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ABSTRACT 
 
The influence of the gravity and magnetic field on the propagation of Rayleigh wave in a prestressed 
inhomogeneous, orthotropic elastic solid medium has been discussed. The method of separation of variable has 
been used to find the frequency equations for the surface waves. The obtained dispersion equations are in 
agreement with the classical results when gravity, magnetic field, non-homogeneity and initial stress are neglected. 
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NOMENCLATURE 

Ε
ur

is the electric intensity, Β
ur

is magnetic field induction, 

0µ is permeability of vacuum, 0ε is permittivity of vacuum, 

iΗ
ur

 is the perturbed magnetic field,
  

J
ur

 is the current density, 
οσ is the conductivity of the material, ijw is the   vector, 

g is the earth gravity, ijσ is the stress component, 

v
V

t

∂=
∂

uur
ur

is velocity of conductor, u
r

 is the component of displacement vector, 

0Η
ur

 is the initial magnetic field intensity along z-axis, eµ is the magnetic permeability of the medium,
 

Η
ur

is magnetic field intensity, ρ is the density of the material, 

F
ur

is the Lorentz’s force, P is the initial stress, 

Cij  is elastic constant, t is the time, 

jT are the body forces, αij , ρ0
, P

0 are dimensionless constants. 

____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The theory of elasticity is an approximation to the stress-strain behavior of real materials. An ideal elastic material 
regains its original configuration on the removal of deforming force. Therefore an ideal ‘‘elastic wave’’ is that wave 
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which propagates through a material in such a way that the particles oscillates about their mean positions without 
causing any change. The term “initial compression” is meant by compressions developed in a medium before it is 
being used for study. The earth is an initially compressed medium. These compressions may have significant effect 
on elastic waves. 
 
The earth has a layered structure, and this exerts a significant influence on the propagation of elastic waves. The 
simplest cases of influence exerted on the propagation of seismic waves by a single plane boundary which separates 
two half-spaces with different properties, and by two parallel plane boundaries forming a layer. Earth is being treated 
as an elastic body in which three types of waves can occur.  
 
1. Dilatational and equivoluminal waves in the interior of the earth.  
2. In the neighborhood of its surface known as Rayleigh waves [1].  
3. Third type of waves occurs near the surface of contact of two layers of the earth known as love waves [2].  
 
The Rayleigh waves are observed far from the disturbance source near the surface. Since the energy carried by these 
waves is concentrated over the surface, its dissipation is slower than the Dilatational and equivoluminal waves where 
the energy is dissipated over the volume of the disturbed region. Therefore, during earth quakes for an observer 
remote from the source of disturbance, the Rayleigh waves represent the greatest danger. In the case of Love waves, 
the energy is concentrated near the interface; hence they are dissipated more slowly. In the problem of propagation 
of Love type seismic wave in inhomogeneous isotropic media of finite depth lying over a infinite half space, it is 
shown that the distortional wave velocity in the layer is greater than in the semi infinite half space. 
 
The propagation of Love waves in an in homogeneous layer is of considerable importance in earth quakes 
engineering and seismology on account of occurrence of in homogeneities in the crust of the earth as the earth is 
supposed to be made up of different layers. This problem has been studied by Sezawa [3], Wilson [4] Das and Gupta 
[5], Deresiewicz [6], Scholte [7] by considering different models of by considering different models of a layer 
changing either density or rigidity and established the presence of Love waves in each case. Also Gogna [8], Karsel 
[9], Chadwick [10], Zhang [11] also studied the propagation of Love waves through non-homogeneous media. 
Bromwich [12] was the first who taken the case of gravity in wave propagation through elastic solid media. Taking 
into account, the effect of initial stresses and using Biot’s theory of incremental deformations, Jones [13], De and 
Sengupta [14] studied many problems of elastic waves and vibrations under the influence of gravity field. Abd-Alla 
and Ahmed [15] studied the Rayleigh waves in an orthotropic magneto-elastic medium under gravity field and initial 
stress. Recently, Love waves in a non-homogeneous elastic media, Rayleigh waves in a non-homogeneous granular 
media, Stoneley, Rayleigh and Love waves in viscoelastic media, Love waves in a non-homogeneous orthotropic 
layer under compression ‘P’ overlying semi-infinite non-homogeneous medium, effect of initial stress and gravity on 
Rayleigh waves propagating in non-homogeneous orthotropic elastic media were studied by Kakar et al. [16, 17, 18, 
19, 20]. 
 
