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ABSTRACT 
 
The collective oscillation of electrons in a nanotube was investigated theoretically. Kubo formula was analytically 
derived for electron gas conductivity tensor on the surface of a nanotube in a magnetic field. The plasma wave 
spectrum of an electron gas on a cylindrical surface with longitudinal superlattice was determined using the 
hydrodynamic approximation methods, considering time and spatial dispersion. Within the framework of this 
approach Poisson equation, continuity equation and constitutive equations were considered and the dispersion 
equation was obtained for the spectrum of plasma waves on the surface of a nanotube. The plasma waves, inter-
band current and the spectra of waves on a semiconductor nanotube surface were considered. Because of the 
dispersion equation parameter in the spectrum of Plasma there exists, either one branch of the spectrum or two 
branches. The first branch describes optical Plasmon due to anti-phase oscillations of the electron density in the 
mini-bands involved in the transitions. The second branch of the acoustic is due to in phase oscillations of the 
electrons in the mini-bands. The study showed that the Plasma waves experiences Landau damping. 
 
Keywords: Nanotubes, Plasmon, super-lattice, inter-band current, intra-band current, optical Plasmon, acoustic 
Plasmon.  
_____________________________________________________________________________________________ 
 

INTRODUCTION  
 

SumioIijima in 1991 discovered carbon nanotubes Ref. [13]. Together with fullerene and carbon mesoporous 
structures this formed a new class of nanomaterial whose properties differ significantly from those of other forms of 
carbon such as graphite and diamond. Currently, the physical properties are still being discovered and disputed. 
What makes it so difficult is that nanotube have a very broad range of electronic, thermal and structural properties 
that change depending on the different kinds of nanotube (defined by its diameter, length and chirality or twist). 
Currently there have been intensive studies of the properties of carbon nanotubes and semiconductor nanotubes. The 
energy spectrum of electrons on the surface of carbon nanotube is conical, and on the surface of the semiconductor 
nanotube (based on gallium arsenide and its derivatives) it’s parabolic. There is increased interest in the 
semiconductor nanotubes due to the fact that they are widely used in Nano electronic devices. Modern state of the 
art physical experiment allows producing them in the laboratory. 
 
Theoretical physicists are interested in improving the methods for the development of systems with planar geometry 
with two-dimensional electron gas on the surface of a cylinder. Presence in theory is a new parameter (the curvature 
structure) – this parameter increases the number of ways to control the properties of the system. A modern method 
of production of semiconductor nanotube allows you to create not only a nanotube, but a nanotube with super-
lattice. There are radial Ref. [1, 4, 5, 6] and longitudinal, Ref. [7, 8] super-lattices with cylindrical symmetry. Radial 
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superlattice is a set of coaxial cylinders, and is similar to the longitudinal stack of coaxial rings. The longitudinal 
superlattice is created by introducing fullerenes into the nanotube Ref. [7, 8].Usually it is included in the creation of 
fullerene nanotube, as a result, the energy spectrum of the longitudinal motion of electrons on the tube arises 
through narrow mini-bands, separated by energy gaps whose widths are defined by the modulating potential 
amplitude Ref. [9, 10]. The study of collective excitations in such systems has been a major task of Nano physicists. 
 
In theory, the Plasmon on the tube usually uses hydrodynamic method Ref. [1] and the random phase approximation 
Ref. [2, 3]. But the hydrodynamic approach considers the Poisson equation for the plasma wave potential, the 
equation of continuity and the material equation relating the current density and electric field. Using these equations 
and the simplest expression for the conductivity, the authors of [1, 11] obtained the dispersion equation for the 
spectrum of surface plasma on the surface of the tube. The authors of [1] obtained a spectrum of intra-band and 
inter-band Plasmon on the tube without the superlattice. In the presence of the super-lattice, it’s necessary to 
consider the inter-band current associated with the quantum electron transitions between mini-bands in the field of 
an electromagnetic wave. Considering this current, one can see that in the spectrum of Plasmon there exists either 
one branch of the spectrum, or two branches. In the latter case, one branch describes optical Plasmon due to anti-
phase oscillations of the electron density in the mini-bands involved in the transitions. The second branch of the 
acoustic is due to in-phase oscillations of the electrons in the mini-bands. The corresponding branch of the spectrum 
lie outside the electron–hole continuum, therefore the plasma waves experiences Landau damping. 
 

MATERIALS AND METHODS 
 

• The energy spectrum of electrons on the surface of the semiconductor nanotubes (quantum cylinder). 

