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ABSTRACT 
 
An attempt is made to investigate the hydromagnetic two-layered fluid flow driven by a constant pressure gradient 
in a horizontal channel under the action of uniform strong magnetic field in the slip-flow regime. Closed form 
solutions for the velocity and temperature distributions in the two regions are obtained by assuming that the fluids 
in the two regions are incompressible, immiscible and electrically conducting. Further, the two fluids are assumed 
to have different viscosities, electrical and thermal conductivities. The transport properties of the two fluids are 
taken to be constant and the bounding walls are maintained at constant and equal temperatures. The profiles are 
plotted after obtaining the numerical values for different sets of values of the governing parameters involved and 
discussed in detail by analyzing these parameters such as, slip parameter, porous parameter, Hartmann number, 
ratio’s of the viscosities, heights, electrical and thermal conductivities. 
 
Keywords: MHD, Immiscible fluids/Two-layered fluid flows, slip-flow, porous boundaries 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The problem of hydromagnetic two-layered fluid/two-phase flows in channels has been attracted by several 
investigators due to their numerous applications in science, engineering and various power generating industries: 
such as MHD generators, nuclear reactors, geothermal energy extractions and many such applications. The questions 
pertaining to nuclear-reactor safety have led to insist for an understanding of the detailed phase-distribution 
mechanisms involved in two-phase flows. Transportation and extraction of the products of oil are other obvious 
applications using a two-phase system to obtain increased flow rates in an electromagnetic pump from the 
possibility of reducing the power required to pump oil in a pipe line by suitable addition of water [20]. 
Consequently, extensive publications on experimental and theoretical aspects of the two-phase flow systems with or 
without considering  the heat transfer problems associated with MHD generators, as the generator channels are 
significantly influenced by the presence of magnetic field  have been appeared in the literature during the past 
several decades due  to  the  pioneer research works of the various investigators notably, Shercliff [21], Alad’Yev et 
al [1], Thatcher [24], Postlethwaite and Sluyter [14], Michiyoshi [11-12],  Dobran [6]. In [8], Lohrasbi and Sahai 
have studied the MHD heat transfer aspects  in two-phase flow with the fluid in one phase being electrically  
conducting.  Malashetty and Leela [9] carried out a theoretical study on magnetohydrodynamic heat transfer in two-
fluid flow in case of short circuit type. Subsequently, in [10] these authors have analyzed the problem of 
magnetohydrodynamic heat transfer in two-phase flow by assuming that the fluids in both regions are electrically 
conducting for the open circuit case.  However, the use of liquid metals as heat transfer agents and as working fluid 
in a rotating MHD power generator and nuclear reactor technology has created a growing interest in the behaviour 
of liquid metal flows, and in particular the nature of interaction with magnetic field.  Recently, Raju and Murty [15] 
studied magnetohydrodynamic two-phase flow and heat transfer in a rotating system. Umavathi et.al [26] 
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investigated oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel, and Tsuyoshi Inoue and 
Schu-Ichiro Inutsuka [25] studied two-fluid magnetohydrodynamic simulations of converging Hi flows in the 
interstellar medium. Raju and Sreedhar [16] have studied usteady two-fluid flow and heat transfer of conducting 
fluids in channels under transverse magnetic field.  
 
In most of the above mentioned studies, the investigators have considered the no-slip conditions at the boundary 
walls. But, in the slip flow regime, the fluid flow still behaves the Navier-Stokes equation (Navier, 1827, Street,[22] 
and Davis, [5]). Keeping in view of this fact, there are some investigations on the slip flow regime, which are readily 
available in the literature due to the works of  Basset [2], Schaaf and Chambre [19], Lance and Rogers [7], Street 
[22], Sastry and Bhadram [18], Tamada and Murali [23], Bhatt and Sacheti [3], Michael et al. [13], Chand et al. [4] 
and many more. But research articles on magnetohydrodynamic two-phase/two fluid slip flows are very rarely found 
in the literature. Recently, Raju et al. [17] studied magnetohydrodynamic two-layered fluid slip-flow between two 
parallel walls, in view of the fact that, there may be the cases where partial slip does occur on the walls.  These 
situations may include rarefied gas flows, rough or porous walls. In these situations, the usual no-slip condition may 
be replaced by the partial slip condition at the boundaries. Also, the flow is supposed to undergo slipping at the 
walls with velocity proportional to the shear stress there.  And so far, no attempt has been made on this study as far 
as the author’s knowledge is concerned as it is evident in the available literature. Owing to these studies and many 
other applications, an investigation on hydromagnetic two-layered fluid flow system of an incompressible, 
electrically conducting fluid with different properties in a horizontal channel bounded by two insulating walls 
accounting for wall porosity is carried out in this paper by introducing the slip boundary conditions at both walls. 
This type of studies is expected to be useful in the development of high altitude flights, space science and in nuclear 
fusion research etc. Also, these studies are likely to be useful to carry out experiments to produce power on a large 
scale in stationary plants with large magnetic fields, such as in the design of MHD generators, MHD pumps and 
flow meters etc. 
 
