
448JOP. Journal of the Pancreas - http://pancreas.imedpub.com/ - Vol. 18 No. 6 –Nov 2017. [ISSN 1590-8577]

REVIEW ARTICLE

JOP. J Pancreas (Online) 2017 Nov 30; 18(6):448-457.

ABSTRACT
Hepatocyte growth factor is an important cellular signal pathway. The pathway regulates mitogenesis, morphogenesis, cell migration, 
invasiveness and survival. Hepatocyte growth factor acts through activation of tyrosine kinase receptor c-Met (mesenchymal epithelial 
transition factor) as the only known ligand. Despite the fact that hepatocyte growth factor is secreted only by mesenchymal origin cells, the 
targets of this multifunctional pathway are cells of mesenchymal as well as epithelial origin. Besides its physiological role recent evidences 
suggest that HGF/c-Met also plays a role in tumor pathophysiology. As a “scatter factor” hepatocyte growth factor stimulates cancer 
cell migration, invasion and subsequently promote metastases. Hepatocyte growth factor further is involved in desmoplastic reaction 
and consequently indorse chemo- and radiotherapy resistance. Explicitly, this pathway seems to mediate cancer cell aggressiveness 
and to correlate with poor prognosis and survival rate. Pancreatic Ductal Adenocarcinoma is a carcinoma with high aggressiveness and 
metastases rate. Latest insights show that the HGF/c-Met signal pathway might play an important role in pancreatic ductal adenocarcinoma 
pathophysiology. In the present review, we highlight the role of HGF/c-Met pathway in pancreatic ductal adenocarcinoma with focus on its 
effect on cellular pathophysiology and discuss its role as a potential therapeutic target in pancreatic ductal adenocarcinoma.
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INTRODUCTION
Hepatocyte growth factor (HGF) is a multifunctional 

gene. It was previously known for its role in the signaling 
pathway especially in hepatocytes and described 
as a heparin-binding polypeptide [1, 2, 3, 4]. HGF 
acts in hepatocytes as a potential mitogen regulator, 
stimulates DNA replication, controls organogenesis and 
organ regeneration [3, 5, 6]. The roles of HGF in liver 
regeneration following both drug induced liver injury and 
partial hepatectomy have been already demonstrated [6, 
7, 8, 9, 10]. However, previous studies showed that HGF 
performs its numerous roles not only in hepatocytes, but 
also in other cell types through activating its downstream 
signalings and consequently stimulation of DNA synthesis 
[11, 12].

HGF is secreted by cells of mesenchymal origin, but 
acts not only in cells of mesenchymal but also epithelial 
origin. Its action is mediated by binding its receptor 
c-Met (mesenchymal epithelial transition factor). This 

activation causes auto-phosphorylation of c-Met and 
subsequent activation of downstream signaling pathways 
such as mitogen-activated protein kinases (MAPKs), 
phosphatidylinositol-3 kinase (PI3K), signal transducer 
and activator of transcription (STAT), nuclear factor-
kappaB (NF-κB) [1, 13, 14]. Therefore, activation of HGF/
c-Met signaling activates pathways which regulate cell 
differentiation, proliferation, transformation, migration 
and apoptosis [3, 14, 15, 16, 17, 18, 19, 20, 21]. An essential 
role of this pathway in wound healing has been also 
described [22, 23, 24, 25, 26].

In addition to the productive and protective roles of 
the signaling pathway in fetal development, organogenesis 
and organ regeneration [3, 4, 18, 22, 27, 28, 29, 30], 
recent studies suggested an importance of HGF/c-Met 
signaling pathway in cancerogenesis as it correlates with 
poor prognosis and high metastasis rate [12, 31, 32, 33, 
34]. Possible ways of action of the pleiotropic HGF/c-Met 
signaling pathway in tumorigenesis include activation 
of proliferation, cell de-differentiation and activation of 
epithelial mesenchymal transition [13, 35, 36, 37].

Many clinical characteristics of cancers, like metastasis 
rate, are meant to be dependent on the fraction of cancer 
stem cells (CSCs) within the tumor [38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48]. CSCs are a small population of cancer cells 
having ability of epithelial–mesenchymal transition (EMT), 
self-renewal, aggressiveness, apoptosis resistance, invasive, 
uncontrolled growth [37, 41, 47, 49, 50, 51, 52, 53, 54, 55, 56]. 
The cancer stem cells are defined by certain surface markers 
[57]. Recently, HGF/c-Met was also suggested as marker for 
CSCs [46, 58, 59, 60, 61, 62, 63, 64, 65, 66].
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Interestingly, overexpression of c-Met and its ligand 
have been detected in PDAC and can be detected in 
pancreatic cancer stem cells, too [56, 67, 68, 69, 70]. 
Increasing number of recent studies suggested an 
association between high c-Met and HGF expression and 
stem cell features of the tumor [34, 56, 59, 70, 71, 72, 
73, 74]. However its definite role in PDAC still needs 
to be thoroughly investigated and comprehensively 
described.