 
Fig.1. Electronic gas in the surface of a cylinder with radius � and length � 

  
The band-structure effects take into account the introduction of the electron effective mass�∗. The symmetry of the 
system allows you to find the conserved quantities: the projection of the angular momentum of the electron on the 
cylinder axis z, projection of the momentum ℏ�(−∞ < � < +∞) on this axis. The energy of the circular motion of 

the electron [12] 

�
�� (� = �� = �ℏ, � = �∗��)- moment of inertia of the electron) is equal to  

ℇ� = ℏ²�²
2�∗�²

= ℇ��² 
Where  

ℇ� = ℏ²

�
∗�²
      -Rotational quantum. 

For gallium arsenide with  �∗~10 �!" at �~10 #a rough estimate yields 
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 $�~ %�&'(
%�&�)%�&*( +,"~10

 %�+,".  

 

That corresponds to the temperature  
%�&-
%�&*(. � 100.. 

 
Energy of the longitudinal motion of the electron 

$/ � ђ�/�
�
∗

. 

 
Then the energy of an electron in a state |lk〉 is 

$�/ � $��� � ђ�/�
�
∗

. 

 
Levels of circular motion are doubly degenerate (at �	 6 	0) in the direction of the moment. Zero level (�	 � 	0) is not 
degenerate.  

 
Fig.2. shows a parabola �78 for several �. 

 
The presence of the magnetic field along the axis of the induction tubes leads to an additional rotation of the electron 
tube in a clockwise direction or counter clockwise depending on the direction. As a result, the energy of the circular 
motion becomes equal to �� � ���� � 9�² [12], where 9 � : :�;  and : � <�²=-magnetic flux induction through 

the cross section of the tube, :� � 2<>� ∣ + ∣; -quantum flux. This follows from the Schrödinger equation in 

cylindrical coordinates. 
 
1
2�∗

@�AђB � +> C
DE ²F � $F, 

 

In the field �=GD� the energy of electron is equal to $�/ � $��� � 9�� � ђ�/�
�
∗

   and the stationary state of the electron 

can be written as 
 

HIJ|��K � LMNO
√�Q

%
√R +

S/�. 

 

Magnetic field shifts the ground level (� = 0) and splits the doubly degenerate levels (see Fig. 3). If 0 
 9 
 %
�,  then 

�� alternate as: 0 
 9 
 %
�, 
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Fig 3.Energy levels spectrum  

 

If
%
� 
 9 
 1 , then the sequence of levels ℇ�alternates also as: $ % < $�9² < $ � < $% <.  .  .We estimate the field =, 

at which: 

Ф = Ф�:		=
 = �QVђ
LQ�²

~ %�*W×%�&�Y
%�&*W%�&*� Z�[\\~10]Z�[\\. 

 
Reducing � 10 times increases=
100 times.9«1in attainable fields.Fig. 3 shows the spectrum of electron energy at  9	 < 1/2, 

 
Fig.4. The energy level scheme in a longitudinal magnetic field 

 
The Influence of longitudinal Super-lattice leads to the appearance of a periodic potential along the tube axis. 
Accounting for it in the strong coupling approximation gives the energy spectrum of electrons on the surface of the 
tube as:  
 $�/ = $�(� + 9)� + ∆(1 − >`\�a),         (1) 

 
Where ∆-amplitude of super-lattice and a - period of super-lattice (Fig.1.). If we execute	�a«1, we have 
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$/ � ђ�/�
�
∗ , 

 

where �∗ = ђ²

∆b²
 . 

 
We assume that the transverse (in ℇ/) and longitudinal (in ℇ�) effective masses are the same. Now the electron 
momentum ђ� becomes quasi-momentum and is limited to the first Brillouin zone: −<	/	a ≤ � ≤ 	+	<	/	a. In the 
energy spectrum of electrons there appears mini-band of width	2d. The level scheme is shown in Fig. 5, at 9	 < 1/2. 
 

 
FIG.5.Energy spectrum of electrons with mini-band of width	ef 

 ℇ�/dependence is shown in Fig. 6 in the first Brillouin zone [−<	/	a, <	/	a]. In case (a) there is no overlap of the 
mini-bands, and in case (b) they overlap. 

(a) (b)  
 

Fig 6. (a) No Overlap of the mini-bands (b) overlap of mini-band 
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Electron density of states has root singularities at the boundaries of the mini-band (see. Fig. 7 no-overlapping). The 
width of each of the mini-band is 2d. 
 

