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Abstract

MicroRNAs (miRNAs) are important players in the
modulation of cellular functions and contribute
substantially to epigenetic changes in the expression of
genes. Moreover, the distribution of miRNAs via
exosomes and ectosomes opens a vast field of
intraorganismal communication, with the potential of
spreading pathological deviations, but also curative
effects induced by protective agents. Interactions
between melatonin and microRNAs are of particular
interest, as melatonin is a highly pleiotropic regulator of
numerous functions in every organ. The effects of
melatonin in correcting pathological alterations in miRNA
composition are reviewed, along with the corresponding
reversal of cell biological or physiological functions to
normal. Additionally, knowledge on the influence of
miRNAs on melatonin formation and expression of a
melatonin receptor has been considered. The fields in
which melatonin has been shown to influence miRNAs are
as diverse as metabolic syndrome, liver steatosis,
immunology, amyloid toxicity, progenitor cells, and cancer.
Readers are encouraged to contribute to systematic
studies on melatonin effects on miRNAs using modern
RNA sequencing techniques.
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Introduction
Epigenetic regulation receives increasing attention in cell

biology and medicine. In melatonin research, this is an
emerging field [1-3]. Among the multiple epigenetic changes,
the contribution of microRNAs (miRNAs) as regulators of
countless functions is of particular interest [4-9]. The number
of mammalian miRNAs is in the range about one thousand, but
their modulatory actions extend to the expression of, at least,
half of the coding genes, because single miRNAs can
sometimes interact with hundreds of mRNAs or their
precursors, hnRNAs, or even with the respective antisense
transcripts (asRNAs, which belong to the group of long
noncoding RNAs, lncRNAs) [4-8]. Target mRNAs, asRNAs or
hnRNAs are typically derived from genes that are dynamically

regulated or others that are particularly important for the
functional state of a cell. The typical and most frequently
observed action concerns the silencing by Argonaute (AGO)-
mediated duplex formation with the target, assembly of a
silencing complex (RISC complex) followed by duplex cleavage.
However, if an asRNA is the target, this may instead result in
the elimination of a blockade. In addition to interactions with
other RNAs, some miRNAs have been shown to also target
specific toll-like receptors (TLRs) [9-11]. However, this is only
possible with TLRs that are capable of binding single-stranded
RNAs (ssRNAs) but not double-stranded RNAs (dsRNAs).
Binding to TLR7 was first shown for the miRNAs Let-7c and
miR-21 [10].

Discussion
MicroRNAs are also of utmost interest with regard to their

modes of distribution from one cell to others. They may enter
neighboring cells via gap junctions, but they can be also
transmitted by exosomes and ectosomes. These are found in
all body fluids and interact specifically with target cells [9,12].
Thereby, they are capable of transporting messages over a
long distance in the body. As a consequence, the regulatory
network in a body is considerably larger and more complex
than previously believed.

The actions of miRNAs are not only of physiological
relevance, but have an additional pathological dimension and
contribute to dysregulation. Numerous diseases including
cancer and even mood disorders display changes in
composition and amounts of microRNAs. Transmission of
dysregulated miRNAs by exosomes or ectosomes to recipient
cells is actually discussed as part of disease spreading within
the body [9]. In exosomes and ectosomes, miRNAs are
typically enriched. One of the reasons is that these vesicles
also contain larger RNAs, especially lncRNAs and circular RNAs
(circRNAs) that act as miRNA “sponges” by binding a high
amount of miRNA molecules [9,13,14].

Regulatory interactions of melatonin with miRNAs are of
particular interest as the former acts as a highly pleiotropic
regulator molecule that orchestrates countless body functions,
both directly and indirectly via central and peripheral circadian
oscillators [15,16]. Circadian oscillators and even melatonin
synthesis are also subject to modulation by miRNAs [2,17-19].
Moreover, melatonin does not only act as a pineal hormone,
but is synthesized in many extrapineal organs and in immune
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cells [15,20]. The total amount of extrapineally formed
melatonin exceeds those in the pineal gland and in the
circulation by more than two orders of magnitude [15,21].

