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ABSTRACT

In this paper, we study the thermal and mass diffusion on incompressible viscoelastic fluid flow
(Riviin-Ericksen) between two infinite vertical parallel plates moving in opposite direction, while
one plate is oscillating in time and magnitude about a constant non-zero mean under the
influence of a uniform transverse magnetic field. The suction velocity at the plate fluctuates with
the time harmonically from a constant mean velocity. We have evaluated velocity distribution,
temperature distribution, concentration distribution, phase and amplitude of the skin friction.
The effects of magnetic parameter M, visco-elastic parameter S, Schmidt number &, Grashof
number G;, modified Grashof number G, and Prandtl number P, on the above said physical
guantities are discussed.

INTRODUCTION

The mechanical behaviour of a large number of redseof industrial importance such as
synthetic fibers, high polymer solutions and martheo highly viscous fluids cannot be
explained fully by the classical linear stressistralation. Attempts in the past especially in the
last two decades, have been made to formulate gemeral non-linear theories which could
take fully into account the observed behaviourhaf hon-Newtonian and elastic viscous fluids.
Consequently large number of flow problems has ls#wed by using such general theories
either for some theoretical interest or from thenpof view of comparing the experimental
results with the prediction of various theories.tAs general stress-strain relations are expressed
by highly complicated non-linear differential egoas, to work out solutions for such a class of
fluids even for small flows is not an early task.

Generalizing the stress-strain velocity relatiorfsctassical hydrodynamics the rheological
behaviour of the non-Newtonian liquids has beemlistli by Rivlin [12] and Reiner [11].0n
account of the non-linear nature of the equatiostatie of even the simplest elastic viscous fluid,
it is almost impossible to obtain the exact solutid the equation of motion and one has to resort
to the approximate methods. In most of the invasitigs of elastic viscous fluids, the flow has
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been considered slow and parameters charactetizénglastic properties of the fluid have been
assumed small. In fact the increase emergencerefNewtonian fluids such as molten plastics,
pulps, emulsions, aqueous solutions of polyacrydeamd polyisobutylene etc., as important raw
materials and chemical products is a large var@tyndustrial processes has stimulated a
considerable attention in recent years to the stfdgon- Newtonian fluids and their related

transport process.

The two dimensional unsteady flow of an incompi@ssviscous fluid, when the free stream is

oscillating about a non-zero constant mean, has bealied by Karman-pohlausen method by
Lighthill [8].Taking the free stream oscillationstd account, Stuart [6] has analyzed the forced
flow and heat transfer from an infinite porous elaBoundalgekar [14] has studied the free
convection effects on the oscillatory flow of arcampressible viscous fluid past an infinite

vertical plate with variable section. Krishnanld) pas investigated the application of fluctuating

section to free stream laminar flow past a poroedical wall. Sastri and Bhadram [13] have

studied hydromagnetic convective heat transfeenical pipes.

Georgantopoulest al. [5] have discussed the effects of free convecéind mass transfer in a
conducting liquid when the fluid is subjected tdransverse magnetic field. Raptis [10] has
studied free convection and mass transfer effectthe flow past an infinite moving vertical
porous plate with constant suction and heat soustes free stream velocity is an oscillatory
function of time. Agarwakt al. [3] have discussed the combined buoyancy effecthermal
and mass diffusion on MHD convection flows. VajrlavEl7] has studied the problem of free
convection heat transfer between two long verfitales moving in opposite direction. Agarwal
and kishore [2] studied thermal and mass diffussdanMHD natural convection flow between
two infinite vertical moving and oscillating poropsrallel plates. Johri [6] has considered the
flow of visco-elastic fluid induced by elliptic haonic oscillations of a disc. He also studied the
unsteady channel flow of an elastic viscous liqg&dcently, Asghaet al. [4] discussed the flow
of a non-Newtonian fluid induced due to the ostitlas of a porous plate. Oguki al. [9]
studied the Heat transfer to unsteady magneto-dydiaomic flow past an infinite moving
vertical plate with variable suction and Abbesal. [1] studied Hydromagnetic flow in a
viscoelastic fluid due to the oscillatory stretahsurface

In this paper, we study the thermal and mass ddfusn incompressible visco-elastic fluid flow
(Rivlin-Ericksen) between two infinite vertical @dlel plates moving in opposite direction,
while one plate is oscillating in time and magnéuabout a constant non-zero mean under the
influence of a uniform transverse magnetic fieldeBuction velocity at the plate fluctuates with
the time harmonically from a constant mean veloditde have evaluated velocity distribution,
temperature distribution, concentration distribnfiphase and amplitude of the skin friction. The
effects of magnetic parameter M, visco-elastic patar S, Schmidt numbeg, &rashof number

Gr, modified Grashof numberGand Prandtl number; Bn the above said physical quantities are
discussed in section 3.

