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ABSTRACT 
 
The effect of heat transfer on the peristaltic transport of a Newtonian fluid with wall properties in a two dimensional 
flexible channel under long wave length approximation has been studied. A perturbation method of solution is 
obtained in terms of wall slope parameter and closed form of expressions has been derived for stream function, 
temperature and heat transfer coefficient. The effects of elastic parameters and pertinent parameters on temperature 
and the coefficient of heat transfer have been computed numerically. It is observed that temperature distribution 
increases with increase in elasticity parameters. 
  
Keywords: Peristaltic transport, Heat transfer, Newtonian fluid and Temperature. 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
The study of the mechanism of peristalsis, in both physiological and mechanical situations, has become the object 
scientific research. From fluid mechanical point of view peristaltic motion is defined as the flow of generated by a 
wave traveling along the walls of an elastic tube. In physiology it may be described as a progressive wave of area 
contraction or expansion along a length of a distensible tube containing fluid provided with transverse and muscular 
fibers. It consists in narrowing and transverse shortening of a portion of the tube which then relaxes while the lower 
portion becomes shortened and narrowed. The mechanism of peristalsis occur for urine transport from kidney to 
bladder through the ureter, movement of chime in the gastro-intestinal tract, the movement of spermatozoa in the 
ducts efferent’s of the mail reproductive tract, movement of ovum in the fallopian tube, vasomotion in small blood 
vessels, the food mixing and motility in the intestines, blood flow in cardiac chambers etc. Also bio-medical 
instruments such as heart-lung machine use peristalsis to pump blood while mechanical devices like roller pumps 
use this mechanism to pump and other corrosive fluids. 
 
The problem of the mechanism of peristalsis transport has attracted the attention of many investigators. Fung and 
Yih [1], Shapiro and Jaffrin et al. [2] have studied peristaltic pumping with long wavelength at low Reynolds 
number. Haroun [3], Ebaid [4], Mekheimer et.al. [5], Mishra & Rao [6] have studied peristalsis under different 
conditions. Mittra and Prasad [7] studied peristaltic transport in a two-dimensional channel considering the elasticity 
of the walls under the approximation of small amplitude ratio with dynamic boundary conditions. Muthu et.al.[8] 
have discussed On the Influence of wall Properties in the Peristaltic Motion of Micro polar Fluid. The interaction of 
peristalsis and heat transfer has become highly relevant and significant in several industrial processes also thermo 
dynamical aspects of blood become significant in process like haemodialysis and oxygenation when blood is drawn 
out of the body. Keeping these things in view, Victor and Shah [9] studied heat transfer to blood using the Casson 
model. Srinivas and Kothandapani [10] investigated the peristaltic transport of a Newtonian fluid with heat transfer 
in an asymmetric channel. Radhakrishnamacharya and Srinivasulu [11] investigated the influence of wall properties 
on peristaltic transport with heat transfer. Sankad et.al.[12] have studied the influence of wall properties on the 
Peristaltic Motion of a Hershel-Bulkley fluid in a channel. Sobh et.al.[13] studied heat Transfer in Peristaltic flow of 
Viscoelastic Fluid in an Asymmetric Channel. Raghunath Rao et.al.[14] investigated the effect of heat transfer on 
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peristaltic transport of Viscoelastic fluid in a channel with wall properties and Raghunath Rao et.al.[15] also studied 
the influence of heat transfer on peristaltic transport of couple stress fluid through a porous medium.  
 
The present research aimed is to investigate the interaction of peristalsis for the motion of a Newtonian fluid with 
wall properties in an asymmetric flexible channel under long wavelength approximation. A perturbation method of 
solution is obtained in terms of wall slope parameter and closed form of expressions has been derived for 
temperature distribution and heat transfer coefficient. The effects of elasticity parameters and pertinent parameters 
on temperature distribution and heat transfer coefficient have been computed numerically.  
 
FORMULATION OF THE PROBLEM 
We consider a peristaltic flow of a Newtonian fluid in an asymmetric channel of width1 2d d+ , the walls of the 

channel are assumed to be flexible and are taken as a stretched membrane on which traveling sinusoidal waves of 
moderate amplitude are imposed.  
 
