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Commentary
Multipotent mesenchymal stem cells (MSCs) were isolated for 
the first time by Friedstein from adult bone marrow [1]. During 
the following years, MSCs were identified and isolated from 
other tissues such as trabecular bone [2], skeletal muscle [3], 
skin [4] and umbilical cord [5]. Since from their discovery, MSCs 
became an attractive field of research for Cell-based Therapies 
(CT) and Regenerative Medicine (RM). Indeed, it has been widely 
recognized that MSCs exert immunomodulatory, pro-angiogenic, 
anti-apoptotic and pro-survival activities and have the ability 
to regenerate damaged tissues. It is now ascertained that the 
regenerative properties of MSCs are related to their capability 
to secrete cytokines and growth factors (paracrine mechanism), 
rather than to their differentiation potential.

Human Adipose-derived Stem Cells (hASCs) are MSCs isolated 
from adipose tissue. Compared to other MSCs, hASCs have the 
great advantage to be obtained from human fat specimens with 
relative feasibility, greater stem cell yields than from other stem 
cell reservoirs and, most important, minimal invasive procedures.

Several studies have demonstrated that hASCs secrete multifarious 
cytokines and growth factors. Vascular endothelial Growth factor 
(VEGF), Hepatocyte Growth factor (HGF), transforming growth 
factor-beta (TGF-), Stromal Cell derived Factor-1 α (SDF-1α), and 
Interleukins 6 and 8 (IL-6,-8) are the most prominent molecules 
[6-9], however such proteins represent only a minimal portion of 
the whole hASCs secretome.

Taken together, all the above mentioned points render these cells 
a very interesting tool for CT and RM [10,11]. 

To date, hASCs and stromal vascular fractions (SVFs) have been 
or are currently under investigation in several clinical trials to 
ascertain their suitability in CT and RM [10]. Over 40 clinical 
trials using adipose-derived cells conducted in 15 countries 
have been registered with the NIH, the majority of which are 
Phase I or Phase I/II safety studies [12]. These studies make use 

of freshly isolated or cultured and expanded cells; moreover, 
their administration is by an autologous or allogeneic manner. 
Thus, some considerations about cell yields, characterization, 
manipulation and time required to expand cells and patient 
safety should be done. In fact, in clinical trials involving freshly 
isolated hASCs defining a precise cell number to be administered 
and characterizing them (i.e. phenotype, caryotipe and DNA 
analysis for heterologous applications, etc.) is almost difficult. 
On the other hand, in clinical trials involving hASCs culture and 
expansion, the time required to obtain cells could represent an 
important obstacle in some pathologies where it is important to 
urgently intervene. Nevertheless, items such as risks associated 
to technical operations and hypothetical biological aberrations 
(e.g. DNA mutations) should be evaluated.

Another drawback related to in vitro hASCs expansion could 
be the difficulty to obtain elevated amounts of cultured cells 
for repeated administrations. In fact the phenomenon termed 
“replicative senescence”, which naturally occurs in cells plated for 
long time, leads to an irreversible growth arrest and subsequent 
impossibility to proliferate [13]. Different stimuli are able to 
induce a senescent state [14]; at some extent, this process 
depends on the “molecular clock” theory, which considers 
progressive shortening of chromosomes ends (telomere ends) 
as sign for cells to cease divide and proliferate with consequent 
arrest in G1/S phase of the cell cycle [15-17]. From a different 
point of view, this phenomenon guarantees undesirable cell-cycle 
control escape, which could promote tumorigenesis [18,19]. 

By considering all the above reported aspects, direct cell 
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administration could negatively affect CT and RM, at least in part.

A potential innovative hypothesis to fully exploit stem cell 
paracrine properties in CT and RM could be conditioned media 
administration. There are several pre-clinical studies showing 
the effectiveness of secretome treatment. For example, some 
findings have elucidated a possible role of cell-conditioned media 
with regenerative activities in models of wound-healing [20-22], 
chronic kidney disease [23], stroke [24] and lung injury [25]. More 
in general, soluble factors and microvesicles could represent 
better therapeutic strategies for regenerative medicine [26]. Cell-
free media carrying a therapeutic potential comparable to stem 
cell transplantation could offer an obvious advantage for a clinical 
translation in the future. Indeed, conditioned media (containing 
secreted factors) can be manipulated and managed easier than 
cells in terms of manufacture, freeze-drying, packaging and 
delivery. More importantly, avoidance of direct cell administration 
largely limits tumorigenicity and rejection problems [27].

Interestingly, at the moment two clinical trials are currently 
evaluating hASC secretome therapeutic effectiveness on hair 
follicle regeneration and wound healing [28,29]. 

Under this pioneering perspective, the only limitation might 
be the senescence occurring during hASCs expansion to obtain 
elevated cell number and, subsequently, conditioned media.

A possible alternative to circumvent cell expansion limitations 
imposed by replicative senescence is cell immortalization. This 
strategy requires abrogation of p53 and pRB-mediated terminal 
proliferation and/or activation of a telomere maintenance 
mechanism [30]. Several methods have been developed for 
immortalizing cells in vitro [31]. Among these, introduction of 
viral genes [32], such as SV40 [33] or HPV E6/E7 genes [34] and 
hTERT gene [35,36] have been widely used.

Based on the above premises, we recently proposed the 
“hybridoma-like” method as an alternative strategy to unify 
hASCs paracrine properties, cell immortalization methods and 

conditioned media administration. For this reason we aimed 
to immortalize human hASCs, compare and characterize them 
with non -immortalized cells by phenotypic and functional in 
vitro evaluations [37]. Moreover, by administering serum-free 
conditioned media in vivo to assess angiogenic and regenerative 
potential of immortalized hASCs secretomes, we observed that 
the media alone were highly effective to induce a response 
[unpublished data].

A previous study demonstrated that MYC-mediated hESC-MSC 
immortalization was effective in producing an infinite supply 
of cells to produce exosomes as either therapeutic agents or 
delivery vehicles [38]. At least in part, these findings confirm 
that cell immortalization might be the right strategy to obtain 
large amounts of secreted factors and microvesicles. In addition, 
the relatively recent generation of safer lentiviral particles for 
transducing cells has been described [39,40]. Thus, employment 
of these lentiviruses to immortalize hASCs could further contribute 
to render the “hybridoma-like” method more affordable and not 
dangerous. 

In conclusion, this “hybridoma-like” model could represent a 
new strategy to produce large amounts of soluble factors and to 
bypass limits imposed by senescence occurrence (process scale-
up), and a proper manner to maximize hASCs therapeutic efficacy 
avoiding direct administration of stem cells and potential adverse 
effects. In fact, production of large quantities of conditioned 
media could allow a deeper characterization of secreted factors, 
a more accurate quality control and, possibly, an allogeneic 
administration. Although further studies will be needed to better 
understand this model and its potentialities, nevertheless it may 
represent a useful tool to produce cell-secreted paracrine factors 
for future applications in CT and RM.
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