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ABSTRACT

The influence of the gravity and magnetic field on the propagation of Rayleigh wave in a prestressed
inhomogeneous, orthotropic elastic solid medium has been discussed. The method of separation of variable has
been used to find the frequency equations for the surface waves. The obtained dispersion equations are in
agreement with the classical results when gravity, magnetic field, non-homogeneity and initial stress are neglected.
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NOMENCLATURE
E is the electric intensit B is magnetic field inductio
My is permeability of vacuum, &,is permittivity of vacuum,
Hi is the perturbed magnetic field, J is the current density,
0°is the conductivity of the material, W; is the vector,
g is the earth gravity, 0 is the stress component,
— 0V . - ,
V =—is velocity of conductor, U is the component of displacement vector,

Ho is the initial magnetic field intensity along zigx M is the magnetic permeability of the medium,

H is magnetic field intensity, p is the density of the material,

ﬁ is the Lorentz’s forci P is the initial stress,
Cijj is elastic constant, tis the time,
T, are the body forces Qijj, Py Py are dimensionless constants.

INTRODUCTION

The theory of elasticity is an approximation to Hteess-strain behavior of real materials. An idgastic material
regains its original configuration on the removateforming force. Therefore an ideal “elastic wéus that wave
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which propagates through a material in such a \Wway the particles oscillates about their mean @ostwithout
causing any changd&he term “initial compression” is meant by compress developed in a medium before it is
being used for study. The earth is an initially ppessed medium. These compressions may have sartiffect
on elastic waves.

The earth has a layered structure, and this egesignificant influence on the propagation of etastaves. The
simplest cases of influence exerted on the propagaf seismic waves by a single plane boundarycvseparates
two half-spaces with different properties, and Wy parallel plane boundaries forming a layer. Eartheing treated
as an elastic body in which three types of wavesocaur.

1. Dilatational and equivoluminal waves in the interad the earth.
2. In the neighborhood of its surface known as Rallevgves [1].
3. Third type of waves occurs near the surface ofamirdf two layers of the earth known as love wg2¢s

The Rayleigh waves are observed far from the disture source near the surface. Since the enenggcchy these
waves is concentrated over the surface, its digsipa slower than the Dilatational and equivolonatiwaves where
the energy is dissipated over the volume of théudied region. Therefore, during earth quakes foobserver
remote from the source of disturbance, the Raylaighes represent the greatest danger. In the ¢dseve waves,
the energy is concentrated near the interface;ehthrey are dissipated more slowly. In the problémropagation
of Love type seismic wave in inhomogeneous isotrapedia of finite depth lying over a infinite halpace, it is
shown that the distortional wave velocity in thgelais greater than in the semi infinite half space

The propagation of Love waves in an in homogendaysr is of considerable importance in earth quakes
engineering and seismology on account of occurrefide homogeneities in the crust of the earthhesdarth is
supposed to be made up of different layers. Thiblpm has been studied by Sezawa [3], Wilson [4 && Gupta
[5], Deresiewicz [6], Scholte [7] by consideringffdient models of by considering different modefsaolayer
changing either density or rigidity and establisiieel presence of Love waves in each case. Also &R&jnKarsel
[9], Chadwick [10], Zhang [11] also studied the agation of Love waves through non-homogeneous anedi
Bromwich[12] was the first who taken the case of gravityiave propagation through elastic solid media. ngki
into account, the effect of initial stresses anohgiBiot's theory of incremental deformations, Jeij&3], De and
Sengupta [14] studied many problems of elastic ware vibrations under the influence of gravitydiieAbd-Alla
and Ahmed [15] studied the Rayleigh waves in ahatrbpic magneto-elastic medium under gravity fiatd initial
stress. Recently, Love waves in a hon-homogendasticemedia, Rayleigh waves in a non-homogeneoaisutar
media, Stoneley, Rayleigh and Love waves in vistsisd media, Love waves in a non-homogeneous oopiot
layer under compression ‘P’ overlying semi-infiniten-homogeneous medium, effect of initial stress$ gravity on
Rayleigh waves propagating in non-homogeneous apiz elastic media were studied by Kakar et B, [17, 18,
19, 20].

In the present study, the influence of gravity, meti field and initial stress on the propagatidrRayleigh type
waves in a non-homogeneous, orthotropic elastic sokdium has been discussed. The dispersion equat
obtained is in well agreement with the correspogdilassical results.