HGF

The HGF, also known as “scatter factor” (SF), was 
initially found in the blood of hemihepatectomized rats 
and described in 1984 as a mitogen protein for hepatocytes 
[4, 14]. HGF is a cytokine belonging to the serine protease 
family and known as a unique ligand of c-Met cell surface 
marker. The gene is located on chromosome 7q21.1 in 70 
kb length [75].

HGF is synthesized in mesenchymal cells as inactive 
single chain protein and obtains its active heterodimer form 
via cleaving catalysis by serine proteases in the extracellular 
environment [1, 13] . An active form of HGF comprises α 
and β chains with 69 and 34 kDa correspondingly. The 
heavy α chain contains five domains: N-terminal domain 
and four kringle domains. Kringle domains are responsible 
for protein-protein interaction [64]. The light β chain 
constitutes a serine protease homology (SPH) domain and 
has a catalytic feature (Figure 1) [75, 76]. The N-terminal 
domain and the first Kringle domain of HGF (NK1 section) 
are the essential receptor-binding fragment which 
regulates receptor-ligand connection [76].

c-Met

c-Met is a pro-oncogenic protein, also called hepatocyte 
growth factor receptor (HGFR) or receptor tyrosine kinase 
(RTK). c-Met is a transmembrane tyrosine kinase which 
is encoded by Met gene (Figure 2) [75, 76]. The gene 
encoding c-Met is  located on chromosome 7q21-31 in 
120kb length [77]. c-Met is composed of a 50-kDa, totally 
extracellular α chain and a 140-kDa, transmembrane β 
chain complex with disulfide link [75]. Therefore, c-Met 
has large extracellular, transmembrane and cytoplasmic 
parts.

The extracellular part of c-Met contains three domains: 
semaphorin domain (SEMA); Met related sequence 
domain (MRS) and immunoglobulin domain (Ig). The 
SEMA domain constitutes of the whole α chain and the 
N-terminal part of the β chain. This domain controls 
protein-protein interaction. The SEMA domain is followed 
by MRS domain, which is rich with cysteine and involved 
in the right placing of the receptor during binding with 
HGF receptor. These two domains create the semaphorin 
homology region containing about 500 amino-acid. This 
fragment is found almost in all Met receptor subfamily 
[78]. Finally, four Ig domains conclude the extracellular 
c-Met [75].

The cytoplasmic part of c-Met comprises the 
juxtamembrane domain, tyrosine kinase domain and the 
C-terminal part [13, 75, 79, 80]. The former is responsible 
for c-Met ubiquitination [81]. Contrary, the kinase domain 
has the ability to catalyze. The C-terminal part is a 
multifunctional docking site and controls the enrollment 
of downstream connectors [75, 76]. As mentioned before 

Figure 1. Maturation and domain structure of Hepatocyte growth factor (HGF).
(a). Inactive HGF; (b). Mature HGF.
Inactive single chain HGF is turned into its 2 chains biologically active form by cleavage process in an extracellular area. Mature HGF consists of heavy α 
and light β chains, 69 and 34 kDa correspondingly. Demonstrated are N-terminal and four Kringle domains – α chain; Serine protease homology (SPH) 
domain - β chain.
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The most important of these downstream pathways 
are the MAPKs. MAPKs can be divided in three subgroups- 
extracellular signal-regulated kinases (ERKs), p38, and Jun 
NH2-terminal kinases (JNKs).

ERKs are activated by Ras kinase [86]. Ras is one of 
the guanosine triphosphate (GTP) binding proteins and 
activated after trans-phosphorylation of C-terminal part 
of c-Met in presence of secondary messengers such as 
Growth Factor Receptor-Bound protein 2 (GRB2). GRB2 
can interact directly with c-Met or indirectly via Src-
homology-2  domain-containing transforming protein 
(SHC) [87]. For this transduction c-Met needs intracellular 
part of CD44v6 via an affiliation with ezrin, radixin, 
moesin (ERM) proteins and subsequent activation of Raf 
and MAPK/ERK kinase (MEK)-1,2 kinases [14, 72, 88].

c-Met is expressed on various types of cells like epithelial, 
endothelial, hematopoietic cells, neurons, hepatocytes, 
melanocytes and cardiomyocytes [82].

