	 reward	 function	
stability	 by	 changes	 in	 brain	 reward	mechanisms”	 [49]	 (p.	 97).	
In	other	words,	repeated	stimulation	of	DA	by	DOA	results	in	a	
restabilization	of	MPL	dopaminergic	tone	at	a	lower,	pathological	
set	point.		
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Food’s effects on the MLP 
The	same	neurobiological	pathway	involved	in	addiction	to	DOA	
modulates	food	consumption	and	can	result	in	addiction	to	food	
[50-53].	Food	triggers	DA	release	in	the	MLP	[25].	This	effect	di-
minishes,	however,	when	the	food	is	no	longer	novel	due	to	re-
peated	access	(unless	the	animal	is	food	deprived)	[54-56].	Thus,	
extracellular	DA	levels	in	the	MLP	adapt	to	repeated	presentation	
of	the	same	food	reward,	whereas	novel	foods	continue	to	stimu-
late	DA	release	[25].	

Overconsumption	of	palatable	food	results	in	downregulation	of	
D2Rs	and	a	state	of	 reward	hyposensitivity	 that	mimics	 the	ef-
fects	of	chronic	administration	of	DOA.	This	reduction	in	D2Rs	is	
similar	in	magnitude	to	the	reduction	reported	in	drug-addicted	
subjects	[57].		

Sugar’s effects on extracellular DA levels in the 
MLP
Sugar	produces	biochemical	changes	in	the	MLP	similar	to	those	
produced	by	DOA.	For	example,	Hajnal	et	al.	[58]	found	that	rats	
fed	oral	 sucrose	 solutions	 at	 concentrations	of	 0.03	M,	 0.1	M,	
and	0.3	M	experienced	 a	 concentration-dependent	 increase	 in	
extracellular	DA	levels	in	the	NAc	that	was	statistically	significant	
(P<0.01).	Also,	Rada	et	al.	[56]	showed	that	sucrose-dependent	
rats	 released	more	 DA	 in	 the	 NAc	 following	 sucrose	 ingestion	
than	control	 rats	 that	were	not	sucrose-dependent.	The	differ-
ence	in	DA	release	was	statistically	significant	(P<0.03).		

Acute	administration	of	D2	antagonists	causes	a	dose-dependent	
inhibition	of	sucrose	intake	in	rats	[59-61].		

Habituation	to	the	stimulatory	DA	response	in	the	NAc	shell	oc-
curs	after	a	single	pre-exposure	to	the	same	taste	or	food	in	rats	
[54].	However,	 rats	 fed	sucrose	 intermittently	continue	 to	pro-
duce	increased	levels	of	DA	[56,	62].	Also,	the	amount	of	DA	re-
leased	 in	the	NAc	 is	proportional	to	the	sucrose	concentration,	
rather	 than	 the	 volume	 of	 sucrose	 ingested	 [58].	 Foods	 with	
higher	concentrations	of	sucrose	trigger	greater	amounts	of	DA	
release	than	foods	with	lower	concentrations	of	sugar,	and	inter-
mittent	exposure	to	sucrose	produces	higher	 levels	of	DA	than	
continuous	exposure.		

Sugar’s effects on DA receptors
Intermittent	ingestion	of	sugar	has	been	demonstrated	to	reduce	
D2Rs	in	rats.	Colantuoni	and	colleagues	[7]	found	that	rats	fed	a	
25%	glucose	solution	with	chow	for	12	hours	each	day	doubled	
their	glucose	 intake	 in	10	days.	After	30	days,	receptor	binding	
was	evaluated	and	compared	with	chow-fed	controls.	D2R	bind-
ing	decreased	significantly	in	the	glucose-fed	rats.	Bello	et	al.	[63]	
found	that	food-restricted	rats	fed	a	diet	supplemented	with	su-
crose	(0.3	M)	for	2	hours	a	day	exhibited	decreased	D2R	binding	
in	 the	NAc	shell	after	7	days.	Spangler	et	al.	 [64]	 reported	rats	
placed	on	a	chronic	 schedule	of	 intermittent	binging	on	a	10%	
sucrose	solution	exhibited	decreased	levels	of	D2R	mRNA	in	the	
NAc	compared	with	ad	libitum	chow	controls.

Cross-sensitization between sugar and drugs of 
abuse
Drug-induced	 sensitization	 may	 lead	 to	 increased	 self-admin-
istration	of	the	same	drug.	Sensitization	has	been	suggested	to	
play	a	 role	 in	drug	addiction	 [65].	Additionally,	 sensitization	 to	
one	 drug	 can	 lead	 to	 increased	 self-administration	 of	 another	
drug,	a	process	known	as	“cross-sensitization”	[6].			