The geometry of flexible walls are represented by 

 1 1 1
2(x ) Cos (x ) πh  ,t = d +a      c tλ −  ,                    upper wall              (1) 

 2 2 2

2
(x )  Cos (x )  

 π
h  ,t = d a      c t θ

λ
 − − − + 
 

,                lower wall                                         (2) 

Where 1a , 2a  are the amplitudes of the peristaltic waves, ‘c’ is the wave velocity, ‘λ ’ is the wave length, t is the 

time and  (0 )θ θ π≤ ≤ is the phase difference. It should be noted that 0θ = corresponds to symmetric channel 

with waves out of phase, θ π= with waves in phase, and further1a , 2a , 1d , 2d and θ  satisfy the following 

inequality Mishra and Rao[6] 
 

( )22 2
1 2 1 2 1 22 cosa a a a d dθ+ + ≤ +                                                                                                 (3) 

 
The equation of continuity and the equations of motion are

                                                                         

      

0
u v

x y

∂ ∂+ =
∂ ∂

                                                                                                                             (4) 

( ) 2 2

2 2

1
  

pu u u u uu vt x y x x y
 

ρ
 ∂∂ ∂ ∂ ∂ ∂+ + = − + υ + ∂ ∂ ∂ ∂ ∂ ∂ 

                                                                      (5)

 

( ) 2 2

2 2

1
 

pv v v v vu vt x y y x yρ
 ∂∂ ∂ ∂ ∂ ∂+ + = − + υ + ∂ ∂ ∂ ∂ ∂ ∂ 

                                                                      (6) 

 
Equation of energy 

( ) ( ) ( ) ( )2 222 2

2 2
 2p

kT T T T T u u u uC u vt x y x y x yx y
υ

ρ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

            (7) 

 
Where u, v are the velocity components, ‘p’ is the fluid pressure, ‘ρ ’ is the density of the fluid, ‘υ ’ is the 

coefficient of kinematic viscosity, T is the temperature, ‘ pC ’ is the specific heat at constant pressure and ‘k’  is the 

coefficient of thermal conductivity. 
 
The governing equation of motion of the flexible wall may be expressed as    

1
0

2

h
L p p

h

  
 
  

= −                                                                                                                       (8) 

 
Where ‘L’ is an operator, which is used to represent the motion of stretched membrane with damping forces such 
that 
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2 2
*

2 2

   
 

L T m C
tx t

∂ ∂ ∂≡ − + + ∂∂ ∂
                                                                                                     (9) 

 
Here T* is the elastic tension in the membrane, m is the mass per unit area and C is the coefficient of viscous 
damping forces, 0p is the pressure on the outside surface of the wall due to tension in the muscles. For simplicity, 

we assume 0p  = 0. The horizontal displacement will be assumed zero. Hence the boundary conditions for the fluid 

are  
 

1

2

0    at     
y h

u
y h

=
=

 =
                                                                                                           (10) 

 
Continuity of stresses requires that at the interfaces of the walls and the fluid p must be same as that which acts on 

the fluid at  1y h= & 2y h= . The use of ‘x’ momentum equation the dynamic boundary conditions at flexible walls 

are                                                 
 

1 1

2 2

2 2 
          

2 2
    

h p u u u u u
L u v at

x t x yh x x y

y h

y h
ρν ρ

∂ ∂ ∂ ∂ ∂ ∂∂ = = + − + +∂ ∂ ∂ ∂∂ ∂ ∂

  =   
      =    

                               (11) 

 
The conditions on temperature are  
 

0 1

1 2

   on   

   on   
 
T T

T T

y h

y h

=

=

= 
= 

                                                                                                            (12) 

 
In view of the incompressibility of the fluid and two-dimensionality of the flow, we introduce the Stream 
function‘ψ ‘such that 

          u and v
y x

ψ ψ∂ ∂
= = −

∂ ∂
 

 
and introducing non-dimensional variables  

2
01 2

1 2
1 1 1 0

,  ,  ,  , ,  ,  ,  ,
T T

T T

h hx y u v ct p d
x y u v  , t h h p

d c c d d  c  cd

ψ
θψ

λ δ λ µ λ
−

=
−

′ ′′ ′ ′ ′ ′ ′ ′= = = = = = = = =
   

   