2. Rheological equations of the state:
The constitute equation for a Rivlin-Ericksen flusd

T==Pl+gd + @b + go? (2.1)
where

T=|| T ||, Tjis stress tensor
1= |3; ||, & is Kroneckar delta
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Il g ], dj = (1/2) (W j+ W, i) = deformation rate tensor
IBll, b = a,j+ 8,i + 2Wh, i Wn, j= viscoelastic parameter with
oW

ot

E =— + W ; W, = acceleration vector

The 4, @ @& are coefficients of viscosity, visco-elasticitydaoross-viscosity respectively and
these are in general functions of temperature, niahtgroperties and invariants of d, i Bor
many liquids aqueous solutions of polyacralamid potybutylene, the coefficients,, @2, @;
may be taken as constant.

3. Formulation and solution of the problem:

We consider the flow of thermal and mass diffusan viscoelastic (Rivlin-Ericksen) fluid
between two infinite parallel plates moving in opjpe direction, while one place is oscillating in
time and magnitude about a constant non-zero meser the influence of a uniform transverse
magnetic field. The x-axis is taken along an irérflat plate moving vertically upwards and a
straight line perpendicular to that as y-axis. Thagnetic field of small intensity His
introduced in the y-direction. Since the fluid ikgistly conducting, the magnetic Reynolds
number is much less than unity and hence the intowegnetic field is neglected in comparison
with the applied magnetic field (Sparrow and Cd$g)[ In the absence of an input electric field,
the equations governing the motion of the condgdRivlin-Ericksen fluid are given by

ou du 0°u 0°|ou  ou| ou’H?
iy = T-T)+gB8*( C-C) +u—+ —|-—L—=9%u (31
o PVoy 9B (T-T)+gB™(C-C) +ugs ﬁay{at ay} 2=u (3.
ov 10p dud’u
—=-=t42(28+y 3.2
ot  poy 22 )ayay (3:2)
ov
—=0 3.3
oy (3.3)

2
oW K &1 (3.4)
ot dy pC, dy

2

ac OC Dd C (3.5)

at ay ay®

where u, v are the velocity components along thesaaf components along the axes of
coordinates respectively, g the acceleration duegrvity, p* the coefficient of thermal
expansionf** the volumetric coefficient of expansion with amentration, T the temperature of
the plate, Tthe temperature at second platethe kinematic viscosityf} the visco- elasticity, t
the time,o the electrical conductivity of the fluige the magnetic permeability the density of
the fluid, P the fluid pressurey,the kinematic cross viscosity,@he specific heat at constant
pressure and K the thermal conductivity of thedlluihe continuity equation (3.3) shows that v
is a function of time only. In order to obtain aady state solution of the boundary layer type it
is known that v must be a negative non-zero cohstain the unsteady case also we shall make
this restriction (Stuart [16]).

The boundary conditions are
Uu=W, T=T,,C=G, at y=0 (3.6a)
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u=-U(t)=-U, (1+0e“), T=T, C=C; at y=d (3.6b)

From the continuity equation, we get (3.3)

V=, (3.7)
We now introduce the following non-dimensional qitzes
2
y* :ﬂ, m:%, t* :%t, V\7 :4U2\N
) ; T-T ) C-C (3.8)
u*:i,\/*:l,gz S,C: S
U, Vo T, —Ts va _Cs
In view of the equation (3.8), the equation (3dL§3.5) reduce to (dropping the super scripts *)
2 2
10U, U_gorge+dU-g 0 (LU Uy, (3.9)
40t oy oy oy“\ 40t oy
2
1500, p09_06 (3.10)

479t "oy oy

2
159,59 -9¢C (3.11)
4 " ot dy oy

where P=pC,/K Al number
S=v /D Schmidt number
&= [VOB* (Tw-T9)]/ (UoV}) Grashof number
2
== s¢o-elastic parameter
U2
auPHv .
M =—-2 Magnetic parameter
PVo

G, =[vgB** (C,-Cq) )/ (Uovg) Modified Grashof number

S = - S is the visco-elastic parameters<(® < % for Rivlin- Ericksen second order fluid the

visco-elasticity parameter S is necessarily negativ
The non dimensional boundary conditions are

u=10=1,C=1 at y=0 (3.12a)
=-(+0e“),0=0,C=0at y=m (3.12b)