In the present study, the influence of gravity, magnetic field and initial stress on the propagation of Rayleigh type 
waves in a non-homogeneous, orthotropic elastic solid medium has been discussed. The dispersion equation so 
obtained is in well agreement with the corresponding classical results. 
 
FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 
The problem is dealing with magnetoelasticity. Therefore the basic equations will be electromagnetism and elasticity. 
The Maxwell equations of the electromagnetic field in a vacuum (in the absence of displacement current), are 
 

0∇ ⋅Ε =
ur ur

, 0∇ ⋅Β =
ur ur

,
t

∂Β∇× Ε = −
∂

uur
ur ur

, 0 0 .
t

µ ε ∂Ε∇× Β =
∂

uuur
ur ur

                                                                                    (1) 

The current displacement vector and electric field are related as 
 

,J Eοσ=
ur ur

                                                                                                                                                                (2a) 

 

If the conductor is moving with velocityV
ur

in applied magnetic field, then 
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( ) ( ).
v

J E V B E B
t

ο οσ σ ∂= + × = + ×
∂

uur
ur ur ur ur ur ur

                                                                                                             (2b) 

 
The electromagnetic wave equation through a vacuum is given by 
 

2
2

0 0 2
0,

t
µ ∂∇ − Ε = ∂ 

ur
ò

2
2

0 0 2
0.

t
µ ∂∇ − Β = ∂ 

ur
ò                                                                                           (3) 

 
Let us consider an orthotropic, non-homogeneous elastic solid under an initial compression P along x-direction 
further it is also under the influence of gravity,   and magnetic field. Here we consider Oxyz Cartesian coordinates 
system where O is any point on the plane boundary and Oz is normal to the medium and Rayleigh wave propagation 
is taken in the positive direction of x-axis. It is also assumed that at a great distance from center of disturbance, the 
wave propagation is two dimensional and is polarized in (x, z) plane. So, displacement components along x and z 
direction i.e. u and w are non-zero while v = 0. Also it is assumed that wave is surface wave as the disturbance is 
extensively confined to the boundary. 
 
Also it is assumed that wave is surface wave as the disturbance is extensively confined to the boundary. Let g be the 
acceleration due to gravity and ρ is the density of the material medium. 
 
Here states of initial stresses are given by (σ is a function of z) 
 

( ) 

; ,

,,    1,  2,  3

ij

where i

i

j

jσ σ

=

= =

( ) 

0 ; .

,    1,  2,  3

ij

where i j

i jσ

=

= ≠
                                                                                          (4) 

 
Equations of equilibrium of initial compression are 
 

0,
x

∂σ
∂

= 0,
y

∂σ
∂

= 0.g
z

∂σ ρ
∂

− =                                                                                                                           (5) 

 
The value of magnetic field intensity is 
 

( ) 00,0, iΗ Η = Η + Η
ur ur ur

                                                                                                                                         (6) 
Equations governing the propagation of small elastic disturbances in a perfectly conducting elastic solid having 

electromagnetic force F
ur

= ( )J × Β
ur ur

 (the Lorentz force, J
ur

 is the current density andΒ
ur

being magnetic induction 

vector) as the only body force are (Biot [21]) 
 

σ
11, x + σ

12, y + σ
13, z + P (wz,y – wy, z) – ρg u

3, x + Fx ,ttuρ=  

 
σ

12, x + σ
22, y + σ

23, z – Pwz,x + Fy
 = ρv,tt, 

 
σ

13, x + σ
23, y + σ

33,z – Pwy,x + ρg u
1,x + Fz

 = ,ttwρ                                                                                                 (7) 

 
where u, v, w are displacement components in x, y and z direction and wx, wy, wz are  al components and are given 

by 
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, ,

1
( ),

2x y zw w v= − , ,

1
( ),

2y z xw u w= − , ,

1
( ).

2z x yw v u= −                                                                                (8) 

 
Further dynamical Eq. (7) in (x, z) directions in terms of Eq. (5) are given by 
 

σ
11, x + σ

12, y + σ
13, z + P (wz,y – wy, z) – ρg u

3, x + Fx ,ttuρ=  

 
σ

13, x + σ
23, y + σ

33,z – Pwy,x + ρg u
1,x + Fz

 = ,ttwρ                                                                                                 (9) 

 
where stress components are given by 
 
σ

11
= (C

11
+ P) u

1,x + (C
13

 + P) u
3,z , 

 
σ

33
 = C

31
 u

1, x + C
33

 u
3,z , 

 
σ

13
= C

44
 (u

1,z + u
3,x),                                                                                                                                                (10) 

 
where Cij  are elastic constants. Since the problem is treated in two-dimensions (x, z), therefore C12=C22=C23=0 

Let us take the assumption that C
44

 = 
1

2
(C

11
 – C

13
). 

