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Introduction
The enzyme-catalysed biodegradation of environmentally 
hazardous compounds in lab-scale experiments is well 
documented, including research that has studied the 
biodegradation potential of extracellular enzymes secreted 
by white rot fungi (WRF) mycelia [1].The particular interest in 
these fungal species is related to their effective biodegradation 
of recalcitrant pharmacologically active compounds including 
endocrine disrupting compounds (EDCs) [2,3]. These studies 
typically emphasize three objectives: (A) removal of target 
compounds; (B) correlation of this removal to measured 
enzymatic activities; and (C) identification of degradation 
products, including toxicity assessments [4-6]. However, there is 
limited knowledge regarding which constituents are leached from 
the mycelial cells into the medium. Secretion and excretion are 
two concepts that are commonly used to describe the processes 
through which compounds penetrate cell walls. Secretion is the 
active process of releasing and transporting chemical substances, 
like extracellular enzymes (exoenzymes), out of a cell, while 
excretion is the passive transport of waste products that have 
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The transport of fungal-derived compounds from Trametes versicolor to the 
environment was investigated. Fatty acids and sphingoids were identified at the outlet 
of a bioreactor containing an acidic nutrient solution and immobilized fungal mycelia. 
The analyses were conducted using UHPLC-Q-TOF-MS (/MS). Eleven fatty acids, 
including C20:0, C18:1-OH and C20:0-OH that have not been previously described 
for this species, were detected. The identities of myristic acid (C14:0), palmitic 
acid (C16:0) and stearic acid (C18:0) were confirmed using reference standards. Six 
sphingoids, including Sph (t18:0), Sph (t18:1), Sph (d18:0), Sph (d18:1), Sph (d16:0) 
and Sph (d16:1), were tentatively identified, and the identities of Sph (d18:0) and 
Sph (d18:1) were confirmed by reference standards. The findings show that an 
array of compounds, with concentrations at the µgL-1 level, was easily transported 
from the fungal mycelia. This is of concern when the investigated species is used in 
biodegradation experiments of xenobiotics and conclusions are to be drawn on the 
quality of the treated water. The study thus shows that the chemical composition of 
water treated with Trametes versicolor is also influenced by the immobilized fungus 
itself. The lipids that were detected, including fatty acids and sphingoids do not 
present any threat to the environment since they are not toxic. At µgL-1 concentration 
levels, they are soluble in water.  
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no further utility. Active processes do not only comprise the 
secretion of exoenzymes (exocytosis) from fungal cells, but can 
include endocytosis, in which extracellular macromolecules 
are engulfed by the cell membrane and imported into the cell 
[7]. Exocytosis describes a process in which membrane-bound 
vesicles containing enzymes, toxins and lipids -fuse with the 
plasma membrane in hyphae [8]. Like the plasma membrane, the 
vesicle membranes also contain lipid bilayers. Upon fusing, the 
vesicle membrane proteins and lipids move to the outer region of 
the fungal plasma membrane via the Spitzenkörper, i.e. a vesicle 
supply centre present in hyphae.

A passive transport of molecules out from the fungal cell is 
accomplished through the cell wall pores providing that the 
molecules are not too large. However, permeability of up to 
270 kDa dextran molecules have been reported [9]. It must be 
emphasized that the cell wall is permeable in both directions, and 
thus also includes the influx of nutrients, water and ions [10]. A 
fungal hypha tip, including cell organelles and simplified transport 
mechanisms, is illustrated in Figure 1. Thus, lipids from vesicles, 
as well as passively transported compounds originating from cell 
membranes and the cytosol, can be expected in biodegradation 
experiments. The mild conditions that are used in biodegradation 
experiments cannot be compared with the conditions utilized 
during harsh mycelium extraction methodologies. The fungal cell 
wall, which has previously been described as carbohydrate armour 
[11], contains chitin, glucan polysaccharides and mannoproteins 
[9]. T. versicolor mycelia are extracted with hot water (100oC) to 
obtain the polysaccharide Krestin (PSK) and polysaccharopeptides 
(PSPs), both of which are used to supplement cancer chemo- and 

radiotherapy [12]. The boiling water is used to weaken the cell 
walls, as high temperatures are necessary for successful cell wall 
lysis. A hot alkaline solution can also be used for this purpose [11]. 
Lipids, alkaloids and phenolic compounds can be extracted from 
disrupted fungal mycelia with organic solvents [13-16]. In these 
studies, the cell walls were initially mechanically crushed, but lipids 
can be extracted from mycelial cells prior to any milling procedure.