Substituting equations (3.13) to (3.15) in to (3®)3.11) and comparing the harmonic and non-
harmonic term we obtain
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_ _ 1 m

C=C,(y)= e (e -e) (3.16)
Su, — U, +u,+Mu,=G 8,+GC, (3.17)
Su; +[(Sdw/4)-1]uy +u,+[M +(iw/4)]u,=G,6,+GC, (3.19
g-Pg,=0 (3.19
g, -P6,~(iw/4 RPG,=0 (3.20)
In view of (3.13) to (3.15), the boundary condigq3.12) reduces to
u,=1,4=06, =06, =0, =1,C =0 at\ (3.21a)
u,=-1,4=18,=00, =0, =0,C =0 atym (3.21b)

Following Lighthill [8] we assume the solution imet form
Uy = Uy + S0 u02+O(S%)

Uy = Uy, +S,uy,+0(S?) (3.22a)
6 =65+ S +0(S})
6,=6,,+S6,,+0(S) (3.2)

Substituting (3.22) in equations (3.17) to (3.20)l &quating the coefficients 0§,Sve  obtain
(neglecting the terms d(S?) and higher term).

= U, + Uy + MUy, =G, 6, + 1—esm (escy - escm) (3'23)
Ugy = Ug, + U+ MU (,=G, 6, (3.29
ull_uil_TfJn:_Grell (3-25)
T | .
u11+Zu1_u12+u12+Ty 12— GrHlZ (3-26)
H(;l - PrH;n =0 (3.27)
Hcl;z - Pr6;)2 =0 (3'28)
. Ciw
Hll_Prell_Z R‘Hllzo (3-29)
6, ~R6,~ = RO,=0 (339
whereT, =M +(iw/ 4)
In view of (3.21) the boundary conditions (3.12Juee to
u01 = 1’ u02 = O’HOl: 1’902: O“ 11: 0’
u,=0,6,=06,=0 at y=0 (3.310)
Uy =1 Up, = 0,6,,= 0,6,,= 0u=- 1,
u,=0,6,=06,=0 at y=m (3.3b)
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Solving equations (3.23) to (3.30) by using thermary condition (3.31), we obtain the velocity
and the temperature distributions as

u(y,t) =u,(y)+0(M,Cos at — M, Snat) (3.32)
whereM, +iM, =u,(y)

6=6,(y)= ey (¢ ~¢"")

The equations forgand y are
Up (V) =T +T, ™ +T, 87 +T g% 4T,
ul

(y) =€ (K, Cos(b/2) y-K,,Sn(b/2)y)-e*" (K ,Cos(b/2) y+K ,Sn(b/2y
+i[ €Y (K,, Cos(b/2) y + K,; Sin(b/2) y)+e* (=K ,,Cos(b/2) y +K ,,Sn(b/2)y]  (3.33

The various constants are given in Appendix betffoeereference section of the text.

Transient velocity can be deduced from equatio®2)3.whenat = 77/ 2,
u=u,(y)-0OM, (3.34)

Skin Friction
The non-dimensional form of the shear stress apldtes is

y=0
r=| %, gudh (3.35)
oy oy

y=m

r [(rm)]yzo +0e“[ e (-K,,Sn(b/2) y+K,Cos(b/2)y)

y=m

—e™(=KyeSin(b/2) y+K Cos(b/2) y +i{e™ (K, Sin(b/2)y (3.36)
+K,,Cos(b/2) y +e* (K,,Sin(b/2) y =K ,Cos(b/2)}y) |

y=0
y=m
where mean shear stress is

y=0

I, =TT + T, e +T,Re™ +T,5eV | (3.37)

y=m

The amplitude |B| of the skin-friction at the pkte given by
B=B +iB

= [e’*y (-K,; Sin(b/2) y+K,Cos(b/2)y)-€e* (-K ,,Sn(b/2) y+K ,Cos(b /2y
+i{ e¥(K, Sn(b/2)y+K,Cos(b/2)y+e™ (K, Sn(b/2)y-K Los(b/ 2)}y)] )2,

(3.38)
where
K27:A1K24+(K2§)/2) KzszAK 23_(K 29/2)
K29:(K2p/2)_A2K26 K30=(K2p/2)+A£< 2t
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The phase of the skin friction is
Tana =Bi/Br