So in this paper, the hydromagnetic two-layered fluid flow driven by a constant pressure gradient in a horizontal 
channel bounded by two parallel porous walls under the action of a uniform strong magnetic field in the slip flow 
regime is studied. Closed form solutions for the velocity and temperature distributions in the two fluid regions are 
obtained by assuming that the fluids in the two regions are incompressible, immiscible and electrically conducting. 
Further, the two fluids are assumed to have different viscosities, thermal and electrical conductivities. The transport 
properties of the two fluids are taken to be constant and the bounding walls are maintained at constant and equal 
temperatures. The profiles are plotted after obtaining the numerical values for different sets of values of the 
governing parameters involved such as, porous parameter, slip parameter, magnetic parameter, the ratio of 
viscosities, ratio of electrical conductivities, ratio of thermal conductivities  and the height ratio, also it is discussed 
the behavior of the flow and temperature distributions by analyzing these parameters. The results of Malashetty and 
Leela [10] have been recovered, when  
 
λ  = 0 (that is, no-slip at the boundaries).   
 
The paper is organized as follows:  The introduction is given in section 1. The formulation of the flow problem 
accounting for wall porosity, mathematical analysis for equations of motion, energy and the boundary conditions are 
presented in section 2.  Section 3 deals with the solutions of the problem for velocity and temperature distributions. 
In section 4, the discussion of the results is presented in detail from the graphs which are shown in figures 2 to 15.  
 
2.   Mathematical analysis for equations of motion, energy and the boundary conditions 

A steady magnetohydrodynamic two-phase flow driven by a common pressure gradient ( )p x−∂ ∂  in a horizontal 

channel with parallel porous walls at y = 1h− and y = 2h− , which are infinite in extent along x- and z-directions 

subject to the uniform suction v0 applied normal to both walls is considered. Fig.1 depicts the flow model and co-
ordinate system. It is assumed that, the regions         0 ≤ y ≤ h1 and –h2 ≤ y ≤ 0 are occupied by two different 
immiscible, incompressible fluids with different viscosities, electrical and thermal conductivities. The transport 
properties of the two fluids are considered as constant and the bounding walls are maintained at constant and equal 
temperatures Tw. It is also assumed that the induced magnetic field is small when compared with the applied field, 
so that it is negligible. With these assumptions and conditions, the resulting governing equations of motion, energy 
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and the corresponding boundary and interface conditions in non-dimensional form in the two fluid regions are given 
as: 
 
Region-I 

2
21 1

12
( )e

d u d u
P S R u

d y d y
λ+ − + = −                                                            (1) 

 
22

2 21 1 1
12

( ) 0e

d d d u
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d y d yd y

θ θλ  
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 
                          (2) 
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2
2 2 22 2

22
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(3) 

22
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22
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The slip boundary conditions on velocity are 

1
1 (1)

d u
u

d y
= − Γ       at  y = 1                                                                                               (5) 

2
2 ( 1)

d u
u

d y
− = Γ   at y=-1                                           (6) 

And the interface conditions on velocity are 

1 2(0) (0)u u=     at y =  0                                                                                                   (7) 

 

1 21
,

du du

dy h dyα
=   at  y =0                                                                                                                  (8) 

 
The slip boundary conditions on temperature are: 

1
1 (1)

d

d y

θθ = − Γ            at  y=1                                                                                                        (9) 

 

2
2 ( 1)

d

d y

θθ − = Γ       at  y =  -1                                                                                                   (10) 

 
and interface conditions on temperature are: 

1 2(0) (0)θ θ=                at y =0                                                                                                        (11) 

1 21d d

dy h dy

θ θ
β

=       at y =0                                                                   (12) 

  