Cross-sensitization	 has	 been	 demonstrated	 between	 various	
DOA.	Amphetamines	cross-sensitize	to	cocaine	or	phencyclidine	
[66].	Cocaine	cross-sensitizes	to	alcohol	[67]	Heroin	cross-sensi-
tizes	to	the	synthetic	cannabinoid	receptor	agonist	WIN55212.2	
[68].		

Several	studies	have	found	 intermittent	sugar	 intake	cross-sen-
sitizes	to	drugs	of	abuse.	Rats	fed	a	10%	sucrose	solution	cross-
sensitize	to	amphetamine	[8]	and	rats	given	access	to	granulated	
sucrose	 cross-sensitize	 to	 cocaine	 [69].	Rats	provided	 intermit-
tent	 access	 to	 10%	 sucrose,	 then	 forced	 to	 abstain,	 show	 in-
creased	 intake	of	alcohol	 [9].	Also,	rats	that	prefer	sweet-taste	
will	 self-administer	cocaine	at	a	higher	rate	[70].	These	studies	
indicate	that	sugar	cross-sensitizes	to	DOA.		

Avena	&	 colleagues	 [6]	have	 suggested	 that	 cross-sensitization	
between	sugar	and	DOA	may	contribute	to	addiction	by	enhanc-
ing	responsiveness	to	DA	in	the	MLP.	When	one	drug	leads	to	the	
increased	use	of	another	drug,	this	is	referred	to	as	“consumma-
tory	cross-sensitization”	or	“gateway	effect”	[6].		

The gateway hypothesis
The	idea	that	developmental	stages	and	sequences	of	drug	use	exist	
was	first	proposed	nearly	four	decades	ago	[71-73].	This	idea	sug-
gests	that	a	progressive	and	hierarchical	sequence	of	stages	of	drug	
use	can	be	described	[74-76].	The	basic	premise	of	the	developmen-
tal	stage	hypothesis	is	that	involvement	in	various	classes	of	drugs	
follows	definite	pathways	and	individuals	who	ingest	one	drug	are	
at	risk	of	progressing	to	the	use	of	another	drug	[74].				

The	term	gateway drug	appeared	 in	the	1980’s.	This	 term	was	
initially	 used	 to	 refer	 to	 alcohol	 and	 cigarettes,	 two	 licit	 drugs	
that	were	used	prior	 to	 the	use	of	 illicit	drugs.	 Later,	 the	 term	
gateway drug	was	applied	to	illicit	drugs,	such	as	marijuana,	as	
well	[74].

The	Gateway Hypothesis	 suggests	 the	 use	 of	 some	 drugs	 (i.e.,	
gateway	 drugs)	 increases	 the	 subsequent	 risk	 of	 using	 other	
drugs	[74,	77].	There	are	three	propositions	to	the	Gateway	Hy-
pothesis:	(1)	a	developmental	sequence	of	involvement	with	dif-
ferent	classes	or	categories	of	drugs	exists,	(2)	the	use	of	a	drug	
earlier	 in	 the	 sequence	 is	 associated	with	 an	 increased	 risk	 or	
likelihood	of	use	of	a	drug	later	in	the	sequence,	and	(3)	the	use	
of	a	drug	earlier	in	the	sequence	causes	the	use	of	a	drug	later	in	
the	sequence	[74].	Examples	include	the	use	of	tobacco	or	alco-
hol	leading	to	marijuana	use	[74]	or	nicotine	leading	to	cocaine	
use	[78].			

The	mechanism	by	which	 the	use	of	 one	drug	 leads	 to	 the	 in-
creased	use	of	another	drug	remains	controversial.	Degenhardt	
et	al.	[79]	suggested	etiological	factors	might	include	drug	avail-
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ability	 and	 attitudes	 of	 drug	 users.	 Schenk	 [77],	 on	 the	 other	
hand,	suggested	sensitization	provides	a	mechanism	for	the	pro-
gression	of	drug	use	both	within	and	across	drug	classes.	Numer-
ous	 studies	have	demonstrated	 that	exposure	 to	 certain	drugs	
produces	a	sensitized	behavioral	response	to	those	same	drugs,	
and	also	produces	neuroadaptive	changes	in	DA	neurotransmis-
sion	[77].	Nicotine	and	alcohol,	for	example,	have	been	demon-
strated	to	produce	a	sensitized	response	to	DA	[77].	

