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Introduction
Experimental evidence suggests that higher ω-3 relative to ω-6 
could reduce mammary carcinogenesis through mechanisms 
related to inflammation, oxidative stress, and estrogen 
metabolism [1]. A recently published meta-analysis of population-
based prospective cohort studies reported an approximately 
null association for dietary intake of polyunsaturated fatty acids 
(PUFAs) among studies that were conducted using populations 
from the United States (U.S.) [2]. This is inconsistent with findings 
from studies conducted in Asia [3] that show risk reductions for 
ω-3 intake. PUFAs may affect carcinogenesis via multiple biologic 
pathways [1]. Thus, we hypothesized that interactions with 
biologically relevant genetic polymorphisms with breast cancer 
may help to clarify the biologically plausible association with 
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Abstract
Higher intake of ω-3 relative to ω-6 polyunsaturated fatty acids (PUFAs) may 
reduce breast carcinogenesis via different metabolic pathways. The PUFA-breast 
cancer association remains inconclusive, thus, we hypothesized that interactions 
between the ratio of dietary ω-3:ω-6 intake and polymorphisms from PUFA-related 
metabolic pathways would help elucidate an association. Utilizing resources from 
the Long Island Breast Cancer Study Project, a population-based case-control 
study (n=1035 cases/1075 controls), we examined interactions between ω-3:ω-6 
ratio and 18 polymorphisms of 15 genes. Compared to the putative lowest risk 
group (high ω-3:ω-6, low-risk FASL rs763110 CT/TT genotype), the odds ratio 
(OR) for breast cancer from unconditional logistic regression models was weakly 
increased for other exposure-genotype combinations (high ω-3:ω-6, high-risk 
FASL CC genotype, OR=1.18, 95% confidence interval (CI)=0.90, 1.53; low ω-3:ω-6, 
CT/TT genotype, OR=1.35, 95% CI=1.09, 1.66); but was approximately null for the 
putative highest risk group (low ω-3:ω-6, CC genotype; OR=1.06, 95% CI=0.81, 
1.38). We observed an interaction between the ω-3:ω-6 ratio and FASL rs763110 
on the additive scale [Relative Excess Risk Due to Interaction (RERI)=-0.47, 95% CI=-
0.92, -0.02]. Interactions with other polymorphisms considered were not evident. 
Our findings suggest that the PUFA-breast cancer association may be modified by 
FASL. However, additional research is needed given this interaction may be due to 
chance and is inconsistent with our a priori biologic hypothesis.

Keywords: Breast cancer; Epidemiology; Fat/omega-3; Omega-6/fish oil; Single 
nucleotide polymorphisms
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PUFAs. We further hypothesized that consideration of the ratio 
of ω-3 to ω-6 intake (ω-3:ω-6) may enhance our examination of 
interactions with breast cancer, given the two PUFA subgroups 
compete for the same metabolic enzymes [1]. Potential effect 
measure modification by genetic polymorphisms involved in 
PUFA metabolism has been previously considered by two studies 
[4,5] which examined only ω-3, but not intake relative to ω-6. 
Further, each study considered either glutathione S-transferase 
(GST) [4] or lipoxygenase enzymes [5], but not other genes 
involved in other biologically plausible pathways.

Materials and Methods
To address our hypothesis that the interaction between PUFA 
intake and breast cancer incidence would be evident when we 
considered the interaction between the ratio of ω-3:ω-6 intake 
and multiple genetic polymorphisms in the inflammation, 
oxidative stress, and estrogen metabolism pathways, we used 
case-control resources from the Long Island Breast Cancer Study 
Project (LIBCSP), a population-based study. Details of the parent 
study methods have been published [6]. 

Study population
Cases were women diagnosed with first primary in situ or invasive 
breast cancer between August 1, 1996 and July 31, 1997, who were 
residents of Nassau and Suffolk counties on Long Island, NY. Cases 
were identified by contacting hospital pathology departments 
daily or 2-3 times per week. Controls were identified from these 
same two counties using random digit dialing (women <65 years), 
and Health Care Finance Administration rosters (women ≥ 65 
years). Controls were frequency-matched to the expected age 
distribution of the cases by 5-year age group. The LIBCSP includes 
1508 case and 1556 control participants, ranging in age from 20 
to 98 years. Approximately 67% were postmenopausal, and 93% 
self-reported as white, which is consistent with the underlying 
distribution of Nassau and Suffolk counties at the time of data 
collection.