FORMULATION OF THE PROBLEM AND BASIC EQUATIONS
The problem is dealing with magnetoelasticity. Hfere the basic equations will be electromagnetiathelasticity.
The Maxwell equations of the electromagnetic fieléd vacuum (in the absence of displacement cysrard

ﬁ@:o,ﬁ[ﬁzo,ﬁxﬁz—%—?,EXE: ,uoeo%. (1)

The current displacement vector and electric fagklrelated as
J=0°E, (2a)

If the conductor is moving with velocft?/ in applied magnetic field, then
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—_

3200(E+VX§):JO(E+%X§). (2b)

The electromagnetic wave equation through a vadswgiven by

2 \62_’_ 2 \62“_
0" - t% o7 |[E = 0| D" -4 —5 |B = 0. (3)

Let us consider an orthotropic, non-homogeneoustielaolid under an initial compression P alonginection
further it is also under the influence of gravityand magnetic field. Here we consider Oxyz Caatesioordinates
system where O is any point on the plane boundadyGz is normal to the medium and Rayleigh waveagation
is taken in the positive direction of x-axis. Italso assumed that at a great distance from cehtlisturbance, the
wave propagation is two dimensional and is polarize (X, z) plane. So, displacement componentsgaloand z
direction i.e. u and w are non-zero while v = Osa@\it is assumed that wave is surface wave asisiterioance is
extensively confined to the boundary.

Also it is assumed that wave is surface wave asliftarbance is extensively confined to the boupdiaet g be the
acceleration due to gravity apds the density of the material medium.

Here states of initial stresses are givendis @ function of z)
0, =0;1=], g, =0;1#%].

(wherei, j = 1, 2, 3, (wherei, j = 1, 2, 3 4)

Equations of equilibrium of initial compression are

oo Jo Jo
—=0,—=0,—- =0. 5
1704 ay oz P9 ©)

The value of magnetic field intensity is

F (0,0H) =Ho +H, ©
Equations governing the propagation of small atadisturbances in a perfectly conducting elastiiidsbaving
electromagnetic forcem :(jxé) (the Lorentz force,j is the current density atﬁibeing magnetic induction

vector) as the only body force are (Biot [21])
Oy, x+t 03yt 0527 P (V\Q,y— Wy, 2-PIY, x +F = PUy
O X ¥ O,y * Op5, 2= PV x + K =PV,

05 Xt 0pg y T 053 7— PW x +PQ U x + F, = OW, (7

where u, v, w are displacement components in xdyzadirection and y Wy, Wz are al components and are given
by
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1 1 1
W =2 Wy V) Wy =2 (U~ W), W =S (v, Uy). @®)
Further dynamical Eq. (7) in (x, z) directions émrhs of Eq. (5) are given by
O, x T 0y, yt 05 2+ P (W y—W, 2 —pg Uy x + = PUy

O1a X+ 0p3 y+ 05 z= PW x +Pg U x + F, = PWy ©)
where stress components are given by

0, (Cll+ P) Uxt (013 +P) Yz,

Os3 = C31 u, x+ C33 U,z
015= C44 (ul,Z + l%,X)' (10)

where Cﬁ are elastic constants. Since the problem is tgatevo-dimensions (x, z), thereforg,€C,,=C,=0

1
Let us take the assumption that, € E (C,,—Co.

Substituting Eq. (10) in Eq. (19) ; we have

(ChutP)@Y xx+U, zz+ U x2 + Cu(Uy xz— U, z2 + (U, z+ U (C—C.z+2yx(C,+P),x+2y;
(Cyg* P)x— 29 U x +2/4Hg (U, +W,;) = pu, (11)
C11 (ul, xzt 4, ) + (C13 +P) (LL xz— Y, xx) + 2 %3 Uy, zz+ 29 u, X+2,UEH§ (u,xx +sz) + (ul,Z Ty x) (Cll
=G X+ U xCpy 2+ U7 Cyy 2= PW,, (12)
Now we assume the non-homogeneity for the elasifcspace, density and compression are given by

Cjj =ajj eM% p=p, eM% P =P eM?, (13)
wheredqijj, p,, Fyand m are constants.

Substituting Eq. (13) in Eq. (11) and in Eq. (22, get

emz (an + Po) (zul, xx T U, zz+ Uy x2 * ay, (ua, xz— Y, z2) €M¢ +(u1, zt x) (all_ala) m enz — 2po g Yx
eMz+24/ H (U, +W,,) = pu, (14)
oy, (U xztUy, x) + @ 5+2P) (U, x2) — @ 7+2P) Uy yxx + 20, U 77420 U x +2u H?2 (U +W,)+2a,m
Up,x + gy MUy 7= OW . (15)

SOLUTION OF THE PROBLEM
To investigate the surface wave propagation along We introduce displacement potentials in terms of
displacements components are given by
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U=Qx—Wz, W=Qz+yx (16)

Introducing Eg. (16) in Eqgs (14) and (15) we get

2 (0 *+ Py HE) 00— 20,0+ M @, —00,) (202+ W) = 2000, (17)
(a, +Fy—ay) Oy + 20,90, x-m @, —a )W 7= 20, (18)
and

O, @ xx + 0y @ 72— P W x— 20, MY x + 20, M 7 = 20, (19)

(0(11_0(13_ 2Po+:ueH§) quXX + (20(33_0(13_0(11_ 2%) lIJ,zz'*' (2 P9+ 2](13 m) ox * 2“33 m qJ,Z = 2100¢.)tt (20)
7% J?

where,DZ: — +—2 .
ox: 0z

(21)

Since the velocity of waves are different in x andirection. Now Eq. (17) and Eq. (18) represestdbmpressive
wave along x and z-direction while Eqg. (19) and €8) represents the shear waves along theseidimecSince we
consider the propagation of Rayleigh waves in eation, therefore we consider only Eq. (17) and(E0).