In the present investigation, the mycelia were grown in a slightly 
acidic nutrient solution thereby maintaining the cell wall structure. 
The study aimed to identify leachables from T. versicolor mycelia, 
and applied a previously described experimental procedure that 
was used in the investigation of the biodegradation and adsorption 
mechanisms of the NSAID diclofenac [17]. Bioreactor experiments 
were performed at pH 4, which was chosen specifically to minimize 
bacterial growth, under non-sterile conditions. In addition 
to fungal mycelia, the reactor contained a nutrient solution 
consisting of glucose and ammonium tartrate dissolved in tap 
water. Fresh nutrient solution containing diclofenac was pumped 
through the bioreactor during the experiments. The search for T. 
versicolor leachables presented in this paper was performed on 
an experimental culture containing living fungal mycelia. UHPLC-
Q-TOF MS and MS/MS were used to identify the compounds. The 
identity of fungal derived leachables resulting from T. versicolor 
mediated biodegradation has previously not been studied, and 
the presented research adds valuable information about the 
chemical composition of fungal-treated water, specifically, that 
fungal constituents as well as the biodegradation products of 
pharmacologically active compounds (PhACs) and EDCs can be 
present in treated wastewaters. 
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Scanning electron microscopy (SEM) picture of T. versicolor mycelia (A), and a schematic drawing of the fungal hyphal tip including 
organelles and transport mechanisms (B). (1) hyphal wall, (2) septum, (3) mitochondrion, (4) vacuole, (5) ergosterol crystal, (6) 
nucleus, (7) endoplasmatic reticulum, (8) lipid body, (9) plasma membrane (lipid bilayer), (10) Spitzenkörper, (11) Golgi apparatus, 
(12) passive transport, (13) active transport (endocytosis), (14) active transport (exocytosis).

Figure 1
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Materials and Methods
Fungus 
T. versicolor (strain AG1383) was obtained from PhD Ivana 
Eichlerová at the Institute of Microbiology, the Culture Collection 
of Basidiomycetes, Institute of Microbiology, and Academy 
of Sciences of the Czech Republic in Prague. The fungus was 
maintained by subculturing every second month onto disks 
containing modified malt extract agar supplied by the National 
Veterinary Institute (SVA, Uppsala, Sweden) at ambient 
temperature.

General experimental procedures 
The nutrient solution used throughout the bioreactor 
experiments (including fungal growth onto immobilization 
supports and biodegradation experiments) contained 6.0 g L-1 

D-(+)-glucose (≥ 99.5%) and 3.3 g L-1 ammonium tartrate (≥ 98%) 
with a carbon: nitrogen molar ratio (C:N) of 6.6. The pH of the 
solution was adjusted to 4.0 with 1.0 M LiChrosolv®sulfuric acid 
(Merck, Darmstadt, Germany). Glucose, ammonium tartrate, DL-
Dihydrosphingosine, synthetic (≥ 98%), D-Sphingosine (≥ 98%), 
myristic acid (≥ 99, 5%), palmitic acid (≥ 99%) and stearic acid 
(≥ 98.5%), were purchased from Sigma-Aldrich (St. Louis, MO). 
Diclofenac sodium salt (≥ 98%), was purchased from Sigma-
Aldrich, (St. Louis, MO). Diclofenac-d4 with an isotopic enrichment 
of 98 atom% deuterium was obtained from C/D/N Isotopes 
Inc. (Quebec, Canada). Softened industrial tap water (removed 
calcium and magnesium) from General Electric Healthcare, 
Uppsala, Sweden was used unless otherwise specified. The 
mobile phases that were used for the UHPLC-Q-TOF MS and MS/
MS analyses were LiChrosolv® Hypergrade acetonitrile (≥ 99.9%) 
and LiChrosolv® water for chromatography. The chemicals were 
purchased from Merck (Darmstadt, Germany). Ammonium 
acetate (≥ 99.0%) for the preparation of the mobile phase was 
obtained from Fluka (Darmstadt, Germany). The immobilization 
supports (carriers), which contained polyurethane foam (PUF) 
were purchased from Eheim GmbH & Co. KG (Deizisau, Germany). 
The model type was Eheim pickup 160.