Dietary and covariate assessment
LIBCSP participants completed an interviewer-administered 
risk factor questionnaire within approximately three months 
of diagnosis (cases), and within six months of identification 
(controls). Nearly all cases (98%) and controls (98%) completed 
a self-administered 101-item modified Block food frequency 
questionnaire (FFQ) to assess dietary intake in the year prior to 
the interview. PUFA intake was estimated by linking FFQ responses 
with nutrient values available from the U.S. Department of 
Agriculture databases for total ω-3 and total ω-6 PUFAs [7]. Alpha-
linolenic acid, docosapentaenoic acid, eicosapentaenoic acid, 
and docosahexanoic acid were included in the estimate for total 
ω-3 intake; whereas, linoleic acid and arachidonic acid subtypes 
comprised the estimate for total ω-6 intake. Excluding individuals 
with extreme total energy intake (>3 standard deviations from 
the mean) yielded 1463 cases and 1500 controls. Given ω-3 and 
ω-6 compete for the same enzymes [1], we primarily considered 
the ratio of ω-3:ω-6 intake [which ranged from 0.10-0.17 (25-75th 
percentiles, respectively) among controls [3]. However, because 
this ratio may not accurately represent absolute intakes for each 

PUFA individually, we also considered separately total ω-3 and 
ω-6 (with corresponding ranges from 0.49-1.30 and 3.68-10.10 
grams/day, respectively [3]).

Genotyping
Blood samples were collected from cases (74%) and controls 
(74%) at the time of the case-control interview and were used as 
the DNA source for genotyping [8-14]. Briefly, DNA was isolated 
from mononuclear cells in whole blood, which was separated by 
Ficoll (Sigma Chemical Co., St. Louis, MO) using standard phenol 
and chloroform-isoamyl alcohol extraction and RNase treatment 
[10]. Genotyping for inflammation genes [PTGS-2 (rs201417, 
rs5275), FAS (rs2234767, rs1800682), FASL rs763110, PPAR-α 
rs1800206, TNF-α rs1800629] used the following assays: Taqman 
5’-Nuclease Assay (Applied Biosystems, Foster City, CA) and 
AcycloPrimeTM-FP SNP Detection Kit obtained from Perkin Elmer 
Life Sciences (Boston, MA) [9,11,12]. The same assay was used for 
aromatase gene [CYP17 rs743572 with a 10 µM probe [8,14]]. For 
oxidative stress genes (CAT rs1001179, MPO rs2333227, MnSOD 
rs4880, GPX1 rs1050450, GSTA1 rs3957356, GSTP1 rs1695, 
COMT (rs4680, rs737865)], BioServe Biotechnologies (Laurel, 
MD) performed the genotyping using high-throughput, matrix 
assisted, laser desorption/ionization time-of-flight (MALDI-TOF) 
mass spectrometry of Sequenom, Inc. (San Diego, CA). Gene 
deletions for GSTM1 and GSTT1 were determined by a multiplex 
polymerase chain reaction method, with the constitutively 
present gene β-globulin as an internal positive control [13].

Eighteen polymorphisms in 15 genes were selected 
spanning three biologically plausible pathways for PUFA 
metabolism, including inflammation, oxidative stress, and 
estrogen metabolism pathways. Variants affecting polyphen 
prediction (GPX1), transcription factor binding prediction 
(PTGS-2 rs20417, FAS, FASL, TNF-α, MPO, CAT, GSTA1, COMT 
rs737865, CYP17), miRNA binding (PTGS-2 rs5275, GPX1), 3D 
conformation (PPAR-α, COMT rs4680), or splicing regulation 
(PPAR-α, FAS rs2234767, GPX1, GSTP1, COMT rs4680) were 
considered as putatively functional variants as defined in the 
NIEHS SNPInfo WebServer [15].

Data were missing for some genetic polymorphisms, primarily 
due to laboratory failures. The final analytic sample size included 
a maximum of 1035 cases and 1075 controls, but varied by 
genetic variant (Supplemental Table S1).

Tests for Hardy-Weinberg equilibrium (HWE) were conducted 
among controls. Only PTGS-2 rs20417 and MPO deviated 
significantly from HWE (p=0.003 and 0.04, respectively). However, 
the observer agreement for PTGS-2 and MPO in 8% of a randomly 
selected sample was high (κ=0.99 and 0.91, respectively), and 
the failure rate was low for both polymorphisms (<1%). Also, the 
allele frequencies for both polymorphisms were similar to other 
studies [16].