Cross-sensitization	may	contribute	to	the	process	of	a	gateway	
drug	 increasing	the	risk	of	subsequent	use	of	other	drugs	 [77].	
Cross-sensitization	occurs	when	administration	of	one	substance	
results	 in	sensitization	to	another	drug	[6].	This	cross-sensitiza-
tion	involves	one	drug	priming	the	MLP,	so	that	subsequent	use	
of	a	different	drug	produces	greater	than	expected	release	of	DA.	
One	 example	 would	 be	 pretreatment	 with	 nicotine	 sensitizing	
mice	to	alcohol,	resulting	in	a	greater	release	of	DA	than	would	
otherwise	be	expected	[80].	

Is sugar a gateway drug?
Erickson	 [18]	defined	a	drug	as	 “any	 chemical	other	 than	 food	
or	water	that	produces	a	therapeutic	or	nontherapeutic	pharma-
cological	action	in	the	body”	(p.	93).	Based	upon	this	definition,	
sugar	would	not	be	classified	as	a	drug,	because	 it	 is	generally	
considered	to	be	a	 food,	and	foods	are	excluded	from	the	cat-
egory	of	drugs.

However,	as	Tupper	[81]	has	emphasized,	definitions	of	“drugs”	
and	“foods”	are	strongly	influenced	by	political	and	cultural	fac-
tors.	Whether	we	 define	 sugar	 as	 a	 drug	 or	 a	 food	 is	 strongly	
influenced	by	factors	other	than	the	existing	scientific	evidence	
regarding	its	pharmacological	effects.

More	important	than	semantics,	however,	is	the	understanding	
of	the	research	previously	cited	in	this	article	that	indicate	sugar’s	
effects	on	the	MLP	mimic	the	effects	of	numerous	drugs	of	abuse	
including	cocaine,	heroin,	nicotine,	and	alcohol.	If	we	are	willing	to	
consider	the	possibility	that	sugar	acts	like	a	drug	on	the	MLP,	we	
can	then	begin	to	examine	whether	sugar	acts	as	a	gateway	drug.		

As	 previously	 discussed,	 the	Gateway	Hypothesis	 consists	 of	 3	
propositions.	Do	these	propositions	apply	to	sugar?	We	can	look	
at	each	of	these	three	propositions	individually	in	relationship	to	
sugar.		

Proposition 1 - “There is a developmental 
sequence of involvement with different classes 
or categories of drugs.”
Much	of	the	research	on	the	addictive	nature	of	sugar	has	been	
performed	on	rats	in	a	laboratory	setting.	This	makes	it	challeng-
ing	to	determine	whether	a	developmental	sequence	exist	involv-
ing	different	classes	or	categories	of	drugs.	Rats	in	a	laboratory	
setting	do	not	generally	have	access	to	a	wide	range	of	different	
classes	of	drugs.	However,	evidence	suggests	that	the	ingestion	
of	sugar	does	increase	the	subsequent	use	of	drugs	of	abuse.		

Avena	et	al.	[9]	found	that	rats	given	intermittent	access	to	10%	
sucrose	subsequently	consumed	more	ethanol	than	rats	given	ad	
libitum	access	to	sucrose	(P<0.05).	Rats	provided	intermittent	ac-

cess	to	sugar	also	show	signs	of	cross	sensitization	with	amphet-
amine	[8]	and	cocaine	[69].	

These	studied	suggest	the	use	of	sugar	can	lead	to	the	increased	
use	drugs	of	abuse.	

Proposition 2 - “The use of a drug earlier in 
the sequence is associated with an increased 
risk or likelihood of use of a drug later in the 
sequence.”
Studies	have	demonstrated	that	a	rat’s	 level	of	sucrose	prefer-
ence	can	predict	 its	desire	 to	self-administer	cocaine	 [82].	Fur-
thermore,	 studies	 have	 demonstrated	 cross-sensitization	 be-
tween	sugar	and	drugs	of	abuse	[8,	9,	70,	83].		

Several	studies	have	reported	a	positive	correlation	between	the	
intake	of	sugar	or	saccharin	solutions	and	the	self-administration	
of	morphine,	 cocaine,	 and	amphetamine	 [69,	 83-85].	Also,	 the	
acquisition	of	amphetamine	self-administration	has	been	shown	
to	be	more	rapid	in	high	sucrose	feeder	rats	than	in	low	sucrose	
feeders	 [84].	 Sugar	has	also	been	demonstrated	 to	produces	a	
gateway	effect	for	alcohol	[9]	and	cocaine	[70].		