To solve Eq. (18) and Eq. (21) we introduce

iar(x-ct)

o(xy, 2)=f(2)e" "

W (x,y, 2) = h(z) e (22)

putting Eq. (22) in Eqg. (18) and Eg. (21) we get

f,ZZ+ Af,z + Bf + Ch = O, 3“2
hzz+Ahz+Bh+Cf=0, 4§2
where
m(ay,-a,) @ (,0O c’-a, - PO) ) [-2p,9+m (ay,-a,)|ia
@y Rt HG R HE 2 (@, +Py+ p1H7)
A= 2mas, +,ueH§ B'= a’ (202 Po~ G+ 2P0) C'= (2:009 + 2m13) a (25)
20’33 —a, a5 2P0 ’ 20'33 —a, a5~ 2I:)o , 20’33 —a, a5 2P0

Now Eg. (23) and Eq. (24) have exponential solutioorder that f (z) and h (z) describe surface egaand also
they varnish as z. « hence Eq. (18) takes the form,

o(x zt)= [Cl e—/hz + Cz e—/lzz] eia(x—ct) ’
b oo etrc,e ] e .
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where G, C,, C,, C, are arbitrary constants ahg A, are the roots of the equation

2+ m (@, - ay5) + 2Mag, + fHg JE
a11+PO+/'IeH(2) 2a33_a11_a13_2P0

+ a2{2p002—0’11+0'13+2po+ p&z_all_ Pg}/]z
20'33—0’11—0'13— 2|:)0 a,t+ Po+ﬂeH 0

+ ma? (all_a33) (Zpocz_a11+a13+ ZPJ +(p Qz_au_Pa 2 4 1
(0’11+ Po"'/JeHé) (20'33—0’11—0’13— 2P()
. at (,00C2 -0y~ Po) (2:0002 —antd gt ZP()
(0’11+ Pot+ 4 H g)(2a33_all_als_ 2P()

2 {m(all_al3)_2pog} (2p g+ 2ma,) =0 (27)
2((’711+ Po+:ueHS) (20'33—0'11—0'13— ZP()

+a
Here we consider only real roots of Eq. (27). Noe tonstants CC, and G, C, are related by the Eq (23) and Eq.
(24).

By equating the co-efficients & “*and e 2? to zero, Eq. (23) gives,

C3 = yl C1’ C4 = yZ CZ’ (28)
where

— 2i[(a11+ PO+lueHg)/1j2 —m @'11 'alan +(:00C2 —a,, - Po)]

y.
) a[m(ay,-a,;)-209] (29)
(j =12)
BOUNDARY CONDITIONS
The plane z = 0 is free from stressesd,g=0,,=0atz =0, (30)
1 mz
0,= 5 (0, =0.) [20xz—W 72+ U xx] €M2, (31)
Oy = 04, [0 xx =W xz €MZ+ 0 [@ 77+ Y 7] €MZ (32)

Introducing Eqg. (31) and Eg. (32) in Eqg. (30) weda

C,(2\ ia+y A *+a’y) + C [2M, ia+yA *+a’y,] =0, (33)
2 . .
C, [ A +A%a, —ayyjia (o, —a )] +C, [-a’A ,+A 2 a A yjia (a,,—a13)] = 0. (34)

Eliminating G and G from Eq. (33) and Eq. (34) ; we have
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. . . 2
[2A, ia + Y\ 7+ oy ] [Fa®A + A7 a Ny (g —a1)] - [2 A ia+ y P+ o’y [FaT A+ A a, -

a,yjia (a,,—a, )] =0, (35)
WhereyJ (=1, 2) are given by Eq. (29) ahg(j =1, 2) are roots of Eq. (27).

Now Eg. (35) gives the wave velocity equation fayRigh waves in a nhon-homogeneous elastic halfesmd
orthotropic material under the initial compressioragnetic field and influence of gravity. From E85), it follows
that Rayleigh waves depends on gravity, initial pogssion, magnetic field and non-homogeneous ctearatthe

2T
medium and nature of the material, we conclude ithais large i.e. length of wave i.e— is small then gravity,
a

magnetic field and compression have small effentfRayleigh waves in non-homogeneous orthotropi€ spdce

2T
and ifa is small i.e.—— is large then gravity, magnetic field and comprm@splays a vital role for finding out the
a

wave velocity c.
Case 1.When the medium is isotropic, Eq. (35) becomes

[2A i +yA 2+ oy ] [K 22 -0%) + 2K 2 (L —iay )] — 2, ia + YA 2 +0? v ] [K 2 (A2 -a?)