Statistical analysis
Unconditional logistic regression was used to estimate interactions 
on the additive (using single-referent) and multiplicative (using a 
multiplicative interaction term) scales. To maximize cell sample 
size, PUFA intake measures were dichotomized at the median 
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value (ratio of ω-3:ω-6=0.14, ω-3=0.83, and ω-6=6.31), and 
genotypes were dichotomized according to a dominant model 
and categorized into “high” and “low” risk groups based upon 
the putative function of the variant allele, which was determined 
using the existing literature (Supplemental Table S1). Additive 
interactions were evaluated using the Relative Excess Risk 
Due to Interaction (RERI) and the corresponding 95% CI [17]. 
Multiplicative interactions were evaluated using the likelihood 
ratio test (LRT, α=0.05). From among known risk factors for breast 
cancer, we identified no potential confounders, using a change-
in-estimate criterion of 10%. Thus, all interaction models were 
adjusted for the frequency matching factor five-year age group 
and total energy intake (kcal/day). We considered multiple 
comparisons using the false discovery rate (FDR, q=0.05) [18]. 
Analyses were conducted using SAS, version 9.2 (Cary, NC).

Results
When we explored interactions between the ratio of ω-3:ω-6 
intake and genetic polymorphisms in the inflammatory, oxidative 
stress, and estrogen metabolism pathways, we found little 
evidence to support an additive (Table 1) or multiplicative 
(Supplemental Table S2) interaction for the majority of 
polymorphisms considered. However, an interaction was 
observed on the additive (RERI=-0.47, 95% CI=-0.92, -0.02) 
and multiplicative scales (LRT χ2=4.63, p value=0.03) for FASL 
rs763110. Specifically, we observed reduced OR for breast cancer 
among those with a low ratio of ω-3:ω-6 intake with the high risk 
FASL genotype on the multiplicative scale (OR=0.79, 95% CI=0.61, 
1.02). The estimate was null on the additive scale (OR=1.06, 95% 
CI=0.81, 1.38), which was nearly 50% less than what would have 
been observed under an additive model [(expected ORs=1.52 
(additive), and 1.58 (multiplicative)] as indicated by the statistically 
significant RERI. For the majority of other interactions examined, 
breast cancer risk remained high for low ratio of ω-3:ω-6 intake 
regardless of genotype, with the exception of the FASL rs763110 
and COMT rs4680. When we considered PUFA types separately, 
no additive interaction was observed between total ω-3 intake 
and FASL (RERI=0.02; 95% CI=-0.33, 0.68); but for total ω-6 intake 
the interaction (RERI=-0.17, 95% CI=-0.59, 0.24) was in a similar 
direction to what was observed for the ω-3:ω-6 ratio. However, 
after considering multiple comparisons, we could not rule out 
chance as an explanation for our findings.

Discussion
In our study we examined the interaction between PUFA intake 
and genetic polymorphisms from three biologically plausible 
pathways with breast cancer, and observed multiplicative and 
additive interaction between FASL rs763110 and the ratio of 
ω-3:ω-6 intake among a population-based sample of women 
from Long Island, NY. However, we could not rule out chance after 
adjusting for multiple comparisons. No other notable interactions 
were observed for polymorphisms from the inflammatory, 
oxidative stress, and estrogen metabolism pathways with breast 
cancer incidence.

For the interaction observed with FASL rs763110 high-risk 
genotype, we found a reduced OR for those women with a 

low ratio of ω-3:ω-6 PUFAs, which was contrary to our a priori 
biologic hypothesis. Amplification of FASL has been reported 
among breast cancer cases [19], and the arachidonic acid-
derived eicosanoid, prostaglandin E2 (PGE2), has been reported 
to increase FASL production [20]. Thus, a priori we hypothesized 
that the allele suggested to increase basal expression of FASL (i.e., 
C allele) along with low ratio of ω-3:ω-6 intake would increase 
breast cancer risk. A meta-analysis examining FASL rs763110 also 
reported increased risk for breast cancer for the same high risk 
allele [21] (although the authors did not consider interactions 
with PUFA intake). It is possible that the effect of FASL expression 
may be more important when considered as part of the FAS-
FASL ligand-receptor system (part of the tumor necrosis factor 
superfamily) which can lead to apoptosis [22]. Thus, apoptosis 
resulting from FAS-FASL ligand-receptor system could potentially 
explain the reduced risk observed for the hypothesized highest 
risk subgroup in our study. Previously reported main effects for 
FASL and breast cancer incidence were nearly null in the LIBCSP 
[9]. Given these LIBCSP findings, the interaction between PUFAs 
and FASL requires further investigation.