Substituting Eq. (10) in Eq. (19) ; we have 
 
(C

11
 + P) (2u

1, xx + u
1, zz + u

3, xz) + C
13 (u3, xz – u

1, zz) + (u
1, z + u

3, x)(C
11

– C
13

), z + 2u
1,x (C

11
 + P), x + 2u

3,z 

(C
13

+ P),x – 2ρg u
3,x

2
0 , ,2 ( )e xx xzH u wµ+ +  ,ttuρ=                                                                                              (11) 

 

C
11

 (u
1, xz + u

3, xx) + (C
13

 +P) (u
1, xz – u

3, xx) + 2 C
33

 u
3, zz + 2ρg u

1, x
2
0 , ,2 ( )e xx xzH u wµ+ +  + (u

1,z + u
3, x) (C

11
 

– C
13

), x + u
1, x C

13, z + u
3,z C

33, z = ,ttwρ  .                                                                                                           (12) 

 
Now we assume the non-homogeneity for the elastic half space, density and compression are given by 
 

Cij  = αij  emz, ρ = ρ
0
 emz, P = P

0
 emz,                                                                                                                     (13) 

 
where αij , ρ0

, P
0 
and m are constants. 

 
Substituting Eq. (13) in Eq.  (11) and in Eq. (12), we get 
 

emz (α
11

 + P
0
) (2u

1, xx + u
1, zz + u

3, xz) + α
13 (u3, xz – u

1, zz) emz +(u
1, z + u

3, x) (α
11

 – α
13

) m emz – 2ρ
0
 g u

3,x 

emz 2
0 , ,2 ( )e xx xzH u wµ+ + ,ttuρ=                                                                                                                          (14) 

 
α

11
 (u

1, xz+u
3, xx) + (α

13
+2P

0
) (u

1, xz) – (α
13

+2P
0
) u

3, xx + 2α
33

 u
3,zz+2ρ

0
g u

1,x 2
0 , ,2 ( )e xx xzH u wµ+ + + 2 α

13
 m 

u
1,x + 2α

33
 mu

3, z = ,ttwρ .                                                                                                                                       (15) 

 
SOLUTION OF THE PROBLEM 
To investigate the surface wave propagation along Ox, we introduce displacement potentials in terms of 
displacements components are given by 
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u = φ,x – ψ,z ; w = φ,z + ψ,x                                                                                                                                    (16) 

 
Introducing Eq. (16) in Eqs (14) and (15) we get 
 

2 (α
11

 + P
0

2
0eHµ+ ) ∇

2
φ – 2ρ

0
 g ψ,x + m (α

11
 – α

13
) (2φ,z + ψ,x) = 0 .2 ttρ φ ,                                                         (17)                                               

 

(α
11

 + P
0
 – α

13
) ∇

2
ψ + 2ρ

0 
gφ, x - m (α

11
 – α

13
) ψ,z = 0 ,2 ttρ ψ ,                                                                              (18) 

 
and 
  
α

11 φ, xx + α
33 φ,zz – ρ

0
g ψ,x– 2α

13
 m ψ,x + 2α

33
 mφ,z = 0 ,2 ttρ ψ                                                                          (19) 

 

(α
11

 – α
13

 – 2P
0

2
0eHµ+ )  ψ,xx + (2 α

33
 – α

13 – α
11 – 2P

0
) ψ,zz + (2 ρ

0
g + 2α

13
 m) φ,x  + 2α

33
 m ψ,z = 0 .2 ttρ φ  (20) 

where, ∇
2 
= 

2 2

2 2x z

∂ ∂
∂ ∂

+ .                                                                                                                                        (21) 

 
Since the velocity of waves are different in x and z direction. Now Eq. (17) and Eq. (18) represent the compressive 
wave along x and z-direction while Eq. (19) and Eq. (20) represents the shear waves along these directions. Since we 
consider the propagation of Rayleigh waves in x-direction, therefore we consider only Eq. (17) and Eq. (20). 
 
