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ABSTRACT 
 
In this paper, we study the thermal and mass diffusion on incompressible viscoelastic fluid flow 
(Rivlin-Ericksen) between two infinite vertical parallel plates moving in opposite direction, while 
one plate is oscillating in time and magnitude about a constant non-zero mean under the 
influence of a uniform transverse magnetic field. The suction velocity at the plate fluctuates with 
the time harmonically from a constant mean velocity. We have evaluated velocity distribution, 
temperature distribution, concentration distribution, phase and amplitude of the skin friction. 
The effects of magnetic parameter M, visco-elastic parameter S, Schmidt number Sc, Grashof 
number Gr, modified Grashof number Gc, and Prandtl number Pr on the above said physical 
quantities are discussed. 
______________________________________________________________________________ 
 

INTRODUCTION 
 

The mechanical behaviour of a large number of materials of industrial importance such as 
synthetic fibers, high polymer solutions and many other highly viscous fluids cannot be 
explained fully by the classical linear stress-strain relation. Attempts in the past especially in the 
last two decades, have been made to formulate more general non-linear theories which could 
take fully into account the observed behaviour of the non-Newtonian and elastic viscous fluids. 
Consequently large number of flow problems has been solved by using such general theories 
either for some theoretical interest or from the point of view of comparing the experimental 
results with the prediction of various theories. As the general stress-strain relations are expressed 
by highly complicated non-linear differential equations, to work out solutions for such a class of 
fluids even for small flows is not an early task. 
 
Generalizing the stress-strain velocity relations of classical hydrodynamics the rheological 
behaviour of the non-Newtonian liquids has been studied by Rivlin [12] and Reiner [11].On 
account of the non-linear nature of the equation of state of even the simplest elastic viscous fluid, 
it is almost impossible to obtain the exact solution of the equation of motion and one has to resort 
to the approximate methods. In most of the investigations of elastic viscous fluids, the flow has 
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been considered slow and parameters characterizing the elastic properties of the fluid have been 
assumed small. In fact the increase emergence of non-Newtonian fluids such as molten plastics, 
pulps, emulsions, aqueous solutions of polyacrylamid and polyisobutylene etc., as important raw 
materials and chemical products is a large variety of industrial processes has stimulated a 
considerable attention in recent years to the study of non- Newtonian fluids and their related 
transport process. 
 
The two dimensional unsteady flow of an incompressible viscous fluid, when the free stream is 
oscillating about a non-zero constant mean, has been studied by Karman-pohlausen method by 
Lighthill [8].Taking the free stream oscillations into account, Stuart [6] has analyzed the forced 
flow and heat transfer from an infinite porous plate. Soundalgekar [14] has studied the free 
convection effects on the oscillatory flow of an incompressible viscous fluid past an infinite 
vertical plate with variable section. Krishnanlal [7] has investigated the application of fluctuating 
section to free stream laminar flow past a porous vertical wall. Sastri and Bhadram [13] have 
studied hydromagnetic convective heat transfer in vertical pipes. 
 
Georgantopoules et al. [5] have discussed the effects of free convection and mass transfer in a 
conducting liquid when the fluid is subjected to a transverse magnetic field. Raptis [10] has 
studied free convection and mass transfer effects on the flow past an infinite moving vertical 
porous plate with constant suction and heat sources when free stream velocity is an oscillatory 
function of time. Agarwal et al. [3] have discussed the combined buoyancy effects of thermal 
and mass diffusion on MHD convection flows. Vajravelu [17] has studied the problem of free 
convection heat transfer between two long vertical plates moving in opposite direction. Agarwal 
and kishore [2] studied thermal and mass diffusion on MHD natural convection flow between 
two infinite vertical moving and oscillating porous parallel plates. Johri [6] has considered the 
flow of visco-elastic fluid induced by elliptic harmonic oscillations of a disc. He also studied the 
unsteady channel flow of an elastic viscous liquid. Recently, Asghar et al. [4] discussed the flow 
of a non-Newtonian fluid induced due to the oscillations of a porous plate. Ogulu et al. [9] 
studied the Heat transfer to unsteady magneto-hydrodynamic flow past an infinite moving 
vertical plate with variable suction and Abbas et al. [1] studied Hydromagnetic flow in a 
viscoelastic fluid due to the oscillatory stretching surface 
 