Our study expands upon the limited findings from two previous 
breast cancer studies [4,5], which considered only ω-3 interactions 
with GSTs or lipoxygenases. Our approach has several advantages, 
including consideration of interactions between the ω-3:ω-6 ratio 
and genes involved in multiple biologically plausible pathways 
related to PUFA metabolism, which we evaluated on additive 
and multiplicative scales. We also utilized a population for whom 
dietary intake of total ω-3 PUFAs is likely to be higher compared 
to the other regions in the U.S.; women in New York City have 
been reported to consume more fish, a major dietary source 
of ω-3 PUFAs, compared to estimates from the National Health 
and Nutrition Examination Survey (NHANES) [23]. We did not 
observe an association between ω-3:ω-6 ratio and breast cancer 
incidence in a previous report [3]. However, it is still statistically 
and biologically possible that examining PUFA-gene interactions 
in multiple relevant biologic pathways, among a population with 
relatively high fish intake (a major ω-3 source) [3], could have 
revealed noteworthy effect modification.

There are several limitations to our study. First, our results are 
generalizable to only European-American women, for whom 
the incidence of breast cancer compared to other racial/ethnic 
groups remains high [24]. Importantly, it is possible that the 
frequency of the at-risk allele for relevant PUFA metabolism 
genes differ by racial subgroup [25], and thus it may be important 
to identify whether the PUFA-gene interactions and breast cancer 
risk vary among different populations. Furthermore, although we 
examined interactions with multiple polymorphisms spanning 
several biologic pathways, our selected genes are not exhaustive. 
For studies with larger sample sizes, it may be beneficial to 
examine additional genetic polymorphisms, such as genes 
involved in the in vivo metabolism of ω-3 and ω-6. Finally, after 
adjusting for multiple comparisons, we could not rule out chance 
for the interaction with FASL rs763110. However, we selected 
variants based on their putative function, thus, correcting for 
multiple comparisons may be overly conservative.

In this first study to consider the interaction between ω-3:ω-6 



2017
Journal of Cancer Epidemiology and Prevention Vol. 1 No. 1: 2

4 This article is available in: http://www.imedpub.com/cancer-epidemiology-and-prevention/

Variant Genotype
High ω-3/ω-6 (≥ medianc) Low ω-3/ω-6 (<median)

RERId 95% CIe

Ca/Co OR 95% CI Ca/Co OR 95% CI
PTGS-2 GC/CC 169/198 1.00 208/204 1.26 0.95, 1.67
rs20417 GG 311/333 1.09 0.84, 1.41 342/341 1.23 0.95, 1.59 -0.12 -0.54, 0.30
PTGS-2 TC/CC 264/310 1.00 306/309 1.23 0.98, 1.55
rs5275 TT 217/222 1.15 0.89, 1.47 246/232 1.30 1.02, 1.66 -0.08 -0.49, 0.33
PPAR-α GC/GG 51/48 1.00 50/44 1.12 0.63, 1.98

rs1800206 CC 354/416 0.77 0.51, 1.18 423/429 0.96 0.63, 1.46 0.06 -0.55, 0.68
FAS GA/AA 115/145 1.00 123/106 1.57 1.09, 2.24

rs2234767 GG 364/387 1.19 0.89, 1.58 428/438 1.29 0.97, 1.71 -0.46 -1.06, 0.14
FAS GG 114/144 1.00 160/157 1.39 0.99, 1.94

rs1800682 GA/AA 360/386 1.22 0.91, 1.62 390/384 1.39 1.04, 1.84 -0.22 -0.73, 0.28
FASL CT/TT 312/363 1.00 396/361 1.35 1.09, 1.66

rs763110 CC 170/169 1.18 0.90, 1.53 157/182 1.06 0.81, 1.38 -0.47 -0.92, -0.02
TNF-α GG 346/381 1.00 412/403 1.18 0.96, 1.44