 
FIG 7 i(ℇ)	ij	ℇ graph (no overlap) 

 
 RESULT AND DISCUSSION 

 
This work is devoted to the study of the plasma spectrum on the surface of the semiconductor nanotube with a 
longitudinal super-lattice. The plasma on the tube is studied using hydrodynamic and random phase approximation 
methods. Hydrodynamic method was used for the first time in Ref. [1]. They used the Poisson equation for the 
scalar potential waveΦ 
 ∆:(l, I, J, m) = −4<+opqr(l − �)         (2) 
 
wherel, I, J −cylindrical coordinate. Continuity equation has the form: 
 

+ stpusv + aAw	xDq = 0           (3) 

 
Since 
 
yGD = −∇Ф, 
 

then the current density on the tube in the case of an isotropic quadratic dispersion law of electrons ℇ = {² 2�∗;  

gives the material (constitutive) equation as 
 xDq = −|∇:∣}~� 

 
Where the Drude-Lorentz expression for conductivity | was used,  excluding the electron collisions: 
  

| = A L²tuW

∗�                         (4) 

 
where oq�– equilibrium electron density. Taking into account the oscillations of the electron density we obtain 
oq = oq� + opq. Here we use + = −∣ + ∣, oq − surface electron density 

sj
r

 – surface current density, �and � – the 

wave number and frequency of the wave. Linearization of the system of equations (2), (3) for small oscillations  
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( 0
s sn n<<% ) 

 ~+S(
���� �v).                                                           (5) 
 

The dispersion equation for density of oscillation of electron gas on a nanotube [1] with momentum projection � and 
angular momentum �in the absence of magnetic field (at=GD = 0) has the form: 
 

� = ��| @
��� + ��E 4<��
(��).
(��)           (6) 

 
Here  ℏ�	and ℏ� – angular momentum and momentum of Plasmon, �
 and .
 – modified Bessel functions. 
The solution of equation (6) (at =GD = 0) has the form: 
 

�
² (�) = �QL²�tu

∗ @
��� + ��E �
(��).
(��)                                            (7) 

 
At � = 0		the solution for the dispersion equation for the electron density oscillation in axial symmetry represent 
the spectrum of intra-band Plasmon i.e. the wave amplitude propagated along the tube does not depend on the polar 
angle. There exist also the solution of the dispersion equation at � = ±1,±2,… corresponds to interband plasma. 
However at � ≠ 0, there exists a quantum transition of electrons in the wave field between minibands. Substituting 
the Drude-lorentz expression for conductivity (4) into equation (6), we obtain the known spectrum for inter-band 
and intra-band Plasmon 
 

�
�² = �QL²�t

∗ @
��� + ��E �
(��).
(��).        (8) 

 
We used Kubo method to calculate the inter-band current and obtained the transverse conductivity  

��|�(�,�) = L��u

∗� + L²ℏ/W
²��

�Q²
∗²�³���² ��² �        (9) 

 
and longitudinal conductivity 

I�|ǁ = L²tu

∗� + �L²ђ/W³��

�Q²
∗²��(�� ��� ),               (10) 

 

where�
 = 1 ђ; $��²– the frequency of direct transitions of electrons between mini-bands0 m→ , � =
±1,±2, … .. 
 
In formulas (9) and (10) at temperature � = 0 only the lower mini-band with number 0l = is filled. We have not 

taken into account the spatial dispersion (�w� ≪ �) conductivity. In Fig. 8 the transitions with  � ≠ 0	is shown, 
when there is no overlap of mini-band. Here � − the Fermi energy,  
 

ℏ�� = ℏ a; �,>>`\ ∆ − � ∆;  –the maximum momentum of the electrons in the mini-band when 0, 1sl n adπ= <
. There exists a connectionsn with 0k : 

 

0
2s

k
n

aπ
= , 0l = . 

 
We have included formula (9) and (10) into the dispersion equation (6) and obtained the following result. It turned 
out that the solution depends on the dispersion equation parameter: 
 

�
 = 3�²

4<⁴�⁴oq², 
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This characterizes the oscillator strength for resonance transitions 0 m→  of electrons between the mini-bands. 
 

