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Introduction 
Ionic liquids are a class of molten salts which have a melting point 
below 100°C [1]. The characteristic high thermal stability [2,3], 
low volatility [4], high ionic conductivity [4] and low flammability 
of ionic liquids has attracted interest in in their use as electrolytes 
and solvents which can also serve as catalysts [5]. In particular 
ionic liquids with melting points below 100°C (or in some 
literature 25°C) commonly referred to as a room temperature 
ionic liquids (RTIL’s) have attracted interest as green solvents 
and electrolytes [6]. Protic ionic liquids (PILs) are a type of ionic 
liquid synthesized by the transfer of a proton from an acid to a 
base forming a permanently charged anion (A-) and a protonated 
cation (HB+) [5]. 

HA+B ⇌A-+HB+	 	 	 	 	                (1)

This reversible reaction is driven by the difference in pKa values 
between the acid and base. There has been a great deal of 
discussion on a described pKa threshold that must be overcome 
in order to obtain good ionic liquid behavior with the previously 
mentioned characteristic properties [7-16]. Some propose that a 
∆pKa separation of 8 [9] or higher [7,10] is needed, while others 
have shown that a ∆pKa separation of 4 is sufficient to obtain 

99.9% proton transfer [12,13]. Strong Bronsted bases such as 
ammonia [17], pyrrolidine [18], guanidine [19] and imidazole 
[20] are commonly used in combination with strong acids such as 
nitric acid [21], sulfuric acid [22] and acetic acid [23] to drive the 
equilibrium of equation 1 further to the right. Many well-known 
protic ionic liquids are made by maximizing the ∆pKa separation 
between the acid and the base however this drastically limits the 
available cations and anions that are considered usable in the 
synthesis of PIL’s. When this limitation is removed new protic 
ionic liquids can be synthesized which incorporate weakly acidic 
dyes. Incorporating such dyes into the protic ionic liquid structure 
can introduce optical properties such as visible light absorption 
into these electrolytes. Recent studies have investigated the 
optical properties of aprotic ionic liquids. However, from a green 
chemistry perspective aprotic ionic liquid synthesis exhibits low 
atom economy due to the involved generation of waste products, 
solvent use and purification procedures [24-31]. The combined 
optical and electrochemical properties of these materials could 
lead to new avenues in the development of sensing materials 
and new directions in the field of photovoltaics. Here we seek 
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to address an issue with dye sensitized solar cell (DSSC) devices 
regarding the absorption of ultraviolet (UV) light by TiO2 resulting 
in efficiency losses and also the depletion of I3

- in the I3
-/I- redox 

couple following absorption of < 500 nm light [32,33] These 
devices are typically shielded from this light using an UV filter, 
here we seek to develop an electrolyte which absorbs ultraviolet 
and visible light by incorporating a chromophore into the protic 
ionic liquid structure. The chromophore can be introduced by 
deprotonating a weakly acidic pH sensitive dye using a Bronsted 
base to induce a bathochromic shift allowing absorption of 
UV-Vis light while retaining the characteristic ion transport 
properties of protic ionic liquids. Our investigation involves the 
use of m-nitrophenol, a weakly acidic dye which absorbs UV and 
visible light to undergo an intramolecular charge transfer [34-36]. 
To deprotonate m-nitrophenol we have selected the strong base 
pyrrolidine, previously shown to generate PILs with favorable ion 
transport properties [18,37].

Materials and Methods
Materials
m-Nitrophenol ≥ 99% and pyrrolidine ≥ 99% were purchased 
from Sigma Aldrich and used as received. 

Synthesis of pyrrolidinium m-nitrophenolate
m-Nitrophenol (1 g, 7.2 mmol) was added to pyrrolidine (0.6 
mL, 7.2 mmol) in a 20 mL reaction vessel. Contents were 
stirred at 50°C for 30 minutes under solvent free conditions to 
obtain a viscous red liquid at ≥ 99% yield. 1H NMR (200 MHz, 
D2O) δ 7.36-6.98 (3H, m), δ 6.80 (1H, d), δ 3.10-2.95 (4H, m), 
δ 1.26-1.17 (4H, m). ATR-FTIR (neat, cm-1): 2971, 2416, 1866, 
1599, 1510, 1456, 1345, 1301, 1267, 1241, 1076, 989, 934, 
864, 813, 789, 736, 672 cm-1.