In this paper, we study the thermal and mass diffusion on incompressible visco-elastic fluid flow 
(Rivlin-Ericksen) between two infinite vertical parallel plates moving in opposite direction, 
while one plate is oscillating in time and magnitude about a constant non-zero mean under the 
influence of a uniform transverse magnetic field. The suction velocity at the plate fluctuates with 
the time harmonically from a constant mean velocity. We have evaluated velocity distribution, 
temperature distribution, concentration distribution, phase and amplitude of the skin friction. The 
effects of magnetic parameter M, visco-elastic parameter S, Schmidt number Sc, Grashof number 
Gr, modified Grashof number Gc, and Prandtl number Pr on the above said physical quantities are 
discussed in section 3. 
 
2. Rheological equations of the state: 
The constitute equation for a Rivlin-Ericksen fluid is  
 
T = – PI + ø1d + ø2b + ø3d

2        (2.1)                    
      where  
 
T= || Tij ||, Tij is stress tensor                 

I= || δij ||,   δij is Kroneckar delta  
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d = || dij ||, d ij = (1/2) (Wi, j+ Wj, i ) = deformation rate tensor 
b = ||bij ||, bij = ai, j+ aj, i + 2Wm, i Wm, j = viscoelastic parameter with  

i
i

W
a

t

∂=
∂

 + Wi, j Wj = acceleration vector 

 
The ø1, ø2, ø3 are coefficients of viscosity, visco-elasticity and cross-viscosity respectively and 
these are in general functions of temperature, material properties and invariants of d, b, d2. For 
many liquids aqueous solutions of polyacralamid and polybutylene, the coefficients ø1, ø2, ø3 
may be taken as constant.  
  
3. Formulation and solution of the problem:  
We consider the flow of thermal and mass diffusion on viscoelastic (Rivlin-Ericksen) fluid 
between two infinite parallel plates moving in opposite direction, while one place is oscillating in 
time and magnitude about a constant non-zero mean, under the influence of a uniform transverse 
magnetic field. The x-axis is taken along an infinite flat plate moving vertically upwards and a 
straight line perpendicular to that as y-axis. The magnetic field of small intensity Ho is 
introduced in the y-direction. Since the fluid is slightly conducting, the magnetic Reynolds 
number is much less than unity and hence the induced magnetic field is neglected in comparison 
with the applied magnetic field (Sparrow and Cess [15]). In the absence of an input electric field, 
the equations governing the motion of the conducting Rivlin-Ericksen fluid are given by 
 

2 22 2
0

2 2
*( ) **( ) e

s s

Hu u u u u
v g T T g C C v u

t y y y t y

σµβ β υ β
ρ

 ∂ ∂ ∂ ∂ ∂ ∂+ = − + − + + + − ∂ ∂ ∂ ∂ ∂ ∂ 
 (3.1) 

( )
2

2

1
2 2

v p u u

t y y y
β γ

ρ
∂ ∂ ∂ ∂= − + +
∂ ∂ ∂ ∂

       (3.2)  

0
v

y

∂ =
∂

           (3.3)  

2

2
P

T T K T
v

t y C yρ
∂ ∂ ∂+ =
∂ ∂ ∂

        (3.4)        

2

2

C C d C
v D

t y y

∂ ∂+ =
∂ ∂ ∂

         (3.5)           

             
where u, v are the velocity components along the axes of components along the axes of 
coordinates respectively, g the acceleration due to gravity, β* the coefficient of thermal 
expansion, β** the volumetric coefficient of expansion with concentration, T the temperature of 
the plate, Ts the temperature at second plate, υ  the kinematic viscosity, β the visco- elasticity, t 
the time, σ the electrical conductivity of the fluid, µe  the magnetic permeability ,ρ the density of 
the fluid, P the fluid pressure , γ the kinematic cross viscosity, CP the specific heat at constant 
pressure and K the thermal conductivity of the fluid. The continuity equation (3.3) shows that v 
is a function of time only. In order to obtain a steady state solution of the boundary layer type it 
is known that v must be a negative non-zero constant v0 .In the unsteady case also we shall make 
this restriction (Stuart [16]). 
 