Melatonergic signaling can be affected by miRNAs, but the
available information is still limited. The melatonin receptor
MT1 was downregulated in the context of type 2 diabetes by
miR-29b, an effect that counteracted melatonin’s beneficial
role concerning obesity and metabolic syndrome [22]. Much
more data are available for protective effects of melatonin that
involve changes in miRNA expression. In a murine model of
alcoholic liver disease, protection by melatonin enhanced
miR-497 expression, which caused downregulation of the
targets Btg2 (B-cell translocation gene 2) and Yy1 (Yin yang 1)
[23]. Liver steatosis was reported to be ameliorated by
melatonin via miR-23a [24]. In murine model of liver fibrosis,
melatonin reduced primary sclerosing cholangitis by
downregulating miR-200b in cholangiocytes and stellate cells
[25]. Studies on miRNAs in Alzheimer’s disease (AD) are of
particular interest, because neuroinflammation, which is
fueled by Aβ peptides and oligomers, can be partially reversed
by melatonin [26]. In a rat scopolamine toxicity model of AD-
like memory losses, melatonin reversed an increase of miR-124
and thereby corrected the level of the targeted Egr1 (early
growth response protein 1) mRNA [27]. In another AD model,
Aβ25-35 peptide added to primary cortical neurons caused
downregulation miR-132, an effect that was also reversed by
melatonin. The normalization of miR-132 is insofar of
importance, as this miRNA transmits anti-apoptotic and other
protective properties known from melatonin [28]. In neonatal
brain inflammation induced in rats by bacterial
lipopolysaccharide (LPS), this pro-inflammatory agent
upregulated miR-34a, but downregulated miR-146a, and
miR-126. Again, these changes were corrected by melatonin,
along with reduction in ER stress and autophagy as well as
reversal of sirtuin 1 downregulation [29]. With some
likelihood, other data on inflammation may have resulted from
transfer of miRNAs. In a study on the immune responsiveness,
in vitro differentiated macrophages were exposed to exosomes
from hepatocellular carcinoma cells [30]. The cancer cells had
either remained untreated or were incubated with melatonin,
which obviously changed the composition of the exosomal
contents. Exosomes from melatonin-treated cells
downregulated in the recipient macrophages the secretion of
IL-6, IL-10, IL-1β, and TNF-α, whereas those from untreated
cells upregulated these cytokines [30]. Unfortunately, the
responsible miRNAs were not determined.

In the last years, actions of melatonin in progenitor cells
have become of increasing interest and some of the respective
studies have investigated the role of miRNAs in these effects.
The protective, anti-oxidative role of melatonin was recently
addressed in cardiac progenitor cells. Premature senescence of
these cells was induced by hydrogen peroxide. This was
prevented by melatonin, which safeguarded the expression of
the lncRNA H19 and its derivative miR-675 [31]. In hair follicle
cells of Cashmere goats, melatonin changed the relative
expression of several miRNAs, in particular, let-7a, miR-96,
miR-199a, miR-205, miR-203, miR-96, miR-199a, miR-96,
miR-183, miR-183, and miR-199a [32]. In the murine

spermatogonia cell line GC-1spg, melatonin-induced
proliferation was suppressed by miR-16, which targets cyclin
D1 mRNA [33]. In the same cell line, effects of melatonin on
miRNAs were recently studied on the basis of deep sequencing
[34]. The consequences were, in fact, profound, as 171
miRNAs were upregulated by melatonin, whereas 5 others
were downregulated.

Melatonin is also known to exert oncostatic actions [35-37].
In this context, melatonin was reported to downregulate
miR-155 in several human glioma cell lines, an effect that
reduced c-myb (myeloblastosis protooncogene) expression,
proliferation and migration [38]. In hypoxic PC-3 prostate
cancer cells, melatonin was shown to inhibit angiogenesis, an
effect of importance to cancer growth that was concluded to
be mediated by miR-3195 and miR-374b [39]. A more detailed
study in MCF-7 breast cancer cells revealed alterations in the
expression of 22 miRNAs by either 1 nM or 100 nM melatonin
[40]. Twelve miRNAs were significantly upregulated and ten
others downregulated. According to the analysis of their 5‘-utr
sequences, the 22 miRNAs should be capable of targeting the
remarkable number of 2029 mRNAs [40].

Conclusion
The study of interaction between melatonin and miRNAs is

still in its infancy. To date, the available knowledge does not
yet describe a coherent picture, since respective investigations
are scattered over the various topics of melatonin research.
Nevertheless, the findings already obtained are highly
encouraging for continuing research more systematically in
this direction. Moreover, it is important to remain aware of the
remarkable, previously unforeseen potential of miRNA
distribution via exosomes and ectosomes. While these
processes may participate in the intraorganismal spreading of
pathologies, one might, on the other hand, assume that
variations in composition of exosomal and ectosomal miRNAs,
if modulated by melatonin, will also spread beneficial or even
curative messages within the body.
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