In making these equations dimensionless, we use 1, ( 1, 2),iu h i =  
2

111 huµ  and 1
2

1 Kuµ the 



T. Linga Raju and V. Gowri Sankara Rao                     Adv. Appl. Sci. Res., 2015, 6(12):19-31        
 _____________________________________________________________________________ 

22 
Pelagia Research Library 

scales for velocities, distance, pressure and temperature respectively. S ( the magnetic parameter) = B0

,)( 21
111 µσh  α (ratio of viscosities) = 1

2

,
µ
µ

 σ (ratio of electrical conductivities) = 
,

1

2

σ
σ

 

β (ratio of thermal 

conductivities) = 1

2

,
K

K
eR (electric load parameter) = 10 uBE z , h(ratio of the heights) = .

1

2

h

h

  

Moreover, to 

obtain the above dimensionless quantities, we use the non-dimensional parameter, λ(suction number) = ν0hv , in 

addition to the quantities, as already defined above. Further, the equs. (5)  and  (6) represent the slip conditions on 
velocities at upper  and lower walls respectively, the conditions (7 - 8) represent the continuity of velocity and shear 
stress at the interface y = 0. The Conditions  (9 - 10)  represent the slip conditions on temperature at both the walls   
y = 1 and y = -1.  Conditions (11 - 12) represent the continuity of temperature and heat flux at the interface y = 0. 
The equations (1) to (4) are in linear form, which are to be solved subject to the boundary and interface conditions as 
stated at equations (5) to (12). 
 
3.   SOLUTIONS OF THE PROBLEM 
 Exact solutions of the governing linear differential equations (1) and (3) using the boundary and interface 
conditions  (5) to (8) for the velocity distributions such as u1 and   u2 respectively in the two fluid regions are 
obtained as:                      
 

 
( ) ( )

2 2u ( y ) = c e + c e1 1 2 2

a ay y M
S

λ λ−
−

− +
                                               (13)        

2

( ) ( )
2 2( ) 3 4 2 2

u

b by y Ny c e c e
S h

λ λ

σ α

− +−
= + −                                                 (14)    

 
Further,  we solve the  non-dimensional  energy  equations  (2) and (4) subject the boundary and interface conditions 
(9)  to  (12) for temperature distributions in the two fluid regions, by making use of  the solutions (13) and (14), as  
already  obtained   for  u1 and   u2 . Hence, the solutions for temperature distributions θ1 and θ2 in the two fluid 
regions are obtained as:   

( ) ( )
( ) ( )1 43 5 62 2 2( ) 4 451 6 2 2 2 2( ) ( )

(15)
a ay yt y yty a y a y yt t tty c c e e e e e e

a a a a a a

λ λ
λ λ λ λθ λ λλ λ λ λ

− − +
− − − + −= + + + + − + +− + − −

    

(16)

( ) ( )
( ) ( ) 2 2( ) ,72 8 44 45 46 47 48 49

b by yy b y b y yy c c e t e t e t e t e t e t y
λ λ

λ λ λ λθ
− − +

− − − + −= + + + + + + +       

The numerical computations of the velocity and temperature distributions in both the regions are performed for 
different sets of values of the governing parameters involved in the study and these results are presented graphically. 
It is to be noted that, while computing the results, the value of P is fixed at 2. The constants involved in the above 
mentioned solutions are given as in Appendix. 
 
                 RESULTS AND DISCUSSION  
 
Hydromagnetic two-layered fluid flow and heat transfer in a horizontal channel, driven by a constant pressure 
gradient accounting for wall porosity applied normal to the parallel walls is investigated.  The flow is supposed to 
undergo slipping at both the porous walls with a velocity proportional to the shear stress there. The two fluids in the 
two regions are considered to be incompressible and electrically conducting with different viscosities, thermal and 
electrical conductivities. The governing linear differential equations are solved analytically to obtain the exact 
solutions for velocity distributions, such as, u1   and  u2   respectively in the two fluid regions. Closed form solutions 
for temperature distributions, namely,  θ1 and θ2 in the two fluid regions are determined by making use of the 
already derived solutions of velocity distributions. The profiles are plotted after obtaining the numerical values for 
different sets of values of the governing parameters involved such as, porous parameter λ , slip parameter Γ , 
magnetic parameter S, the ratio of viscosities ,α  ratio of electrical conductivities σ , ratio of thermal 
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conductivitiesβ   and the height ratio h. Also it is discussed the behavior of the flow and heat transfer 

characteristics by analyzing the governing parameters involved. The graphs for the velocity and temperature 
distributions are shown in Figures 2 to 15. It is found that there is a good agreement in results between the present 

study and existing available one in the literature for the reduced cases. Here we note that when 0Γ = and β  = 0, 

that is in the case of no-slip at both walls and for non porous walls, these results are in agreement with those of 
Malashetty and Leela [10]. 
  