                                                                                                                                                 (13) 
 
in equations of motion and the conditions (1) – (2), (3) – (6) & (8) – (10) and eliminating p , we finally get (after 
dropping primes) 

 1 (x ) 1 Cos 2 (x )h  ,t = +a    π  t−                                                                                                   (14) 

 

 2 (x ) Cos 2 (x )h  ,t = d b   π  t θ− − − +                                                                                           (15) 

 

( ) ( ) ( ) ( ) ( )
2 2

2 2 2 2 2 2
2 2

  
 

 
R

t y x x y y x

ψ ψδ ψ ψ ψ ψ δ ψ
     ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∇ + ∇ − ∇ = ∇ + ∇          ∂ ∂ ∂ ∂ ∂ ∂ ∂          

   (16)                   

2 22 2 2 2 2
2 2 2

2 22 2

1        
  +  4  +

 r

R E
t y x x y x y y xp y x

θ θθ ψ θ ψ θ ψ ψ ψδ δ δ δ
        ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 + − = + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂        

   

                                                                                                                                                    (17) 

1

2
0        

y h
on

y hy

ψ =∂ =  =∂ 
                                                                                                        (18) 
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1 1

2 2

3 3 2 2 2
2    3 2 2   

3 3 2  
          1 2 33 2    

  

 

R
y t y x y xy x y y

E E E at
x tx x t

h y h

h y h

ψ ψ ψ ψ ψ ψ ψδ δ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + −

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

∂ ∂ ∂
+ +

∂ ∂∂ ∂ ∂

   
   
   
   

  =  
=       =   

                                                       (19) 

1

2

* 0       

* 1        

on y h

on y h

θ
θ

= = 
= = 

                                                                                                           (20) 

Where  
2 2

2 2
2 2

 
y x

δ∂ ∂∇ = +
∂ ∂                

The non-dimensional parameters are                         

 

 
 

c d
R

υ
=  (Reynolds number), 

 
 p

r

C
p

k

ρ υ
=  (Prandtl number),  

2

1 0

 
 

 ( )p

c
E

C T Tρ
=

−
(Eckert number) 

1

1
,

a
a

d
=  2

1

a
b

d
= , 2

1

d
d

d
=  and  

dδ
λ

=   (geometric parameters) 

3

3
 1

 

  
E

T d

cλ ρ υ
= − ,

3  
 2 3  

m c d
E

λ ρ ν
= ,

3

2

 
 3  

C
E

d

λ ρ ν
=

  
(elasticity parameters) 

 
METHOD OF SOLUTION 

 
We seek perturbation solution in terms of small parameter δ  as follows: 

2
0 1 2 . + ....ψ ψ δ ψ δ ψ= + +

                                                                                               
(21) 

2
0 0 0

* * * *  ...... = + + +θ θ δ θ δ θ                                                                                             (22)   

       

Substituting equations (21) – (22) in equations (16) – (20) and collecting the coefficients of various powers of δ  
The zeroth order equations are      

4
0

4
0

y

ψ∂ =
∂

                                                                                                                          (23) 

22 * 2
0 0
2 2

1
 = 0

r

E
P y y

∂
+

∂

   ∂
      ∂   

θ ψ
                                                                                                   (24)

                                   
The corresponding boundary conditions are

 
10

2

 
0        

 

y h
on

y hy

ψ =∂ =  =∂ 
                                                                                                    (25) 

1 10

2 2

3 3 3 2  
          1 2 33 3 2    

 E E E at
x ty x x t

h y h

h y h

ψ∂ ∂ ∂ ∂
+ +

∂ ∂∂ ∂ ∂ ∂

  =  
=       =   

                                                (26) 

0 1

0 2

* 0       

* 1       

on y h

on y h

θ
θ

= = 
= = 

                                                                                                         (27) 

Zeroth-order problem 
On solving the equations (23) & (24) subject to the conditions (25) to (27), we get  



T. Raghunath Rao                                                    Adv. Appl. Sci. Res., 2015, 6(8):47-61        
 _____________________________________________________________________________ 

51 
Pelagia Research Library 

3 2

1 2 30
 

6 2
A

y y
+ A A  yψ = +

                                                                                                      
(28) 