Molecular Mechanisms of HGF/c-Met Signaling 
Pathway

The action of HGF is initiated upon binding to its 
receptor c-Met (Figure 3). This results in dimerization 
of the extracellular domain of the c-Met protein [83, 
84, 85]. Subsequently, the intracellular part of c-Met is 
phosphorylated which leads to the trans-phosphorylation 
of the catalytic kinase domain and the C-terminal part of 
c-Met [13, 79, 80]. The phosphorylation leads to activation 
of diverse intracellular signaling pathways such as MAPKs, 
PI3K, STAT, NF-κB [1, 13, 14].

Figure 2. Structure of c-Met receptor.
c-Met consists of 50-kDa, totally extracellular α chain and a 140-kDa, transmembran β chain. Extracellular part consists of semaphorin homology region 
and four Ig repeats. Semaphorin homology region covers SEMA domain and cysteine rich Met related sequence (MRS). SEMA domain contains entire α 
and N-terminal part of β chains. Intracellular part consists of Juxtamembrane domain with Ser975 and Y1003; Kinase domain with Y1234 and Y1235 and 
C-terminal tail with Y1249 and Y1256 residues.
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ERKs activate and regulate biological processes such 
as proliferation, differentiation, survival, migration, 
angiogenesis, as well as chromatin remodeling in nuclear 
level [86, 89, 90, 91, 92].

p38s and JNKs are activated by Rac, another GTP 
binding protein, directly through Phosphatidylinositol-3 
kinase (PI3K) or indirectly by the Ras-PI3K mediated way 
[4, 93, 94, 95, 96]. Both p38s and JNKs Rac initiates MEK-
depending stimulation which leads to the phosphorylation 
of MEK3/MEK6 and MEK4/MEK7 respectively [97]. By 
this signaling pathway cell differentiation, proliferation 
migration and apoptosis is regulated [97, 98, 99, 100, 101]. 
The latter is also responsible for neurodegeneration, as 
well as collagenase-3 expression and synthesis [91, 93, 95, 
97]. 

PI3K can also activate protein kinase B (Akt) and 
mechanistic target of rapamycin (mTOR) which regulates 
anti-apoptotic processes [102, 103].

Transphosphorylation of c-Met also results in activation 
of STATs. Especially, STAT3 is phosphorylated by binding 
to the C-terminal end of c-Met via the Src-homology-2 
domain (SH2 domain) and subsequently monomer STAT3s 
dimerizes by recognizing their SH2 domain [15, 104]. 
Later, homodimer STAT3 is able to translocate to nucleus 
and regulate cell proliferation, differentiation, remodeling, 
migration and c-Met-dependent tubulogenesis as well [15, 
23, 105, 106, 107].

Additionally, NF-κB is activated after c-Met stimulation 
as well. This activation can occur through PI3K-Akt 
signaling pathway and/or Src pathway. NF-κB controls 

Figure 3. Molecular mechanism of HGF signaling pathway.
MAPKs subgroups are generally activated by an assistant of adaptors and GTP binding proteins after stimuli. After several trans-phosphorilasation and activation 
of MAPK cascade, MAPKs subgroups such as ERK, JNK, p38 are able to translocate and activate the substrates such as cytosolic proteins, transcrition factors, etc. As 
a result, this multiple downstream signal ways activations regulate proliferation, differentiation, survival, migration, angiogenesis, remodeling, apoptosis.
PI3K obtains its activation directly upon-binding c-Met terminal tail and/or indirectly by GTP binding protein Ras and controls apoptotic processes.
STAT is activated after binding c-Met tail with its SH2 domain and plays important roles in cell proliferation, differentiation, remodeling, migration and 
c-Met-dependent tubulogenesis.
NF-kB is activated through PI3K-Akt way and/or Src pathway and regulates cell proliferation , survival , c-Met-dependent tubulogenesis and anti-apoptosis.
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proliferation, survival, and anti-apoptosis and apoptosis 
[16, 108, 109].

Mechanisms of Action in Carcinogenesis
Latest insights suggest that HGF/c-Met signaling 

plays a key role in carcinogenesis [13, 33, 79, 110, 111, 
112]. Its pathophysiological role in tumorigenesis is 
exerted via activating mutations, amplification, different 
auto- and paracrine ligand-dependent mechanisms 
and overexpression of c-Met which can cause ligand-
independent spontaneous initiation of the signaling 
pathway [33, 113]. Interestingly, these findings are more 
common in adenocarcinomas than sarcomas or other 
types of cancer [76]. Such pathophysiological findings 
are detected in different types of cancers, especially in 
pancreatic cancer [67, 114, 115, 116, 117, 118, 119]. 

Amplification of c-Met was frequently associated with 
poor differentiation, poor prognosis and chemo- and 
radiotherapy resistance [120, 121, 122, 123, 124]. c-Met 
is rather involved in a late phase of tumor progression 
as c-Met gene mutations are found in early lesions [125, 
126, 127]. Its overexpression associates with cancers with 
advanced stage, worse prognosis, high metastases, chemo- 
and radiotherapy resistance [72, 128, 129] .