The boundary conditions are  
 
u = U0 , T = Tw , C = Cw  at  y = 0             (3.6a) 
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( ) ( )0 ,1 ,i t
S Su U t U e T T C Cω= − = − + ∈ = = at   y = d   (3.6b) 

 
From the continuity equation, we get (3.3) 
 
            0v v= +                                        (3.7) 

We now introduce the following non-dimensional quantities  
2

* * *0 0 0
2
0

* * * *

0 0

4
, , ,

4

, , ,s S

w s W S

yv dv v t w
y m t w

v

T T C Cu v
u v C

U v T T C C

υ
υ υ υ

θ

= = = =

− −= = = =
− −

     (3.8) 

  
 In view of the equation (3.8), the equation (3.1) to (3.5) reduce to (dropping the super scripts *) 

2 2

02 2

1 1

4 4r c

u u u u u
G G C S Mu

t y y y t y
θ  ∂ ∂ ∂ ∂ ∂ ∂+ = + + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

   (3.9) 

2

2

1

4 r rP P
t y y

θ θ θ∂ ∂ ∂+ =
∂ ∂ ∂

       (3.10) 

2

2

1

4 c c

C C C
S S

t y y

∂ ∂ ∂+ =
∂ ∂ ∂

       (3.11) 

 
where  Pr = µCp / K                                            Prandtl number 
            Sc = υ  /D           Schmidt number 
                    Gr = [vgβ* (Tw-Ts)] / (U0

2
0v )          Grashof number  

           
2
0

2
2

v
S

β
υ

=                                                  Visco-elastic parameter 

          
2 2

0
2
0

e H v
M

v

σµ
ρ

=      Magnetic parameter 

       ( ) ( )2
0 0** /c SG g C C U vωυ β= −    Modified Grashof number 

 

S = - S0 is the visco-elastic parameters 0 ≤ S0 ≤ 
1

4
 for Rivlin- Ericksen second order fluid the 

visco-elasticity parameter S is necessarily negative. 
 
The non dimensional boundary conditions are  
 
u = 1, θ = 1, C = 1   at   y = 0                                                              (3.12a) 

u = - ( )1 ,i te ω+ ∈  θ = 0, C = 0 at   y = m     (3.12b) 

 
Substituting equations (3.13) to (3.15) in to (3.9) to (3.11) and comparing the harmonic and non-
harmonic term we obtain 
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In view of (3.13) to (3.15), the boundary conditions (3.12) reduces to  

0 1 0 1 0 1u = 1, u = 0, = 0, = 0, C = 1, C = 0  at y = 0θ θ     (3.21a) 

0 1 0 1 0 1u = -1, u =-1, = 0, = 0, C = 0, C = 0  at y = m                  θ θ   (3.21b) 

 
Following Lighthill [8] we assume the solution in the form  

( )
( ) ( )
( )

( ) ( )

2
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2
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Substituting (3.22) in equations (3.17) to (3.20) and equating the coefficients of S0, we     obtain 
(neglecting the terms of 2

00( )S  and higher term). 
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where ( )1 / 4T M iω= +  

 
In view of (3.21) the boundary conditions (3.12) reduce to  

( )

( )

01 02 01 02 11

12 11 12

01 02 01 11 11

12 02 12

1, 0, 1, 0, 0,

0, 0, 0 0 3.31
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Solving equations (3.23) to (3.30) by using the boundary condition (3.31), we obtain the velocity 
and the temperature distributions as 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

0

1

0

, 3.32

( )

1

1
r r

r

r i

r i

p y p m

P m

u y t u y M Cos t M Sin t

where M iM u y

y e e
e

ω ω

θ θ

= + ∈ −
+ =

= = −
−

   

 
The equations for u0 and u1 are  
 

( ) 54
0 15 16 17 18 8

Cr
T Y P Y S YT Yu y T e T e T e T e T= + + + +  
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+ + + − +  

The various constants are given in Appendix before the reference section of the text. 
 