rs1800629 GA/AA 127/145 0.96 0.73, 1.27 134/140 1.12 0.85, 1.48 -0.02 -0.43, 0.40
MnSOD CC 113/118 1.00 137/141 1.07 0.75, 1.51
rs4880 CT/TT 353/402 0.92 0.68, 1.23 403/396 1.12 0.83, 1.50 0.14 -0.26, 0.53
MPO GG 289/304 1.00 340/329 1.14 0.91, 1.43

rs2333227 GA/AA 183/221 0.87 0.68, 1.13 203/209 1.08 0.83, 1.39 0.06 -0.30, 0.41
CAT CT/TT 185/180 1.00 210/200 1.06 0.80, 1.41

rs1001179 CC 283/341 0.80 0.62, 1.04 331/338 1.00 0.77, 1.29 0.14 -0.20, 0.47
GPX1 CT/TT 263/297 1.00 287/255 1.34 1.05, 1.70

rs1050450 CC 208/226 1.05 0.82, 1.35 255/283 1.08 0.85, 1.37 -0.31 -0.73, 0.10
GSTM1 null 221/208 1.00 236/235 0.99 0.76, 1.29
deletion present 218/266 0.77 0.59, 1.00 271/261 1.02 0.79, 1.32 0.26 -0.06, 0.58
GSTP1 AG/GG 236/263 1.00 263/269 1.14 0.89, 1.46
rs1695 AA 229/248 1.03 0.80, 1.33 271/261 1.23 0.96, 1.57 0.05 -0.33, 0.43
GSTT1 null 99/102 1.00 104/112 1.02 0.69, 1.50

deletion present 345/379 0.94 0.68, 1.28 409/396 1.11 0.82, 1.52 0.16 -0.26, 0.57
GSTA1 GA/AA 329/343 1.00 350/347 1.10 0.89, 1.37

rs3957356 GG 143/181 0.83 0.63, 1.08 191/191 1.10 0.86, 1.42 0.17 -0.18, 0.53
COMT AG/AA 347/414 1.00 393/383 1.28 1.05, 1.57
rs4680 GG 130/112 1.37 1.02, 1.83 150/155 1.20 0.92, 1.56 -0.45 -0.97, 0.07
COMT CC 38/50 1.00 61/60 1.34 0.77, 2.34

rs737865 CT/TT 427/474 1.16 0.74, 1.81 476/478 1.35 0.87, 2.11 -0.15 -0.87, 0.58
CYP17 TT 168/204 1.00 177/171 1.34 1.00, 1.81

rs743572 TC/CC 295/310 1.16 0.89, 1.50 361/358 1.28 1.00, 1.65 -0.22 -0.68, 0.24

Table 1 Multivariablea-adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for the risk of breast cancer for the interaction between 
ω-3/ω-6 ratio and putatively functional genetic polymorphismsb evaluated on the additive scale in the LIBCSP, 1996-1997.

aAll models adjusted for matching factor, 5-year age group, and total energy intake (kcal/day).
bGenotypes dichotomized using dominant genetic model. The hypothesized lowest risk group (referent group) represents the low risk genotype for 
PUFA-gene interaction and high ω-3/ω-6 intake. The hypothesized highest risk group represents high risk genotype for PUFA-gene interaction and 
low ω-3/ω-6 intake. Determination of high risk genotypes was based upon previous literature for the function of the variant allele (Supplementary 
Table S1).
cMedian ω-3/ω-6 ratio in the LIBCSP=0.14. 
dRERI (Relative Excess Risk Due to Interaction)=OR11-OR10-OR01+OR00 (e.g., RERI for PTGS-2 rs20417=1.23-1.26-1.09+1.00=-0.12)
e95% CI for RERI estimated using Hosmer and Lemeshow [17] 
Note: LIBCSP=Long Island Breast Cancer Study Project; Ca=cases; Co=controls, RERI=Relative Excess Risk Due to Interaction

ratio and genetic polymorphisms from three biologically plausible 
pathways with breast cancer incidence, we noted an interaction 
on additive and multiplicative scales for FASL rs763110, but not 
for the other 17 polymorphisms considered. Additional research 

is needed to help clarify our findings, which were not consistent 
with our a priori hypothesis nor could we rule out chance once 
we adjusted for multiple comparisons.
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