CONCLUSION

In fig.1, the fluctuating part of the velocity pilef M; is drawn against y for different values of
magnetic parameter M. We have observed thahddeases with the increase in M. Further we
have also seen that;NMcreases with the increase in y. From table 1,caeclude that the
fluctuating part of the velocity profile Mlecreases with the increase in M. In fig.2, weehav
drawn M against y for different values of visco-elastic graeter gWe have noticed that M
increases with the increase in &rom table 2, we conclude that Mcreases with the increase in
Sy. Further we have also seen thatfivkt increases as y increases up to y=12 andttheitrend
gets reversed. In figures (3), (4), (5), (6), (@And table (3) velocity distribution u is drawn
against y for different values of magnetic paramd&le Grashof number Gmodified Grashof
number G, Schmidt number S Prandtl number Rand visco-elastic parameteg @spectively.
We have noticed that u increases first and thenedses with the increases in y. We have also
seen that the velocity increases with the incraas@, or G or S or R or &, whereas the
velocity decreases with the increase in M. From8figve conclude that the temperature
distribution profile T increases with the increasd>,. Further we noticed that T decreases with
the increase in y. In fig.9, the concentrationrdisition profile C is drawn against y for different
values of $.We have observed that C increases with the inerea&, where as it decreases
with increase in y. In fig.10, the amplitude of #ien friction |B| is drawn againsp ®r different
values of M. We have seen that |B| increases \#hricrease in M, whereas it decreases with
the increase ingSn fig.11, the phase lead of the skin friction Teaat the plate is drawn against
S for different values of M. We have noticed thainTa decreases with the increase in M,
whereas it increases with the increasegin S
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TABLE 1M, againgt y for different M

M | y=0 y=4 y=8 y=12 y=16 y=20

01| O -4.48829E-09] 2.20573E-07 6.906126Er05 -1.89B503| -0.993767§
03| 0O | -2.039326E-10 1.351622E-07 2.296075E-05 aI.89E-03| -1.00158]
05| O | +4.271583E-11 4.318385E-p8 7.617278H-06 2P2Z9E-03| -0.9655896
0.7| 0O | +2.332164E-11 1.382289E-D8 2.248725H-06 5IL.38E-03| -0.9893848
09| 0O | +6.628039E-12 4.711978E-09 1.089853E-06 3BBBE-04| -1.012504

TABLE 2 M, againgt y for different S

S | y=0 y=4 y=8 y=12 y=16 y=20
0.05| O -4.49374E-09 2.254847E-07 6.928536H-05 2BBBE-03| -0.9987536
0.1 0 | -4.492378E-09 2.242567E-07 6.922934E-05 6BB2ZE-03| -0.9975071
0.15] 0 | -4.491015E-09 2.230288E-D7 6.917333E-05 314B82E-03| -0.9962606
0.2 0 | -4.489653E-09 2.218009E-07 6.91173E{05 -DB3B-03| -0.9950142
0.25] O -4.48829E-09 2.20573E-Q7 6.906126E-05 -HE88B-03| -0.9937678
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TABLE 3uagaingt y for different &

S | y=0 y=4 y=8 y=12 y=16 y=20
0.05| 1 | 12.88448 20.90018 25.90065 27.49440 -0.67H46
0.1 1 | 12.88494 20.90130 25.90446 27.52281 -0.202380
0.15| 1 | 12.88536 20.90242 25.90828 27.55121 0.192702
0.2 1 | 12.8858Q0 20.90354 25.9121l0 27.57962 0.5897846
0.25| 1 | 12.88623 20.90466 25.91593 27.60803 0.985866

REFERENCES

[1] Abbas, Z. Wang, Y, Hayat, T. and Oberlack, Mternational Journal of Non-Linear
Mechanics, 43(8),2008, 783.d0i:10.1016/}.ijjnonlinme2008.04.009

[2] Agarwal, A.K. and Kishore, Bnd.J.Technol., 26,1998, 14-22.

[3] Agarwal, H.L., Ram, P.C. and Singh, SCan. J. Chem.Engg.,58,1980, 131

[4] Asghar, S., Mohyuddin, M.R., Hayat. T., SiddiquMA, 2,2004, 133-143.

[5] Georgatopoulos, G.A., Coullies, J., Gouda, C.L. @uwdigenis,CAstrophys Space <ci. 74,
1981, 357

[6] Johri, A.K.Indian J Pure and Appl. Maths, 9(5),1978, 481.