4 3 2
*
0 1 1 2 3 8 9  

12 3 2
a

y y y
A + A  A G y G= −
 

+ + + 
  

θ                                                                                 (29)  

The first order equations are 

0 0 0 0 0
2 2 2

2 2 2

4
1

4
 

R
t y x x y yy y y

            ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂           + − =
      ∂ ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂           

ψψ ψ ψ ψ ψ
                                       (30) 

* * * 22 * 2
0 0 0 0 0 01 1

2 2 2

          1
2  

 
=

r

E
t x x y P y

R
y y y

∂ ∂ ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂ ∂ ∂

      ∂ ∂+ −            ∂ ∂      

θ θ θ θψ ψ ψ ψ
                              (31) 

The corresponding boundary conditions are 

11

2
0          

y h
on

y hy

=∂ =  =∂ 

ψ
                                                                                                   (32) 

10 0 0 0 01

2

2 2 23
      3 2  

 = 0  R at
y t y x y xy y

y h

y h

∂ ∂ ∂ ∂ ∂∂
− + −

∂ ∂ ∂ ∂ ∂ ∂∂ ∂

  =
    = 

ψ ψ ψ ψ ψψ
                                                 (33)

    

1 1

1 2

* 0       

* 0       

on y h

on y h

= = 
= = 

θ
θ                                                                                                                

(34)
                                      

 
First-order problem  
On solving the equation (30) & (31) subject to the conditions (32) to (34), we obtain 

( ) ( )
1

7 6 5 4

1 6 4 2 7 3 6 1 8 5 3 7

3 2

4 5 6

2520 360 120 24

           + + 
6 2

R
y y y y

B A A B A B A B A A B A

y y
B B B y

=
  

+ + + + + + +      

+

ψ

                
(35) 

8 7 6 5 4 3 2

1 2 3 4 5 6 7 10 11
* + 1 56 42 30 20 12 6 2

y y y y y y y
G G G G G G G G y G= + + + + + + +θ                        (36) 

Substituting 0
*θ from (24) and 1

*θ from (36) into (22) for *θ , we have temperature *θ in the form 

4 3 2
*

1 1 2 3 8 9

8 7 6 5 4 3 2

1 2 3 4 5 6 7 10 11

  
12 3 2

           + 
56 42 30 20 12 6 2

a
y y y

A + A  A G y G

y y y y y y y
G G G G G G G G y G

= −
 

+ + + +  
 

 
+ + + + + + +  

 

θ

δ

             (37)                            

The heat transfer coefficient Z at the (upper) wall is given by 

1
*h

Z =
x y

 ∂ ∂   ∂ ∂   

θ
                                                                                                                    (38)     

Substituting Eq. (14) & Eq. (37) in Eq. (38), we get                              
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( )
3

2
1 1 2 3 8

7 6 5 4 3 2

1 2 3 4 5 6 7 10

 2 2 (x )  
3

           + + 
7 6 5 4 3 2

a
y

Z  πa  Sin  π  t A + A  y A y G

y y y y y y
G G G G G G G y G

= − −
  

− + +    
  

  
+ + + + + +    

  
δ

                    (39)                                 

 
Where    

3
1 2

2
3

4 ( )(   2 ( )   2 ( ) )1

        2 (   2 ( )   2 ( ) )

B E E a Sin x t b Sin x t

E a Cos x t b Cos x t

= + − − − + +

− − − +

π π π θ

π π π θ
      

1
2 1 2( )

2

B
B h h= − + ,   3 1 1 2B B h h= ,   4 9 3 8( )B R A B A= +   

4 4 3 3
5 4 2 7 3 6 1 8 2 1 5 3 7 1 2

1 2

5 5 6 6
2 6 1 2 1 7 2 1 1 2 4

1 1
[ ( )( ) ( )( )
24 6

1 1 1
       ( )( ) ( )( )] ( )

60 360 2

R
B A B A B A B A h h A B A h h

h h

B A h h B A h h h h B

= + + − − − + −
−

− − + − + +
 

3 3 4 4
6 5 3 7 1 2 4 2 7 3 6 1 8 1 2

5 5 6 6 2 2
2 6 2 1 1 6 1 2 4 1 2 5 1 2

1 1
[ ( )( ) ( )( )