To solve Eq. (18) and Eq. (21) we introduce 
 
φ (x, y, z) = f (z) ( )i x cte α −

 , 
 

ψ (x, y, z) = h(z) ( )i x cte α −
 .                                                                                                                                       (22) 

 
putting Eq. (22) in Eq. (18) and Eq. (21) we get 
 
f,zz +  Af,z + Bf + Ch = 0,                                                                                                                                        (23) 

 
h,zz + A'h,z + B'h + C'f = 0,                                                                                                                                      (24) 

 
where  
 

A =
( )11 13

2
11 0 0e

m

P H

α α
α µ

−
+ +

, B = 
( )2 2

0 11 0

2
11 0 0e

c P

P H

α ρ α
α µ

− −

+ +
 , C = 

( )
( )

0 11 13

2
11 0 0

2

2 e

g m i

P H

ρ α α α
α µ

 − + − 

+ +
,             

A'=
2

33 0

33 11 13 0

2

2 2
em H

P

α µ
α α α

+
− − −

, B'=
( )2 2

0 11 13 0

33 11 13 0

2 2

2 2

c P

P

α ρ α α
α α α

− + +

− − −
,C'= 

( )0 13

33 11 13 0

2 2

2 2

g m i

P

ρ α α
α α α

+
− − −

.                   (25)                                                                           

 
Now Eq. (23) and Eq. (24) have exponential solution in order that f (z) and h (z) describe surface waves and also 
they varnish as z → ∞ hence Eq. (18) takes the form, 
  

φ (x, z, t) = ( )1 2
1 2

i x ctz zC e C e e αλ λ −− − +  ,  

 

ψ  (x, z, t) = ( )1 2
3 4

i x ctz zC e C e e αλ λ −− − +  ,                                                                                                         (26) 
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where C
1
, C

2
, C

3
, C

4
 are arbitrary constants and λ

1
, λ

2
 are the roots of the equation 

 

( ) 2
11 134 333 0

2
11 0 0 33 11 13 0

2

2 2
e

e

m m H

P H P

α α α µλ λ
α µ α α α
 − ++ + + + − − − 

 

+ 
2 2

2 20 11 13 0 0 11 0
2

33 11 13 0 11 0 0

2 2

2 2 e

c P c P

P P H

ρ α α ρ αα λ
α α α α µ

 − + + − −+ − − − + + 
 

+ 
( ) ( ) ( )

( ) ( )

2 2
11 33 0 11 13 0 0 11 0 332

2
11 0 0 33 11 13 0

2 2 2

2 2e

c P c P
m

P H P

α α ρ α α ρ α α
α λ

α µ α α α

 − − + + + − −
 

+ + − − −  

 

+
( ) ( )

( )( )

4 2 2
0 11 0 0 11 13 0

2
11 0 0 33 11 13 0

2 2

2 2e

c P c P

P H P

α ρ α ρ α α

α µ α α α

 − − − + +


+ + − − −

   

( ){ } ( )
( ) ( )

11 13 0 0 132

2
11 0 0 33 11 13 0

2 2 2

2 2 2e

m g g m

P H P

α α ρ ρ α
α

α µ α α α

− − +
+

+ + − − − 

= 0.                                                                              (27) 

 
Here we consider only real roots of Eq. (27). Now the constants C

1
, C

2
 and C

3
, C

4
 are related by the Eq (23) and Eq. 

(24). 
 

By equating the co-efficients of 1ze λ− and 2 ze λ−  to zero, Eq. (23) gives, 
 
C

3
 = γ

1
 C

1
, C

4
 = γ

2
 C

2
,                                                                                                                                                (28)  

 
where  
 

( )
2 2 2

11 0 0 11 13 0 11 0

11 13 0

2 [(   P ) –  m (  –

  1

)  (  –  – P )]

2

( ,  2.)

e j j
j

i H c

m g

j

α µ λ α α λ ρ α
γ

α α α ρ
+ + +

=
 − −

=
                                                     (29)   

                                                                                                                                                                                                                                          
BOUNDARY CONDITIONS 
The plane z = 0 is free from stresses i.e. σ

13
 = σ

33
 = 0 at z = 0,                                                                                (30) 

 

σ
13

 = 
1

2
(α

11
 – α

13
) [2 φ,xz – ψ,zz + ψ,xx] emz ,                                                                                                      (31) 

σ
33

 = α
31

 [φ, xx – ψ,xz] emz + α
33

[φ,zz + ψ,zx] emz.                                                                                               (32) 

 
 