[7] Krishnanlal, proceedings of the Y13Congress on theoretical and applied mechanics,
Durgapur,1968.

[8] Lighthill, M.J.Proc. Royal. Soc., 224A, 1954, 1.

[9] Ogulu, A. Prakash]. Phys. Scr. 74,2006, 232-239.

[10] Raptis, A.A.Astrophys Space Sci, 86,1982, 43.

[11] Reiner, M.QuartJ. Mech. and Appl. Maths, 16,1956, 1164.

[12] Rivlir, R.S.Proc. of Royal Soc., 193A,1984,260.

[13] Shastri and Bhadaramppl.Sci. Res., 34, 2141978, 117.

[14] Soundalgekar, V.MProc.Ind. Acad. Sci., 86A, 4,1977, 371.

[15] Sparrow, E.M. and Cess, R.IDrans. ASME, J. Appl. Mech. 291(1),1962, 181.

[16] Stuart.Proc. of Royal Soc. 231A,1955, 116.

[17] Vajravelu, K.Ind.J.Technol. 16,1978, 397.

Appendix:
The list of the constants appearing in the text.
__G __G
2 etm-1’ °oefmog
_1+J1+4M IV M
T,=—"——", T,=————
2 2
= T2 , T, = T3
" B-R-M " g-8-M
= 1 Rm Sm — ClT43
T8 —M(Tze +T3e ), T9 —m
C,T. TP’
T = 2'5 , T. = 6 r
YT -T oM YOR-R-M
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__ T8
2 g-5-M’
T15:C1+SOT13’ T16:CZ+SJ_14 Tl7:T(§+_S-El
T18 = T7 + S0T12

(eT4m ieTsm) [Tﬁ (eTsm - eRm) +T7(eT5m B escm) +T8(eT5m _l) B (1+ eTsm)}

T3=Ci+Ty T, =C 4Ty

C =

<, :(e—fe) o[- )T (e -4 T (1-€) - (1+67)
C3 = (eTAm—ieTSm) :Tg (eTsm —eT“m) +T11(eT5m - eP'm) +T12(eT5m - e&m)}

T = (eAZ’“ —e’*’") Cos(b/2)m, T, = (e’Aﬁm —eAl’”) Sn(b/2)m
— Tio :#

T192 +T202 ’ ” T192 +-|_202
L, =1+4M

o= ] o]

A=(1+a)/2, A,=(1-a)/2, A=(d)/2, A=(8) /4
A =b*/8, A=A -AA-(abA,/4),

A = K- AA+(abA4), A= AP - At (wA?/4)-(ab? /16,
A= AN - Act(wA) 14)+(ab? 116), Ap=T, AT A,

A =T,A+T,A, A,=TA+TA., AsTA:T A,

A=A -A-(b214), Ay=(A~M)I(2A-1), A=[w /4 A )]

1 |p(2A-D (o, A
M { g ZA“M}

21

1-2A) 1
_w(M-A,) _ b
Moy T A
__As __ A _pr_p b
IR TRy AR
_A,-M - w
A23_2A2_1' Aoy 402A - 1)
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1 (peA-Y (., of
AZS_(l—ZAZ){ ( 4 ) +(A22+M _TG_ZAQZMJ}

— w(M B Azz) — b
ST P RN

__ A __ A
AT TR A
B = A,A A, Bis = ALAA, Ky =B, ~By~Bys
B, = A A A B, = ALA A K, =B,+B;+B
B; = AsAyA Bis = A AIA Ky=B,—Bj;+By
B, = AgAisA Bis = AgAiAr K, =Bs—Bg+By
Bs = AP0 B, = ApAiAz Ks=B;,—Byx—B,
Bs = Az AA Bis = ALAA Ke =Bg+By+Byq
B, = ALAA, Bis = AzAA; K7 =B,y =Byt By,
Bs = AiAssAss By = AsPusAze Ke=B,—B,+ B,
By = AAxAz B = AzAsdA s Ko =K =K,
Bio = AuAA B, = AsAuAy; Ko =K, +K;
Bii = AAsAss By = AisAseA s Ky = Kst+Kg
B, = AuAA % K3

K13 = K11T20+ K 1£|_19
K14 = K11T19_ K 1£|_ 20
_ K13T19_ KlAT 20

K._=
e
K — K13T20 + T19|< 14
16 2 2
T19 + T20

K17 = KlO_ K12+ K15
KlS = Kg + Kll_ K16

o
I
&
%

| N
&
=
I
x

(o))
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