Structural characterization
1H NMR spectra were recorded on a 200 MHz Varian 
MercuryPlus. FTIR spectra were recorded on a Thermo 
Scientific Nicolet iS5 FT-Infrared spectrometer with an iD5 ATR 
Diamond accessory.

Physical characterization
Ionic Conductivity was recorded using a SUNTEX Conductivity 
Meter-SC170 with a cell constant of 1 cm calibrated using 
0.01M KCl. Ionic conductivity measurements were taken at 
2°C intervals in a calibrated reaction vessel while increasing 
the temperature of the oil bath in which the reaction vessel 
was immersed. Viscosity was measured using a BrookField-
LV viscometer in a calibrated reaction vessel, heated by 
immersion in an oil bath. The oil bath was gradually heated 
and the temperature of sample and reaction vessel calibrated 
in relation to the oil bath temperature. Mass and volume 
measurements were determined using an analytical balance 
and a graduated cylinder at room temperature.

Light absorbance
UV/Vis spectra were recorded in a 1 cm quartz cuvette using a 
Varian Cary 100 Bio UV-Vis spectrometer.

Cyclic voltammetry
Scans were conducted using a Biologic SP-150 potentiostat using 
EC LAB software. A standard three electrode system was used 
consisting of a platinum wire counter electrode (BASi MW-4130), 
a reference electrode, composed of a Ag/AgCl wire (BASi, MF-
2052) in 3 M NaCl solution and a glassy carbon working electrode 
(BASi, MF-2015) filled with carbon paste (BASi, CF-1010). All 
measurements were conducted under atmospheric conditions. 

Thermal phase behavior
Differential scanning calorimetry was performed using 11.85 mg 
of the sample into a tared hermetic aluminum sample pan. The 
pan and lid were hermetically sealed and the sample was loaded 
into a TA instruments Q200 differential scanning calorimeter for 
measurement. Measurements were performed under a helium 
atmosphere (25 mL min-1 flow rate) using the liquid nitrogen 
cooling accessory as the cooling unit. The cell is first calibrated 
with indium as standard reference material (Tmelt=156.6°C and 
ΔHfus=28.71 J g

-1) and with mercury as a second temperature 
standard (Tmelt=-38.8°C). The sample was equilibrated at -150°C, 
held for 5 minutes and then held at a ramp rate of 10°C min-1 to 130°C 
and held at that temperature for one minute before cooling at a 
ramp rate of 10°C min-1 to -150°C.

Results and Discussion
We first synthesized pyrrolidinium m-nitrophenolate [PYR+]
[MNP-] by the proton transfer from pyrrolidine to m-nitrophenol 
at a mild reaction temperature in the absence of a solvent as 
shown in Scheme 1. NMR and Attenuated Total Reflectance 
Fourier Transform Infrared Spectroscopy (ATR-FTIR) show that 
the reaction went to completion with no side products formed. 
This process was determined to be thermodynamically favorable 
according to equation 2 where the theoretical Gibbs free energy 
value is equal to -17.1 kJ/mol-1 [9].

ΔG0=-2.303RT∆pKa	                                                               (2)

The thermal phase behavior of [PYR+][MNP-] was investigated 
to predict the range of potential applications and experiments 
that could be performed. The thermal phase transitions were 
investigated using Differential Scanning Calorimetry (DSC) as 
shown in Figure 1.

In Figure 1 it can be seen that [PYR+][MNP-] remains in the liquid 
state until cooled to -44°C. Further cooling resulted in organization 

Scheme 1 Reaction of pyrrolidine (PYR) with m-nitrophenol (MNP) 
to give the product, pyrrolidinium m-nitrophenolate 
([PYR+][MNP-]) [38,39].
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of the glass as evidenced by the exothermic peak at -107°C. It can 
be implied from Figure 1 that [PYR+][MNP-] is thermally stable 
to at least 100°C allowing a higher temperature investigation 
of the transport properties. The low ∆pKa separation between 
m-nitrophenol and pyrrolidinium goes against conventional 
recommendations of large ∆pKa separation and might suggest the 
possibility of incomplete proton transfer. To further investigate 
the degree of proton transfer using a Walden plot, which requires 
knowledge of the density, viscosity and ion conductivity of the 
ionic liquid was created. We first investigated the viscosity of 
[PYR+][MNP-], a graph illustrating the change in viscosity as a 
function of temperature is shown in Figure 2.