2

+2K,2(1-yA) =0, (36)

A+2u+P , u-P/2
T’KZ - /=

WhereKl2 = , (A, p are Lame’s constants). (37)

Eq. (37) determines the Rayleigh waves in a nondganeous isotropic elastic solid under the infleeotgravity,
magnetic field and compression.

Case2. When initial compression and magnetic field drsemt i.e. P= 0, H=0, then equation (36) reduces to,

[2A, i +y A2 +ofy] [K2 (2 -0%) + 2K 2 (1 —iay )] — [2), ia +y A2 +0’y,

1Kz (2 -0?)

+2K 7 (1-ayA)] =0, (38)
whereK ? = A+op Kj2= =y
Y 1Y

Eq. (38) determines the Rayleigh surface wavesrinreahomogeneous isotropic elastic solid undeiirtfieence of
gravity which is similar to corresponding classiegult given by Daet al.

Case2. When non-homogeneity,¢HO of the material is absent, we get same dispesguation as Eq. (35) with
_=il(ay, + PO)/]]_2+(,0O ¢ -a,-R) =12
ap,g

Y
whereA , A, are the roots of the equation
2 2
A+ a? 2p,C° —ay, tagt 2I:)04_ pe —a,—P
205, — 0, — 03— 2P, a,.t P

0'4(,00(:2_0'11_ Po) (2poC2_all+als+ ZP() - 20'2:0029 ? _
(R) +0'11) (20'33_0'11_0'13_ ZPL)

0/12

+

0. (39)
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Case3. When gravity field and magnetic field are absermt,get same velocity equation for Rayleigh wavesan-

homogeneous elastic solid under initial compresa®kq. (35) with

_2[(ayt+ Po)/]j2 - Mm@y, d )t P, t &, -F
) [am(ay,~ay;) ]

7i=1,2,

whereA , A, are roots of the equation

24+ {m(an_als) + 2ma;, }/\3
a,+ I:)0 2a33_all_al3_ 2I:)0

+az[2p002—0'11+0'13+2po+ p(pz_all_ Po}/]z
20’33 —a, a5~ 2I30 a,t Po

+ Mo

2 (all_a33) (2:00(:2 —ataggt ZPC) +(,0 92 —aa Pa 2 4 1
(all + Po) (20’33—0'11—0’13— ZP()

.\ at (pOCZ -0y, Po) (2:0002 —at At ZP()
(0’11+ P )(2a33_a11_a13_ ZP()

2 { all a13)}

=0.
(0'11+P)(20'33 0, =05 ZP‘):l

+a

Case4. When medium is initially unstressed i.6.P0
We get, velocity equation for Rayleigh waves isikinto Eq. (35) with

_ Zi[(all/]jz_ m (all _a13)4j+@06 -all): L
yj = ’J_lv 2;
a [m(all_alfi)_zpog]

whereA , A, are roots of the equation

24+ {m(an_als) + 2ma,, }AS
a, 20’33—0’11—0’13

2 2
+ 0,2{2:000 —0’11+0’13+ PE _a11:|/]2
20’33 —a,= 0y, a,,

+ ma? (an-asz) (Zpocz_an"'als) +(,0522—0’1) 20 4, p
(all)(2a33_a11_a13)
. at (,00C2 _all) (2,0002 _a11+a13) +a? {m(all_al3) _2:009} (2:009 + me)
(all)(2a33_all_al3) 2(“11) (20’33 a,— 0’13)
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Case5. When the non-homogeneity of the material=®1 and gravity field are absent further mediumnigially
unstressed and isotropic, Eq. (35) reduces to,

2 2 2 )2
T
1 2 2

A+2
WhereKl2 _ATeH ,K22 _H

)z P
Eq. (42) is similar to the equation given by Raytei

CONCLUSION

1. Equation (35) represents the wave velocity egadbr the Rayleigh waves in a non-homogeneou$otmopic
elastic solid medium under the influence of grauitagnetic field and initial compression.

2. It also depends upon the wave number and canfirthat waves are dispersive. Moreover, the d&per
equation contains terms involving gravity, initedmpression, magnetic field and non-homogeneitytheophase
velocity ‘c’ not only depends upon the gravity fieimagnetic field, r and initial compression bugoabn the non-
homogeneity of the material medium.

3. The explicit solutions of this wave velocity egjon cannot be determined by analytical methodsvéver, these
equations can be solved with the help of humeriethod, by a suitable choice of physical parametersved in
medium.
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