Preparation of reference solutions of fatty 
acids and sphingoids used for confirmation of 
chemical structures
Reference solutions of myristic (C14:0), palmitic (C16:0) and 
stearic acid (C18:0) were prepared at 100 µgL-1 concentrations 
using the nutrient solution as a solvent. Stock solutions with a 
concentration of 5 mgL-1 were first done to allow the acids, stearic 
acid in particular, to dissolve. Additionally, reference sphingoid 
solutions were prepared. The chosen compounds were Sph 
(d18:0) (dihydrosphingosine), and Sph (d18:1) (sphingosine). They 
were dissolved to 100 µgL-1 concentrations in nutrient solution. 
Analyses of the reference solutions were performed within 24 h. 

UHPLC-Q-TOF analysis
An Agilent Technologies 6550 funnel Q-TOF LC/MS system 
(Agilent Technologies, Santa Clara, CA) including an Agilent 
Technologies 1290 Infinity UHPLC system consisting of a 1260 
iso pump (G1310B), 1290 binary pump (G4220A), thermostat 
(G1330B), 1290 sampler (G4226A), 1290 thermostated column 
compartment (G1316C) and electrospray ionization (ESI) was 

used for the UHPLC-Q-TOF MS and MS/MS analyses. Agilent Mass 
Hunter software (version. 06.00) was used for data acquisition 
and processing. The drying gas flow rate and temperature 
were set to 14 Lmin-1 and 150oC, respectively, while the sheath 
gas flow and temperature were set to 11 Lmin-1 and 350oC, 
respectively. The capillary voltage was set to 4000 V. Positive 
and negative polarities were assessed, with the acquisition rate 
set to 3 scan sec-1. The scanned m/z range was 100-1000. Lock 
masses with m/z 121.05087300 (protonated purine) and m/z 
922.00979800 (protonated hexakis-(1H, 1H, 3H-tetrafluoro-
pentoxy) phosphazene) were used during positive ionization 
mode analyses, whereas m/z 112.9856 (TFA anion) and m/z 
980.0164 (hexakis-(1H,1H,3H-tetrafluoro-pentoxy) phosphazene) 
were chosen for the negative ionization mode analyses. In MS/
MS, the collision-induced dissociation (CID) energies were set to 
10, 20 and 40 V. 

Before each analysis occasion (i.e day), the instrument was 
calibrated in positive and negative modes using the Agilent Check 
Tune procedure, which demands a mass accuracy <1 ppm and a 
resolution >20000. The presence of lock masses was confirmed 
during each analysis sequence. A Zorbax Eclipse plus C18 rapid 
resolution HD (2.1 x 50 mm, 1.8 µm) UHPLC-column from Agilent 
Technologies was used for separation purposes. The flow rate 
and temperature were set to 0.3 mLmin-1 and 30oC, respectively. 
Mobile phases A and B consisted of Lichrosolv water including 
2.0 mM ammonium acetate and hypergrade acetonitrile, 
respectively. Mobile phase A had a pH of 7.0. The composition 
of the mobile phase consisted initially of 90% A which was then 
subjected to a linear decrease to 10% A over six minutes, followed 
by an isocratic period of one minute. The concentration of the 
mobile phase was then linearly increased from 10% A to 90% A 
over a time period of one minute to equilibrate the column. The 
injection volumes were 5 µL. 