Transient velocity can be deduced from equation (3.32), when / 2tω π= , 

( )0 iu u y M= − ∈     (3.34) 

 
Skin Friction 
The non-dimensional form of the shear stress at the plates is  
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where mean shear stress is  

54
0

4 15 5 16 17 18
cr

yT y S yT y P y
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=

=
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The amplitude |B| of the skin-friction at the plates is given by 

r iB B iB= +  
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where           
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The phase of the skin friction is 
/Tan Bi Brα =  

 
CONCLUSION 

 
In fig.1, the fluctuating part of the velocity profile Mi is drawn against y for different values of 
magnetic parameter M. We have observed that Mi increases with the increase in M. Further we 
have also seen that Mi

 increases with the increase in y. From table 1, we conclude that the 
fluctuating part of the velocity profile Mr decreases with the increase in M. In fig.2, we have 
drawn Mi against y for different values of visco-elastic parameter S0.We have noticed that Mi 
increases with the increase in S0. From table 2, we conclude that Mr increases with the increase in 
S0. Further we have also seen that Mr first increases as y increases up to y=12 and then the trend 
gets reversed. In figures (3), (4), (5), (6), (7)  and table (3) velocity distribution u is drawn 
against y for different values of magnetic parameter M, Grashof number Gr, modified Grashof 
number Gc, Schmidt number Sc, Prandtl number Pr and visco-elastic parameter S0 respectively. 
We have noticed that u increases first and then decreases with the increases in y. We have also 
seen that the velocity increases with the increase in Gr or Gc or Sc or Pr or S0, whereas the 
velocity decreases with the increase in M. From fig.8, we conclude that the temperature 
distribution profile T increases with the increase in Pr. Further we noticed that T decreases with 
the increase in y. In fig.9, the concentration distribution profile C is drawn against y for different 
values of Sc .We have observed that C increases with the increase in Sc, where as it decreases 
with increase in y. In fig.10, the amplitude of the skin friction |B| is drawn against S0 for different 
values of M. We have seen that |B| increases with the increase in M, whereas it decreases with 
the increase in S0.in fig.11, the phase lead of the skin friction Tan α at the plate is drawn against 
S0 for different values of M. We have noticed that Tan α decreases with the increase in M, 
whereas it increases with the increase in S0 
 
5. GRAPHS 
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TABLE 1 Mr against y for different M 
 

M y=0 y=4 y=8 y=12 y=16 y=20 
0.1 0 -4.48829E-09 2.20573E-07 6.906126E-05 -1.000584E-03 -0.9937678 
0.3 0 -2.039326E-10 1.351622E-07 2.296075E-05 -1.870739E-03 -1.001581 
0.5 0 +4.271583E-11 4.318385E-08 7.617278E-06 -1.452229E-03 -0.9655896 
0.7 0 +2.332164E-11 1.382289E-08 2.248725E-06 -1.345178E-03 -0.9893848 
0.9 0 +6.628039E-12 4.711978E-09 1.089853E-06 -8.663931E-04 -1.012504 

 
TABLE 2 Mr against y for different S0 

 
S0 y=0 y=4 y=8 y=12 y=16 y=20 

0.05 0 -4.49374E-09 2.254847E-07 6.928536E-05 -1.062382E-03 -0.9987536 
0.1 0 -4.492378E-09 2.242567E-07 6.922934E-05 -1.046932E-03 -0.9975071 
0.15 0 -4.491015E-09 2.230288E-07 6.917333E-05 -1.031482E-03 -0.9962606 
0.2 0 -4.489653E-09 2.218009E-07 6.91173E-05 -1.016033E-03 -0.9950142 
0.25 0 -4.48829E-09 2.20573E-07 6.906126E-05 -1.000584E-03 -0.9937678 
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TABLE 3 u against y for different S0 

 
S0 y=0 y=4 y=8 y=12 y=16 y=20 

0.05 1 12.88448 20.90018 25.90065 27.49440 -0.6014626 
0.1 1 12.88492 20.90130 25.90446 27.52281 -0.2043802 
0.15 1 12.88536 20.90242 25.90828 27.55121 0.1927022 
0.2 1 12.88580 20.90354 25.91210 27.57962 0.5897846 
0.25 1 12.88623 20.90466 25.91593 27.60803 0.9868669 
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Appendix: 
The list of the constants appearing in the text. 
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