Introducing Eq. (31) and Eq. (32) in Eq. (30) we have 
 
C

1 
(2λ

1
 iα + γ

1
λ

1
2 + α2γ

1
) + C

2
 [2 λ

2
 iα + γ

2
λ

2
2 + α2 γ

2
] = 0,                                                                                     (33) 

 

C
1
 [–α

2
 λ

13
 + λ

1
2 α

33
 – α

1
γ

1
iα (α

33
 – α

13
)] +C

2
 [–α2λ

13
 + λ

2
2 α

33
 –λ

1
 γ

1
iα (α

33
 – α13)] = 0.                                    (34)                                      

 
 
Eliminating C

1
 and C

2
 from Eq. (33) and Eq. (34) ; we have 
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[2λ
1
 iα + γ

1
λ

1
2 + α2γ

1
] [–α2λ

13
 + λ

2
2 α

33
 –λ

1
 γ

1
iα (α

33
 – α13)] – [2 λ

2
 iα + γ

2
λ

2
2 + α2 γ

2
] [–α

2
 λ

13
 + λ

1
2 α

33
 – 

α
1
γ

1
iα (α

33
 – α

13
)] = 0,                                                                                                                                              (35) 

 
where γj  (j = 1, 2) are given by Eq. (29) and λj  (j = 1, 2) are roots of Eq. (27). 

 
Now Eq. (35) gives the wave velocity equation for Rayleigh waves in a non-homogeneous elastic half space of 
orthotropic material under the initial compression, magnetic field and influence of gravity. From Eq. (35), it follows 
that Rayleigh waves depends on gravity, initial compression, magnetic field and non-homogeneous character of the 

medium and nature of the material, we conclude that if α is large i.e. length of wave i.e. 
2π
α

 is small then gravity, 

magnetic field and compression have small effects on Rayleigh waves in non-homogeneous orthotropic half space 

and if α is small i.e. 
2π
α

 is large then gravity, magnetic field and compression plays a vital role for finding out the 

wave velocity c. 
 
Case 1.When the medium is isotropic, Eq. (35) becomes 
 
[2λ

1
 iα + γ

1
λ

1
2 + α2γ

1
] [Κ

1
2 (λ

2
2 - α2) + 2 Κ

2
2 (1 – iα γ

2
λ

2
)] – [2 λ

2
 iα + γ

2
λ

2
2 + α2 γ

2
] [Κ

1
2 (λ

1
2 - α2) 

+ 2 Κ
2
2 (1 – iα γ

1
λ

1
)] = 0,                                                                                                                                          (36) 

  

where Κ
1
2 = 

2 Pλ µ
ρ

+ +
, Κ

2
2 = 

2Pµ
ρ

−
, (λ, µ are Lame’s constants).                                                             (37) 

 
Eq. (37) determines the Rayleigh waves in a non-homogeneous isotropic elastic solid under the influence of gravity, 
magnetic field and compression. 
 
Case2. When initial compression and magnetic field  are absent i.e. P

0
 = 0, H0=0, then equation (36) reduces to, 

 
[2λ

1
 iα + γ

1
λ

1
2 + α2γ

1
] [Κ

1
2 (λ

2
2 - α2) + 2 Κ

2
2 (1 – iα γ

2
λ

2
)] – [2 λ

2
 iα + γ

2
λ

2
2 + α2 γ

2
] [Κ

1
2 (λ

1
2 - α2)  

+ 2 Κ
2
2 (1 – iα γ

1
λ

1
)] = 0,                                                                                                                                          (38) 

 

where Κ
1
2 = 

2λ µ
ρ

+
 , Κ

2
2 = 

µ
ρ

. 

Eq. (38) determines the Rayleigh surface waves in a non-homogeneous isotropic elastic solid under the influence of 
gravity which is similar to corresponding classical result given by Das et al. 
 