Inoculation and bioreactor experiments
A Biostat® B reactor (B. Braun Biotech International, Melsungen, 
Germany) containing a 2 L reaction vessel and equipped with 
an effluent Pump P-1 peristaltic pump (Pharmacia Biotech, 
Uppsala, Sweden) was used for bioreactor experiments aiming 
to remove the non-steroidal anti-inflammatory drug diclofenac 
(Figure 2) [17]. The reactor was run using a semi-continuous 
supply of nutrients and diclofenac and a constant peristaltic 
pump-mediated effluent flow of 1 mLmin-1 (hydraulic retention 
time (HRT) of 33 h). Fresh nutrient solution containing diclofenac 
(10 mgL-1) was added to the reactor via the substrate supply port 
(port 6 in Figure 2) when the liquid level in the reactor reached 
the determined minimum level (at the lower end of the liquid-
level sensor, shown in port 4 in Figure 2). New solution was 
added until the total volume reached 2 L. The fungal-treated 
solution was pumped out of the reactor through a titanium filter 
in the harvesting pipe (port 1 in Figure 2) to exclude any mycelia 
residues from the collected samples. The pH was kept at 4.0 with 
an automatic acid and base doser (1.0 M NaOH and sulfuric acid) 
[17].

A total of 14.2 g of PUF pieces, each with an approximate 1 
cm3 cubic size (cut with scissors) were added to the bioreactor, 
followed by the addition of 2 L of nutrient solution. The vessel 
was then autoclaved at 125oC for 30 min, after which 35 agar 
plugs containing mycelia were added. The fungus was allowed 
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Schematic illustration of the Biostat®B bioreactor used in the biodegradation Experiments. (1) Harvesting pipe with filter connected 
to peristaltic pump, (2) sulfuric acid filling port, (3) sodium hydroxide filling port, (4) liquid-level sensor, (5) electrode for the 
automatic pH control device (pH 4.0), (6) substrate supply, (7) teflon flea, (8) T. versicolor mycelia immobilized on PUF-cubes, (9) 
magnetic stirrer.

Figure 2

to grow in the bioreactor under non-flowing conditions for one 
week. Thereafter, nutrient solution containing diclofenac (10 mg 
L-1) was fed into the reactor under flowing conditions (port 6 in 
Figure 2). Samples, 4 mL each, for the UHPLC-Q-TOF analyses 
were collected at 0.5, 1, 2, 4, 6, 22, 29, 46, 70, 94 and 166 hours 
through a 2 µm titan frit that was mounted onto the effluent 
tubing. The reactor turn-over volume was 33 hours (HRT). Thus, 
at the end of the experiment (166 h), 5 reactor volumes were 
used. 

Results 
In all experiments, diclofenac d-4 was present at a concentration of 
100 µgL-1.The detected compounds were present at approximate 
µgL-1 levels. All substances were detected using positive mode ESI 
MS. For fatty acids (FAs), negative mode ESI (MS/MS) was used to 
confirm the chemical structures of the most abundant FAs.

Fatty acid composition
Eleven FAs were detected as ammonium adducts ions using 
positive mode ESI. Nine were tentatively determined according 
to their accurate masses including mass errors <2.5 ppm. 
Palmitic  acid (16:0) and stearic acid (18:0) were the most 
abundant FAs identified (Table 1). 

Negative mode ESI was used to confirm the presence of C16:0 
and C18:0 based on their accurate masses and retention times. 
Negative ion mode scans yielded higher abundances in MS mode 
and less noisy spectra. MS/MS was performed at three different 
collision-induced dissociation (CID) energies (10, 20 and 40 V). 
The precursor ions of C16:0 and C18:0 were present as [M-H]- 

ionic species. For C16:0, a major ion at m/z 255.2323 was found 
in full-scan mode. The accurate mass corresponded well (i.e. 
mass error of 2.3 ppm) with the molecular formula C16H32O2 
(Table 1). As a result, this was selected as a precursor ion. No 
major product ions could be observed in MS/MS independent of 
CID-energy. Similarly, no major product ions of 18:0 were found 
in the corresponding product ion spectra. The precursor ion of 
choice for C18:0 was m/z 283.2638, which corresponds to the 

elemental composition C18H36O2 (Table 1). The mass error was 
1.4 ppm. The three fatty acid reference solutions (see Materials 
and Methods) were injected and, under negative ion mode, the 
accurate masses of the [M-H]- ionic species were determined 
to be 227.2013 (14:0), 255.2326 (16:0) and 283.2634 (18:0), 
respectively. The corresponding mass errors were 0.9, - 0.8 and 
1.1 ppm, respectively. The retention times differed from those 
presented in Table 1 by -1.3% (14:0), -1.7% (16:0) and -1.0% 
(18:0). The accurate mass and retention time determinations 
confirmed the identity of the three fatty acids. It was supported 
by the dominance of the parent [M-H]- peaks and the absence of 
product ions in MS/MS spectra [18]. 