12 48
1 1 1 1

        + ( )( ) ( )( )] ( ) ( )
120 720 4 2

B R A B A h h A B A B A B A h h

B A h h B A h h B h h B h h

= − + + − + + − +

− − + − + − +
 

2
1 1A B= , 2

2 2A B= , 3 1 2A B B= , 4 1tA B= , 5 2tA B= ,  6 1xA B= , 7 2xA B= , 8 3xA B= , 9 3tA B= , 

9 1tG F= , 10 2xG F= , 9 3xG F= , 10 4tG F= , 1 ra P E= , 2 1a a R= , 3 2 ra a P= , 4 ra P R=  

1 3 1 1 6
1 1

( )
36 30

G a a A A= − + , 2 3 1 1 2 6
1 1

( )
6 5

G a B a B A= − + , 

3 3 2 1 4 3 2 2 6 3 2 1 2 7

3 2 1 3 6 3 2 1 8

1 1 1 1
[( ) ( ) ( )

6 3 6 3
1 1 1

           ( ) ( ) ]
6 3 3

G a a B A a a A A a a B B A

a a B B A a a A A

= − + + + + + +

+ − +
 

4 3 2 2 7 3 2 4 2 3 2 6 2 3 3 2 1 5

2 3 1 3 7 3 2 1 2 8 4 1 3 4 6 8

1 1 1 1 1
[( ) ( ) ( ) ( )

2 3 3 3 3
1 1 1 1

           ( ) ( ) ]
3 3 2 6

G a a A A a a A B a a A B B a a B A

a a B B A a a B B A a B F a A G

= − + + + + + + +

− − + − +
 

5 3 1 2 5 3 2 2 3 7 1 1 4 4 2 3 3 2 8

1 2 4 4 8 7

[( ) ( ) 2

1 1
           ]

2 2

G a a B A a a B B A a B B a B F a A A

B F a a G A

= − + + + + − −

− +
 

6 1 1 5 2 4 4 8 8 1 4 2 2 4 3 3[2 ( ) ]G a B B B B a G A F a F B a B F= − + + − − − , 7 4 4 2 3 1 2 52G a F F B a B B= + −  

2 2 2 2
8 1 1 2 1 2 1 1 2 2 1 2 1 2 2 1

2 1

1 1 1 1
[ ( )( ) )( 2 ) ( )]
12 3 2

G a A h h h h B B h h h h A h h
h h

= + + + + + + + +
−

 

4 4 3 3 3 3 8
9 1 1 2 1 1 2 2 1 2 2 1 2 1

1 1 1 1
[ ( ) ( ) ( ) ( )]

2 24 6 2 2

G
G a A h h B B h h A h h h h= + + + + + + − +  
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8 8 7 7 6 6 5 5 4 4
10 1 2 1 2 2 1 3 2 1 4 2 1 5 2 1

2 1

3 3 2 2
6 2 1 7 2 1

1
[ ( ) ( ) ( ) ( ) ( )

                      ( ) ( )]

G G h h G h h G h h G h h G h h
h h

G h h G h h

= − + − + − + − + − +
−

− + −
 

8 8 7 7 6 6 5 5 4 4
11 1 2 1 2 2 1 3 2 1 4 2 1 5 2 1

3 3 2 2
6 2 1 7 2 1 10 2 1

1
[ ( ) ( ) ( ) ( ) ( )

2

                ( ) ( ) ( )]

G G h h G h h G h h G h h G h h

G h h G h h G h h

= + + + + + + + + + +
−

+ + + + +
 

It is observed that, if we put 1b d= =  and 1θ =  then the results of the problem coincide with the work of 
Radhakrishnamacharya G and Srinivasulu Ch [11]. 
 