These	findings	support	the	proposition	that	sugar	intake	is	asso-
ciated	with	an	increased	likelihood	of	using	drugs	of	abuse.		

Proposition 3 - “The use of a drug earlier in the 
sequence causes the use of a drug later in the 
sequence.”
Evidence	supporting	this	proposition	comes	from	previously	cit-
ed	 research	demonstrating	 that	 increased	 release	of	DA	 in	 the	
NAc	following	the	ingestion	of	high	concentrations	of	sugar	leads	
to	down-regulation	of	D2Rs	[7,	63,	64].	This	produces	a	hypodo-
paminergic	state	of	allostasis	[49].	The	behavioral	consequence	
of	this	state	is	an	increased	use	of	substances	that	trigger	DA	re-
lease	in	an	effort	to	regain	homeostasis	in	the	MLP	[23].	Ingestion	
of	DOA	releases	DA	in	the	NAc	[3,	21,	24-28].	Thus,	the	ingestion	
of	food	and	drinks	containing	high	concentrations	of	sugar	would	
be	expected	to	contribute	to	the	repeated	use	of	DOA	in	an	at-
tempt	to	restabilize	MLP	DA	levels	at	a	homeostatic	level.			

Discussion
Although	sugar	 is	not	ordinarily	viewed	as	a	drug	of	abuse,	 in-
termittent	binging	with	sugar	triggers	neurochemical	responses	
in	the	MLP	that	parallel	 those	produced	by	DOA.	Furthermore,	
evidence	has	demonstrated	sugar	may	be	addictive	when	con-
sumed	in	a	binge-like	manner	[6].		

Although	 quantitatively	 different,	 the	 neurochemical	 changes	
produced	by	the	intermittent	ingestion	of	sugar	are	qualitatively	
similar	 to	 the	changes	produced	by	DOA	 in	 the	MLP	[6].	These	
include	increased	release	of	DA	[54,	56,	58],	reduced	D2R	mRNA	
[64],	and	down-regulation	of	D2Rs	[7,	63].	The	resultant	hypodo-
paminergic	state	is	associated	with	increased	drug	seeking	[49].

Cross-tolerance	has	been	demonstrated	between	sugar	and	DOA	
[8,	9,	70,	83].	These	findings	suggest	 the	repeated	 ingestion	of	
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sugar,	particularly	in	high	concentrations,	may	lead	to	“gateway	
effects,”	resulting	in	increased	use	of	DOA.	Withdrawal	effects	of	
sugar	parallel	those	observed	with	drugs	of	abuse	[6,	86].	Thus,	
tolerance	 and	 withdrawal,	 the	 two	 hallmarks	 of	 dependence,	
have	been	demonstrated	to	occur	following	the	repeated	inges-
tion	of	sugar.		

Despite	the	evidence	supporting	sugar’s	role	as	a	gateway	drug,	
several	limitations	to	this	review	must	be	noted.	First,	some	re-
searchers	have	challenged	the	validity	of	 the	Gateway	Hypoth-
esis.	 In	a	prospective	study,	Tarter	et	al.	 [87]	found	that	22.4%	
of	subjects	who	used	marijuana	did	not	exhibit	the	gateway	se-
quence.	In	these	individuals,	marijuana	use	was	not	preceded	by	
the	use	of	 licit	substances,	 leading	the	authors	to	conclude	the	
gateway	sequence	is	not	an	invariant	pattern	among	drug-using	
youth.		

Morral	et	al.	[88]	proposed	an	alternate	“common	factor	model”	
of	drug	use.	This	model	suggested	that	progression	from	marijua-
na	to	other	drugs	could	be	explained	by	the	order	in	which	indi-
viduals	have	the	opportunity	to	use	these	drugs,	without	assum-
ing	that	marijuana	contributes	to	the	risk	of	using	“hard	drugs.”	

Degenhardt	et	al.	 [79]	analyzed	drug	use	patterns	using	World	
Health	 Organization	 (WHO)	 and	 World	 Mental	 Health	 (WMH)	
Surveys.	 In	 this	 study	 of	 85,088	 individuals	 from	 17	 countries,	
the	authors	found	factors	other	than	the	Gateway	Effect	contrib-
uted	to	the	ordering	and	progression	of	drug	use.	These	factors	
included:	exposure	or	access	to	certain	drugs,	attitudes	toward	
certain	drugs,	background	prevalence	of	drug	use,	age	of	onset,	
and	degree	of	exposure	to	certain	drugs.	