Sphingoid composition
Six sphingoids were tentatively identified through MS and MS/
MS using positive ionization. The chemical structures of these 
compounds are shown in Figure 3. All sphingoids were identified 
in full-scan mode as their [M + H]+ ion species. A summary of 
the accurate mass determinations, including mass errors and 
retention times, from the full-scan MS is presented in Table 2. 
All six sphingoids obeyed the nitrogen rule (proton adducts with 
even m/z).

In MS/MS, the product ion spectra showed similarities when 
accounting for water loss, which was most abundant at a CID 
of 20V. The number of water molecules lost, the m/z of the 
product ions and the [M + H]+ precursor ions for each sphingoid 
determined the chemical structures. Additionally, typical aliphatic 
chain fragmentation patterns were present for all compounds, 
mainly at CID 40V. These fragmentation patterns are argued 
to be of restricted use to determine the exact positions of the 
unsaturated carbons [19]. The product ions of Sph (t18:0), Sph 
(t18:1), Sph (d18:1) and Sph (d16:1) had m/z values of 44, 55, 
67, 81, 95, 109, 123 and 129. However, fragments with m/z 69, 
83 and 97 rather m/z 67, 81 and 95 were most abundant for 
Sph (d16:0) and Sph (d18:0). For the investigated sphingoids, 
it is assumed that a trans-double bond is present at position 4 
[20], whereas the trans-double bond is present at position 8 in 
dehydrophytosphingosine (Sph (t18:1)) [21]. Interestingly, by 
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FA Elemental  
composition

Accurate
mass, m/z

Exact 
mass, m/z

Mass error
mDa      ppm tR (min)

C14:0* C14H28O2 246.2431 246.2433 0.2         0.8 3.98
C14:1 C14H26O2 244.2276 244.2277 0.1         0.4 4.77
C16:0* C16H32O2 274.2746 274.2746 0.0         0.0 4.95
C16:1 C16H30O2 272.2586 272.2590 0.4         1.5 4.42
C16:1-OH C16H30O3 288.2534 288.2539 0.5         1.7 4.63
C17:0 C17H34O2 288.2897 288.2903 0.6         2.1 5.51
C18:0* C18H36O2 302.3056 302.3059 0.3         1.0 6.14
C18:1 C18H34O2 300.2899 300.2903 0.4         1.3 5.89
C18:1-OH C18H34O3 316.2849 316.2852 0.3         0.9 4.11
C18:2 C18H32O2 298.2743 298.2746 0.3         0.9 4.84
C20:0-OH C20H40O3 346.3314 346.3321 0.7         2.0 4.58
*Indentity confirmed by reference standards 

Table 1:  Summary of the accurate mass measurements of FAs, as determined for their ammonium adduct ions using UHPLC-Q-TOF MS. The elemental 
compositions are shown in their uncharged state. Data for detected ions correspond to acquisitions obtained in full-scan mode.

 

Chemical structures of tentatively identified sphingoids, along with their trivial names.Figure 3
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examining the product ions for the sphingosines (which contain 
two -OH groups) in particular, the m/z 67, 81 and 95 ions indicated 
the presence of an unsaturation, while the m/z 69, 83 and 97 ions 
were significant for the saturated sphingosines. 

The product ions at m/z 44.0491 and 55.0544 can be traced to 
C2H6N and C4H7 fragments respectively by matching the accurate 
masses against theoretical monoisotopic masses for known 
fragment ions including C, H, N and O. The mass errors were 
less than 10 ppm for both product ions. In Figure 4, a proposed 
fragmentation scheme is shown for Sph (d18:1) and Sph (d18:0). 
This scheme includes product ions with mass errors <10 ppm. 
Regarding Sph (t18:1), where the unsaturation is reported to be 
at position 8, the product ion spectrum showed no difference 
compared with Sph (t18:0).  The fragmentation pattern of Sph 
(t18:1) is shown in Figure 5. The ions at m/z 44.0491 and 55.0544 
were present in product ion spectra for all six sphingoids. Five 