RESULTS AND DISCUSSION 
 

In this analysis we analyzed effect of temperature variation and the heat transfer coefficient on peristaltic motion of 
Newtonian fluid with wall properties in an asymmetric channel. The non-dimensional temperature distribution θ*, 
heat transfer coefficient Z are depicted for different parametric values of R, the rigidity of the wall (E1), the stiffness 
of the wall (E2), the damping nature of the wall (E3), the phase difference (θ), Pr, E, d. The temperature distribution 
θ is shown in figures (1)-(8). From (figure1), we noticed that there is no change in the temperature distribution θ* 
with increase in R. The temperature distribution θ* decreases in the region 0 y 0.28≤ ≤  with increase in E1, E2, θ 

and further increases in the region 0.28 y 1≤ ≤  and more significant at the boundary in (figures 2, 3 & 5), while the 

temperature distribution θ* decreases in the region 0 y 0.28≤ ≤  with increase in E3, Pr, E and increases in the 

region 0.28 y 1≤ ≤  and the enhancement is marginal at the boundary is shown in figures (4, 6 & 7). (figure8) 

represents the temperature distribution θ
* increases in the region 0 y 0.8≤ ≤  with increase in d and further 

decreases in the region0.8 y 1≤ ≤ .  

 
The non-dimensional heat transfer coefficient Z are depicted for different parametric values of R, E1, E2, E3, θ, Pr, E, 
d. The heat transfer coefficient is shown in figures (9-16). From figure(9), Z increases in the region 0 y 0.5≤ ≤ and 

further decrease in the region 0.5 y 1≤ ≤  with increase in R. Z increases in the region 0 y 0.8≤ ≤  with increase in 

E1, E2, θ and further decrease in the region 0.8 y 1≤ ≤ and significant change at centre y = 0 in (figures 10,11 &13). 

Z increases in the region 0 y 0.8≤ ≤  with increase in E3, Pr, E and further decrease in the region0.8 y 1≤ ≤ and no 

significant change at the centre and at the boundary in (figures12, 14 & 15). From (figure16) Z decreases rapidly for 
higher values of d and for smaller values Z is almost linear.   
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Figure 1-Effect of R on variation of 
*θ for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 2-Effect of E1 on variation of 
*θ  for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 3- Effect of E2 on variation of 
*θ  for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E3 = 0.3, E=1, Pr = 0.7 
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Figure 4- Effect of E3 on variation of 
*θ  for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1= 0.1, E2 = 0.2, E=1, Pr = 0.7 
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Figure 5- Effect of θ on variation of 
*θ  for d = 0.1, b = 0.1, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 6-Effect of Pr on variation of 
*θ  for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1 
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Figure 7-Effect of E on variation of 
*θ  for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, Pr = 0.7 
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Figure 8-Effect of d on variation of 
*θ  for b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 9- Effect of R on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 10- Effect of E1 on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 11- Effect of E2 on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E3 = 0.3, E=1, Pr = 0.7 
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Figure 12- Effect of E3 on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1= 0.1, E2 = 0.2, E=1, Pr = 0.7 
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Figure 13- Effect of θ on variation of Z for d = 0.1, b = 0.1, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 
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Figure 14- Effect of Pr on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1 
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Figure 15-Effect of E on variation of Z for d = 0.1, b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, Pr = 0.7 
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Figure16- Effect of d on variation of Z for b = 0.1, θ = π/3, a = 0.1, δ = 0.01, R =1, E1 = 0.1, E2 = 0.2, E3 = 0.3, E=1, Pr = 0.7 

 
CONCLUSION 

 
In this paper we have discussed the effect of heat transfer on peristaltic transport of a Newtonian fluid with wall 
properties in an asymmetric channel. The governing equations of motion are solved analytically using long wave 
length approximation. Furthermore, the effect of elastic parameters and pertinent parameters on temperature 
distribution and Heat transfer coefficient have been computed numerically and explained graphically. We conclude 
the following observations: 
 

1. The temperature distribution *θ  increases in the region 0.28 1y≤ ≤  with increase in E1, E2, E3, Pr, θ and E.  

2. *θ is more significant at the boundary with increase in E1, E2, θ and the enhancement is marginal at the boundary 
with increase in E3, Pr, and E. 
3. The temperature distribution increases in the region 0 0.8y≤ ≤  with increase in d.  

4. Heat transfer coefficient Z increases in the region 0 0.8y≤ ≤  with increase in E1, E2, E3, Pr, θ and E.  

5. There is significant change in Z at centre y = 0 with increase in E1, E2, θ and no change at the centre and at the 
boundary with increase in E3, Pr, and E. 
6. Z decreases rapidly for higher values of d and for smaller values Z is almost linear.   
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