Case2. When non-homogeneity, H0=0 of the material is absent, we get same dispersion Equation as Eq. (35) with 

γj = 

2 2
11 0 0 11 0

0

[(   P )  (  c  –  – P )]ji

g

α λ ρ α
αρ

− + +
  ; j = 1, 2, 

 
where λ

1
, λ

2
 are the roots of the equation 

4λ +
2 2

2 20 11 13 0 0 11 0

33 11 13 0 11 0

2 2

2 2

c P c P

P P

ρ α α ρ αα λ
α α α α

 − + + − −+ − − − + 
   

+ 
( ) ( )

( ) ( )

4 2 2 2 2 2
0 11 0 0 11 13 0 0

0 11 33 11 13 0

2 2 2

2 2

c P c P g

P P

α ρ α ρ α α α ρ
α α α α

 − − − + + −
 

+ − − −  

= 0.                                                      (39) 
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Case3. When gravity field and magnetic field are absent, we get same velocity equation for Rayleigh waves in non-
homogeneous elastic solid under initial compression as Eq. (35) with 
 

γj = 
( )

2 2
11 0 11 13 0 11 0

11 13

2 [(   P ) –  m (  – )  (  c  –  – P )]j ji

m

α λ α α λ ρ α
α α α

+ +
 − 

  ; j = 1, 2, 

 
where λ

1
, λ

2
 are roots of the equation 

 

( )11 134 333

11 0 33 11 13 0

2

2 2

m m

P P

α α αλ λ
α α α α

 −
+ + + − − − 

 

+
2 2

2 20 11 13 0 0 11 0

33 11 13 0 11 0

2 2

2 2

c P c P

P P

ρ α α ρ αα λ
α α α α

 − + + − −+ − − − + 
 

+ 
( ) ( ) ( )

( ) ( )

2 2
11 33 0 11 13 0 0 11 0 332

11 0 33 11 13 0

2 2 2

2 2

c P c P
m

P P

α α ρ α α ρ α α
α λ

α α α α

 − − + + + − −
 

+ − − −  

 

+
( ) ( )

( )( )

4 2 2
0 11 0 0 11 13 0

11 0 33 11 13 0

2 2

2 2

c P c P

P P

α ρ α ρ α α
α α α α

 − − − + +


+ − − −

   

( ){ } ( )
( ) ( )

11 13 132

11 0 33 11 13 02 2

m m

P P

α α α
α

α α α α
−

+ 
+ − − − 

= 0.                                                                                               (40) 

 
Case4. When medium is initially unstressed i.e. P

0
 = 0 

We get, velocity equation for Rayleigh waves is similar to Eq. (35) with 
 

γj = 
( )

2 2
11 11 13 0 11

11 13 0

2 [( –  m (  – )  (  c  – )]

2
j ji

m g

α λ α α λ ρ α
α α α ρ

+
 − − 

  ; j = 1, 2, 

 
where λ

1
, λ

2
 are roots of the equation 

 

( )11 134 333

11 33 11 13

2

2

m mα α αλ λ
α α α α

 −
+ + − − 

 

+ 
2 2

2 20 11 13 0 11

33 11 13 11

2

2

c cρ α α ρ αα λ
α α α α

 − + −+ − − 
 

+ 
( ) ( ) ( )

( )( )

2 2
11 33 0 11 13 0 11 332

11 33 11 13

2 2

2

c c
m

α α ρ α α ρ α α
α λ

α α α α

 − − + + −
 

− −  

 

+
( ) ( )

( )( )

4 2 2
0 11 0 11 13

11 33 11 13

2

2

c cα ρ α ρ α α
α α α α

 − − +


− −

( ){ } ( )
( ) ( )

11 13 0 0 132

11 33 11 13

2 2 2

2 2

m g g mα α ρ ρ α
α

α α α α
− − +

+ 
− − 

=0.               (41) 
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Case5. When the non-homogeneity of the material, H0=0 and gravity field are absent further medium is initially 
unstressed and isotropic, Eq. (35) reduces to, 
 

2 2

2 2
1 2

4 1 1
c c

K K

   
− −   

   
=

22

2
2

2
c

K

 
− 

 
,                                                                                                           (42) 

 

where Κ
1
2 = 

2λ µ
ρ

+
 , Κ

2
2 = 

µ
ρ

. 

Eq. (42) is similar to the equation given by Rayleigh. 
 

CONCLUSION 
 

1. Equation (35) represents the wave velocity equation for the Rayleigh waves in a non-homogeneous, orthotropic 
elastic solid medium under the influence of gravity, magnetic field and initial compression.  
 
2. It also depends upon the wave number and confirming that waves are dispersive. Moreover, the dispersion 
equation contains terms involving gravity, initial compression, magnetic field and non-homogeneity, so the phase 
velocity ‘c’ not only depends upon the gravity field, magnetic field, r and initial compression but also on the non-
homogeneity of the material medium. 
 
3. The explicit solutions of this wave velocity equation cannot be determined by analytical methods. However, these 
equations can be solved with the help of numerical method, by a suitable choice of physical parameters involved in 
medium. 
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