µL of the reference sphingoid solutions containing Sph (d18:0) 
and Sph (d18:1) were injected into the MS system run in positive 
ion mode (see Materials and Methods). The accurate masses of 
the [M+H ]+ ionic species were determined to be 302.3046 (Sph 
(d18:0)) and 300.2904 (Sph (d18:1)). These determinations can be 
compared with the previously determined accurate masses of Sph 
d18:0 (302.3044) and Sph d18:1 (300.2905). The  mass errors for 
the reference sphingoids were 1.3 and 0.3 ppm, respectively. The 
retention times differed from those presented in Table 2 by -1.7% 
for both d18:0 and d18:1. The accurate mass and retention time 
determinations confirmed the identity of the two sphingoids. MS/
MS was performed using parent ions at m/z 302.3046 (Sph d18:0) 
and 300.2904 (Sph d18:1). MS/MS spectra revealed that both 
compounds had lost two molecules of water. These neutral water 
losses were in the 18.0102 – 18.0108 Da range (the monoisotopic 
mass of water is 18.0106 Da). The water losses were most 
abundant at a CID of 20 V. Furthermore, the mass-to-charges in 

Id
 

Trivial
Name

Elemental 
Composition

Accurate 
Mass (m/z)

Exact 
Mass

Mass error
 mDa       ppm

tR, (min)
 

Sph (t18:0) Phytosphingosine C18H39NO3 318.3007 318.3003  - 0.4        -1.3 3.9
Sph (t18:1) Dehydrophytosphingosine C18H37NO3 316.2849 316.2846   -0.3        -0.9 3.7
Sph (d18:0)* Dihydrosphingosine C18H39NO2 302.3044 302.3050    0.6          2.0 6.1
Sph(d18.1)* Sphingosine C18H37NO2 300.2905 300.2900   -0.5        -1.7 5.9
Sph(d16:0) C16 dihydrosphingosine C16H35NO2 274.2745 274.2741   -0.4        -1.5 4.9
Sph(d16:1) C16 sphingosine C16H33NO2 272.2590 272.2584   -0.6        -2.6 4.7
d stands for dihydroxyls (di)  and t for trihydroxyls (tri) 

Table 2: Summary of the accurate mass measurements of sphingoids, as determined by UHPLC-Q-TOF MS. Data for detected [M + H]+ ions correspond 
to acquisitions obtained in full-scan mode. The elemental compositions are shown in their uncharged state.
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the product ions resembled those in Figure 4. For reference Sph 
d18:0, selected characteristic  ions were detected at m/z 44.0492 
(44.0491), 69.0700 (69.0701), 83.0860 (83.0859) and 97.1013 
(97,1017) (product ions from collected samples in brackets).  For 
reference Sph d18:1, the corresponding comparison showed the 
following pattern: m/z 44.0492 (44.0491), 67.0544 (67.0541), 
81.0700 (81.0696), 95.0863 (95.0853). Thus, the identities of Sph 
(d18:0) and Sph (d18:1) were proven. 

Discussion
The presence of the described compounds, including FAs and 
sphingoids, shows that these compounds were either passively 

transported from the lipid bilayer or cytosol through the mycelial 
cell walls during the course of the experiment, or actively 
transported via vesicles (Figure 1). Previous fatty acid profile 
studies of T. versicolor mycelia mainly include extracts from fruit 
bodies. Abugri et al. [22] determined the FA composition of wild 
T. versicolor by hydrolyzing the collected samples with 5 M KOH 
and MeOH in the presence of the internal standard C19:0. After 
this procedure, which was performed at 55oC for 90 min, the 
samples were ice-cooled. The FA methyl esters (FAMEs) that had 
formed were hexane extracted and analyzed with GC-MS. This 
study did not investigate any hydroxy FAs, but rather saturated 
mono-unsaturated (MUFAs) and poly-unsaturated FAs (PUFAs). 
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α-hydroxylated C16:0, C18:0 and C18:1 are the three major 
fatty acyls [26]. The formed amides (ceramides) are linked to 
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