Another	 limitation	 of	 this	 study	 is	 the	 use	 of	 the	 term	 “drug”	
when	 referring	 to	 sugar.	 	 This	 application	 of	 the	 term	 “drug”	
is	 likely	 to	 provoke	 controversy,	 as	 sugar	 has	 historically	 been	
viewed	as	a	food,	rather	than	a	drug.	However,	numerous	studies	
have	demonstrated	that	sugar	produces	effects	on	the	MLP	simi-
lar	to	those	produced	by	drugs	of	abuse.	Thus,	a	reexamination	of	
sugar’s	potential	role	as	a	drug	appears	warranted,	based	upon	
the	evidence	provided	in	the	afore-referenced	articles.		

Quantitative	studies	are	needed	to	determine	whether	a	thresh-
old	dose	exists	which	transforms	sugar	from	a	pleasure-inducing	
food	to	a	MLP-priming	drug.	Such	studies	should	evaluate	wheth-
er	a	dose	or	concentration	of	sugar	can	be	 identified	that	pro-
duces	sufficient	DA	release	 in	the	MLP	to	cause	allostasis,	with	
the	subsequent	triggering	of	drug	craving	and	drug	seeking	be-
haviors.		

Also,	 a	 lack	 of	 specificity	 regarding	 the	 use	 of	 the	 term	 “gate-
way	drug”	is	problematic.	Some	studies	limit	the	definition	of	a	
gateway	drug	to	licit	substances	only	(e.g.,	alcohol	and	tobacco)	
whereas	others	include	illicit	substances	(e.g.,	cannabis).	In	this	
article,	the	term	“gateway	drug”	is	used	to	refer	to	sugar,	a	sub-
stance	that	many	would	not	consider	to	be	a	drug	at	all.		There-
fore,	 identifying	sugar	as	a	gateway	drug	 is	 likely	to	be	contro-
versial.				

Another	limitation	of	this	review	is	that	the	majority	of	research	
cited	involves	studies	using	rats	as	subjects.		Although	rats	may	
respond	to	sugar	as	a	gateway	drug,	additional	studies	are	need-
ed	to	determine	if	sugar	exhibits	similar	effects	in	humans.	

Variability	in	the	types	and	concentrations	of	sugar	utilized	in	ref-
erenced	studies	 is	a	further	 limitation	of	this	article.	Additional	
studies	 are	 needed	 to	 clarify	 whether	 different	 sugars	 (e.g.,	
monosaccharides,	disaccharides,	and	polysaccharides)	have	simi-
lar	or	different	effects	on	the	MLP.	

Most	existing	studies	investigate	only	sugar’s	short-term	effects	
on	the	MLP	and	the	subsequent	use	of	DOA.	Long-term	studies	
are	 needed	 to	 investigate	whether	 sugar’s	 effects	 on	 the	MLP	
and	on	the	subsequent	use	of	DOA	persist	over	longer	periods	of	
time	(e.g.,	years).	

Finally,	the	 implication	of	the	findings	 in	this	paper	would	 indi-
cate	that	any	substance	that	triggers	DA	release	in	the	MLP	has	
the	potential	to	be	a	gateway	drug.	Further	research	is	needed	
to	 clarify	whether	all	 substances	 that	 trigger	DA	 release	 in	 the	
MLP	act	as	gateway	drugs,	or	if	only	specific	substances	function	
as	gateway	drugs.	The	degree	to	which	substances	trigger	DA	re-
lease	and	the	rate	at	which	DA	levels	rise	influence	the	reinforc-
ing	effects	of	 these	 substances.	 Therefore,	 studies	designed	 to	
evaluate	sugar’s	quantitative	effects	on	DA	levels	in	the	MLP	are	
likely	to	yield	useful	data.	

Conclusion
If	sugar	acts	as	a	gateway	drug,	what	implications	does	this	have	
for	future	generations?	Per	capita	soft-drink	consumption	has	in-
creased	nearly	500%	in	the	past	50	years	[89]	and	consumption	
of	high-fructose	corn	syrup	increased	>1000%	from	1970	to	1990	
[90].	The	full	impact	of	this	increase	in	sugar	intake	on	the	BRC,	
the	MLP,	and	addictive	behaviors	remains	to	be	determined.	Fur-
ther	research	is	needed	to	clarify	sugar’s	role	as	a	gateway	drug.	
Additionally,	further	research	examining	strategies	for	minimiz-
ing	sugar’s	adverse	impact	on	the	MLP	and	the	subsequent	de-
velopment	of	addictions	is	recommended.		
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