 
Fig.8. Inter-band energy spectrum transition when � 6 � 

 
Normal, Optical and Acoustic dispersion spectrum 

If �
 
 1, there is one root dispersion equation above mω  

��
(�) = %
� ��²� + �²
 + �(�²� + �²
)²+ �

��²��²
 �²�²


²

% �
%��²�² 
²; �.              (11) 

 

Here 2
0ω  equals equation (8), 2

0
1

m mω ε=
h

- The frequency of the single-particle electron transitions electron

0 m→ . Fig. 9 shows the frequency of the wave (11) 1
1

10

q
q

ωω′ = Ω  (solid line) and wave (8) 

1
1

10

q
q

Ω′Ω = Ω   (dashed curve) as a function of � = �� for � = 1and 1 0.75α = . Here  

1
2 2

10
2 e n

m a
π

∗

 Ω =  
 

 – limiting frequency for the wave with the spectrum (8). Parameter values

( )280.64 10 GaAs ,m g−
∗ = ⋅ 710 cm,a −= 0 1k a =  are used. Under the condition 1 1α <  the Fermi level 

lies in the upper half of the mini-band.   
 
If �
 > 1	we get two branches connected with each 0 → � transition: 
 

��±(�, �) = %
� ��²� + �²
 ± �(�²� +�²
)²− �

��²��²
 �²�²


²

� %
%��²�² 
²; �.       (12) 

 

Fig. 10 shows the dependence of the wave frequencies (12) ( ) ( )
10

1,
1,

q
q

ωω ±
±′ = Ω  (solid and dashed-dotted 

curves) and wave (8) 1
1

10

q
q

Ω′Ω = Ω  (dashed curve) as a function of x qa=  under 1m= and 1 3α = . The 
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above mentioned values of m∗ , a  and 0 0.5k a =  were used. In this case the Fermi level lies in the lower half of 

the mini-band.The branches (11) and ω+ (12) are positioned abovemω , and the branches ω− (12) are below mω . 

 
Fig.9 the dispersion curves of waves with spectrum (11) (solid line) and with spectrum (8) (dashed line) under � � ¢, £¢ < ¢ 

 

 
Fig.10.  the dispersion curves of waves with the spectrum (12) (solid and dashed-dotted curves) and with spectrum of (8) (dashed lines) 

under � = ¢,£¢ > ¢ 
 

In the limit of long waves(�� ≪ 1, and at 1mα < )from Equation (11), we obtain 
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( )
( )

( )( ) ( )
2 2 2

22 22 2 10 1 10
1 10 1 02 2 22 21 10 1 10

1 4
1 ln 1

2 3q qa qa k a qa
ωω ω α

ω ω

Ω Ω = + + −  + Ω + Ω
,   (13)     

�²
� � �²
�⦋1 + ¥��W
����¥��W


� �
�
����&*� (��)� + �

�
⁴
�²�¥²�W

(�²��¥²�W)(% ��)(/W�)²(��)²⦌.       (14) 

 
 
the critical frequencies of waves with spectra (13) and (14) are 

2
02 2 2 2 4

0 0 0 2

2
m m m

e k m
m

m a
ω ω ε

π ∗
= + Ω = + ,               (15) 

 

where
2

2 se n
m

m a

π
∗

 - frequency depolarization shift. As oq depends on�§ then this shift can be judged on the 

parameters of the superlattice∆  (period) and d (modulating frequency). 
 

At 1mα > , the expressions (13) and (14) are true for the upper branchω+ . The bottom branch ω−  has the sound 

spectrum ( ), mm q c qω− = , where  

( ) ( )
2 22

22 0
04 2

0

4
1

3
m m

m m
m

a
c k a

m

ω α
ω

Ω
= − .          (16) 

 

Optical ω+  and acoustic ω−  branches are connected with in-phase and anti-phase density oscillations of electrons 

which participate in longitudinal and transversal motion on the tube. 
 

CONCLUSION 
 

This work is devoted to the study of Plasmon spectrum on the surface of semiconductor nanotube with a 
longitudinal superlattice. Plasmon on the tube was studied by the hydrodynamic approximation method. In studying 
the propagation of electromagnetic waves on the surface of a semiconductor nanotube the understanding of the 
electron gas conductivity tensor components is worthwhile, noting that the field nature in the tube and characteristics 
wave properties are responsive to the surface current. This work showed that with an understanding of the 
conductivity tensor the data of an electron gas can be obtained. The study showed that the Plasmon waves 
experiences Landau damping. 
 
The main results of this work are following: 
1. Obtained Kubo formula for the conductivity tensor of the electron gas on the surface of the nanotube. 
2. Obtained dispersion equation for the spectra of plasma waves on the surface of nanotubes using hydrodynamic 
approach. 
3. Calculated spectra of Plasmon on the surface of the semiconductor nanotubes with longitudinal superlattice. 
4. Show that both optical and acoustical Plasmon could propagate along the tube with one sort of carriers. 

5. Optical ω+  and acoustic ω−  branches are connected with in-phase and anti-phase density oscillations of 

electrons which participate in longitudinal and transversal motion on the tube. 
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