From Fig.2, the velocity distributions in both the regions, that is at upper and lower fluid regions are found to 
increase with an increase in magnetic parameter, S, when all the remaining parameter held fixed. Also it is observed 
that the velocity distribution in the upper fluid region is higher than that at the lower region. From Fig.3, it is noticed 
that the velocity distributions in both the regions, that is at upper and lower fluid regions are found to increase with 
an increase in porous parameter λ. It is also found that the velocity distribution in the upper fluid region is higher 
than that at the lower region. It is seen from Fig.4 that, the velocity distributions in both the regions are increasing 
with an increase in σ. Also it is observed that the velocity distribution in the upper fluid region is higher than that at 
the lower region. From Fig.5, the velocity distributions in both the regions are found to increase with an increase in 
h. From Fig.6, the velocity distributions in both the regions have a tendency to increase with an increase in α. From 
Fig. 7, it is noticed that, an increase in β enhances the velocity distributions in both the regions. Also it is observed 
that the velocity distribution in the upper fluid region is higher than that at the lower region. From Fig.8, the velocity 
distributions in both the regions are found to increase with an increase in Ѓ. From Fig. 9, it is observed that as Ѓ 
increases the temperature increases in the two regions when all the remaining parameters are held fixed. From Fig. 
10, it is noticed that,  as α increases, the temperature increases in the two regions. From Fig. 11,  as h increases, there 
is a raise in temperature at the two regions when all the remaining parameters are fixed. From Fig. 12, the 
temperature distribution is found to in increase with an increase in β,  when all the remaining parameters are kept 
fixed. From Fig. 13, it is observed that, the temperature distributions in both the regions, that is at upper and lower 
fluid regions are found to increase with an increase in magnetic parameter S. Also, from figures 14 and 15 ,  it is 
noticed that the temperature distribution is found to increase with an increase in electrical conductivity ratio σ and 
the porous parameter λ. 
     

APPENDIX  
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Fig.2 Velocity Distribution for different values of S and fixed values of p=2,  k1=1, σ=0.1, Г=0.05,
α=0.333, λ=0.01, h=0.8,β=0.01
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Fig.3 Velocity Distribution for different values of λ and fixed values of S=10, p=2, k1=-1, h=0.8,
Г=0.05, α=0.333, β=0.01, σ=0.1
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Fig.5 Velocity Distribution for different values of h and fixed values of S=10, p=2, k1=-1, σ=0.1, 
Г=0.05, α=0.333, β=0.01, λ=0.01
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Fig.6  Velocity Distribution for different values of α and fixed values of S=10, p=2, k1=-1, σ=0.1, 
Г=0.05, β=0.00, λ=0.01, h=0.8
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Fig.8  Velocity Distribution for different values of Γ and fixed values of S=5.0, p=2, k1=-1, σ=0.1, 
α=0.333, λ=0.01, h=0.8, β=0.01

Γ=0.01

Γ=0.05

Γ=0.1

Γ=0.5

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5

θ(y)

y

Fig.9 Temperature Distribution for different values of Г and fixed values of S=10, p=2, k1=-1,h=0.8, 
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Fig.11  Temperature Distribution for different values of h and fixed values of S=10, p=2,k1=-1, 
σ=1.0, Г=0.05, α=0.1, β=0.5, λ=0.05

h=0.1

   h=0.3

h=0.75

h=0.8

h=1.0

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5

θ(y)

y

Fig. 13  Temperature Distribution for different values of S and fixed values of  p=2, k1=-1, σ=1.0, 
α=0.1, λ=0.05, h=0.8, β=0.5, Γ=0.05
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Fig.12  Temperature Distribution for different values of β and fixed values of S=10, p=2, k1=-1, 
σ=1.0, Г=0.05, α=0.1, λ=0.05, h=0.8

β=0.00

β=0.001

β=0.01



T. Linga Raju and V. Gowri Sankara Rao                     Adv. Appl. Sci. Res., 2015, 6(12):19-31        
 _____________________________________________________________________________ 

30 
Pelagia Research Library 

. 
 