In Figure 2 the expected decrease in viscosity with increasing 
temperature can be seen through temperature dependent 
viscosity measurements. The PIL is a viscous liquid at 25°C 
(1.26 Pa.s) becoming considerably more fluid with increasing 
temperature. Conventional knowledge of protic ionic liquids 
would suggest that a low ∆pKa separation would result in poor 
ion conductivity, however we find that the ion conductivity of 
[PYR+][MNP-] shown in Figure 3 compares well to that of typical 
protic ionic liquids with much greater ∆pKa separations [40]. 

As shown in Figure 3, the ion conductivity of 3 increases from 

0.381 mS cm-1   at 25°C to 8.29 mS cm-1 at 92°C illustrating 
moderate to high ion conductivity. Using this information we can 
compare the degree of proton transfer of [PYR+][MNP-] to that of 
ideal 0.01M KCl for which complete ionization is said to occur, the 
comparison is shown in Figure 4 using a Walden Plot [42]. 

In Figure 4 we find that [PYR+][MNP-] demonstrates good ionic 
liquid behavior approaching that of ideal 0.01M KCl indicating 
nearly complete proton transfer and ionization. The degree of 
proton transfer can be calculated using equation 3 to predict 
99.9% proton transfer at a ∆pKa separation of 3.3 [13]. 

( )
( )+

= aq

aq

Ka HA
K

Ka HB 	 	 	 	                 (3)

These results suggest that even weak acids could be used in protic 
ionic liquid synthesis. With almost complete proton transfer we 
investigated the optical properties of [PYR+][MNP-] by studying 
the wavelengths of light absorbed in the UV/Vis region as shown 
in Figure 5. 

In Figure 5 a maximum absorbance of 3 is obtained at 382 nm 
(ε=1.23 × 103 L mol-1cm-1) which persists beyond 400 nm (ε=1.14 
× 103 L mol-1cm-1) into the visible region. Absorption of light in this 
range is beneficial as it allows [PYR+][MNP-] to absorb light which 
would otherwise harm dye sensitized solar cell components in 
addition to facilitating ion transport as an electrolyte. Application 
of this material in such devices requires an investigation into the 
electrochemical stability. We investigated the electrochemical 
stability using cyclic voltammetry over the range of -5 to 5 V in 
reference to a Ag/AgCl reference electrode, the results of this 
investigation are shown in Figure 6.

In Figure 6 we see no evidence of oxidation or reduction over 
an electrochemical window of 10 V indicating remarkable 
electrochemical stability. This finding suggests that [PYR+][MNP-] 
is well suited towards photovoltaic applications however further 
study is needed to determine the stability of the electrolyte 
over time. Further study is required in order to establish the 
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Figure 1 DSC thermogram of [PYR+][MNP-] over one complete 
heating and cooling cycle, positive heat flow indicates 
an exothermic process.
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Figure 2 Viscosity of [PYR+][MNP-].
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Figure 3 Ion Conductivity of neat [PYR+][MNP-] in 
comparison to [MTBDH+][TFE-] (∆pka= 12.9), 
[MTBDH+][TFE-] (∆pka=10.9) and [MTBDH+]
[PhO-]  (∆pka=15.4) [40,41]. The solid line is used 
as a guide for the eye.
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performance of this material as an electrolyte and its potential to 
function as a sensitizer in photovoltaic applications.

Conclusion
We have shown that complete proton transfer can be obtained 
at a ∆pKa separation of 3.31 indicating that weak acid and base 
combinations may be used in protic ionic liquid synthesis. We 
also report a green synthetic technique to generate a liquid 
dye capable of absorbing ultraviolet and visible wavelengths of 
light by using a pH sensitive dye as the anion. We find that the 
electrochemical window of [PYR+][MNP+] is in excess of 10 V 
suggesting it can be used in applications such as dye sensitized 
solar cells among other electrochemical devices.
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