. 
                                                            

REFERENCES 
 
[1] Aladyev  I J, Gavrilova, Heat Transfer – Soviet Research, 1971,13(4), p.21. 
[2] Basset  A B, A treatise on hydrodynamics, 1961,Vol.2,New York. 
[3] Bhatt  B S &  Sacheti,  Ind.J.Pure Appl. Math; 1979, 10(3),303-306. 
[4] Chand K, Singh  K D  and Kumar  S, Advances in Applied Science Research, Pelagia Research Library, 2012,3 
(4):2424-2437. 
[5] Davis  R.T  AIAA  Bull., 1970, 7, 343. 
[6] Dobran, FInt. J. Engg. Sci., 1981 ,19, p.1353. 
[7] Lance G N  and Rogers M H, Unsteady slip- flow over a flat plate,Proc.R.soci,A 1962,266,109. 
[8] Lohrasbi J.and Shahai,VAppl. Sci. Res., .1989, 45, p.53. 
[9] Malashetty, M S and Leela, V ,Magnetohydrodynamic heat transfer in two-fluid flow. Proc. ASME/AIChE 27TH 
National Heat Transfer conference and Exposition,1991, 28-31. 
[10] Malashetty, M S,  Leela, V, International Journal of Engineering Science,1992, 30, 371-377. 
[11] Michiyoshi I, Funakawa H, Kuramoto C, Akita Y and Takahashi O, Int. J. Multiphase flow,1977, 3, p.445. 

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5

θ(y)

y

Fig.14  Temperature Distribution for different values of σ and fixed values of S=10, p=2, k1=-1, 
h=0.8, λ=0.05, Г=0.05, α=0.1, β=0.5 

σ=0.1

σ=0.5

σ=1.0

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5

θ(y)

y

Fig.15  Temperature Distribution for different values of λ and fixed values of S=10, p=2, k1=-1, 
h=0.8, Г=0.05, α=0.1, β=0.5, σ=1.0

λ=0.01

λ=0.05

λ=0.1



T. Linga Raju and V. Gowri Sankara Rao                     Adv. Appl. Sci. Res., 2015, 6(12):19-31        
 _____________________________________________________________________________ 

31 
Pelagia Research Library 

[12] Michiyoshi I, Serizawa A, Takahasi O, Gakuhari K and Ida, T, In Proc. Heat transfer Conf. San Francisco, 
Calif.1986, Vol 2, p.2391. 
[13] Michael J Miksis and Stephen   Davis H, Int.J.Heat & Mass transfer ,1994,19, pp 125-139 
[14] Postlethwaite  A W, Sluyter  M M ,MHD ASME, Mechanical Engineering, 1978,100, pp. 32–39. 
[15] Raju T L  and Murti P S R, J.Indian.Acad.Math.,2006, 28(2), p.343. 
[16] Raju – Sreedhar,  Int. J. of Applied Mechanics and Engineering, 2009,pp.1093-1114, vol.14, No.4.  
[17] Raju T L , Neela Rao B and Veeraiah P, MHD two-layered fluid slip-flow between parallel walls, Int.J.of 
Emerging Trends in Engineering and Development.2015. 
[18] Sastry  V U K and Bhadram,C V V, Appl.Sci.Res. 1972,32. 
[19] Schaaf and Chambre P.L, Flow of rarified gases, 1961. 
[20] Shail R, Int. J. Engng. Sci.,1973, 11, p.1103. 
[21] Shercliff  J A,‘The theory of electro-magnetic flow measurement’. Cambridge University Press.1962. 
[22] Street R E, A study of boundary conditions in slip flow, aerodynamics in rarified gas Dynamics, Pergamon 
press,London,1963,p.276. 
[23] Tamada K D  and Murali, J.Fluid Mech .1978,66, p 541. 
[24] Thatcher G,‘Electromagnetic flow meters for liquid metals, in Modern development in flow measurement’ ed. 
by  Claytor, C.C. Peregrinus,1972. 
[25] Tsuyoshi Inoue and  Schu- Ichiro Inutsuka,The  Astroophysical J.,2008, 687,p.303. 
[26] Umavathi J C, Abdul Mateel,Chamkha  A J and Al- Mudhaf Ali,Int. J. Applied Mechanics and Engg.,2006, 11, 
1  p.155-178. 
  
 