In addition, HGF/c-Met signaling pathway plays a role 
in tumor angiogenesis [31, 130, 131, 132, 133]. Several 
experimental and clinical investigations demonstrated that 
HGF/c-Met stimulates angiogenesis through stimulation of 
vascular endothelial growth factor (VEGF) signal pathway 
and its blockade causes downfall in vascularization of 
tumors. On the other hand, overexpression of VEGF and 
its receptor had a suppressive effect on HGF/c-Met [22, 
134, 135, 136]. Accordingly, inhibition of VEGF activates 
HGF/c-Met signaling pathway. One explanation might 
be the anti-vascular effect of the therapy that causes cell 
hypoxia. Cell hypoxia, however, induces the expression of 
HGF and c-Met in tumor cells via HIF 1α factor [134, 137, 
138, 139]. HGF/c-Met pathway stimulation can results in 
reduced effect of antiangiogenic therapy. Therefore it was 
suggested to use combination blocking therapy by using 
both HGF/c-Met and VEGF inhibitors [130, 140, 141, 142, 
143]. In the following we give a more detailed overview on 
action of HGF/c-Met in pancreatic cancer.

HGF/c-Met in PDAC
PDAC is an aggressive tumor that is characterized by 

aggressive infiltration, early metastases, chemoresistance 
and a distinct desmoplastic reaction and all these 
characteristics might be mediated by cancer stem cells, 
which play an important role in pancreatic cancer [37, 72, 
144, 145, 146, 147]. Recent evidences suggest that HGF/c-
Met signaling pathway has an importance in maintenance 
of stem cell characteristics and tumorigenic features in 
PDAC [34, 70, 148]. Overexpression of this stem cell marker 
has been detected in PDAC CSCs and correlates with poor 
survival rate and distant metastasis [56, 59, 66, 69, 70, 
71, 149]. Furthermore, in vitro and in vivo investigations 

describe that inhibition of this pathway not only declines 
metastasis, but also local tumor growth [36, 56, 116]. HGF/
c-Met signaling is also required for pancreatic CSCs survival, 
since some in vivo studies showed that c-Met inhibition 
decreased the population of CSCs and decelerated tumor 
growth [70]. Interestingly, Li et al. demonstrated this 
pathway has a role in the sphere formation which is an 
evidence of self-renewal ability of CSCs [53, 150]. This in 
vitro experiment showed that c-Met+ cells formed spheres, 
while c-Met- cells did not form spheres [70]. Additionally, 
the pathway also seems to mediate invasiveness in PDAC 
[73, 82, 138, 151, 152, 153, 154].

It is known that the desmoplastic reactions of PDAC are 
responsible for many of the tumors clinical characteristics 
[155]. Up to 90% of PDAC volume is stromal compartment, 
which consists of extracellular matrix (ECM), pancreatic 
stellate cells (PSCs), immune cells, endothelial cells and 
neurons. [156, 157, 158, 159]. There is increasing interest 
in the desmoplastic reaction as target for new therapies 
[155, 160]. Latest reports show that HGF/c-Met signaling 
pathway is also involved in the interaction between tumor 
cells and stromal cells and thereby might contribute to 
the desmoplastic reaction in PDAC [155, 158, 160, 161, 
162]. Several studies showed that although PDAC cells do 
express c-Met, they do not secrete HGF [36, 72]. On the 
other hand it was demonstrated that cells of the stromal 
compartment secret HGF and thereby might activate HGF/
c-Met signaling in PDAC cells [36, 161]. Interestingly, Niina 
et al. determined in vivo HGF expression in PSCs in chronic 
pancreatitis which is a risk factor for PDAC [163]. Yasui et 
al. described that co-cultivation of fibroblasts and cancer 
cells could elevate c-Met phosphorylation rate significantly 
[158]. Interestingly, desmoplastic reactions leads to 
hypoxia in PDAC environment which also activates HGF/c-
Met pathway as already mentioned above [138, 139, 154].

Other studies also support that fibroblasts secrete high 
amount of HGF in PDAC, subsequently increasing activation 
of c-Met signaling [164]. This suggests a possible effect of 
novel cancer therapies that target the cancer environment 
[155, 160, 161]. Whereas all these data suggest that HGF/
c-Met signaling pathway might play an important role 
in tumor-stromal interaction, the molecular mechanism 
of this interaction is still unclear and needs further 
elucidation.

HGF/c-Met as a Target in PDAC Therapy

Recent investigations demonstrated that inhibition of 
HGF/c-Met pathway can reduce metastasis in PDAC [36, 56, 
116, 165, 166]. Pothula et al. showed that HGF inhibition 
alone had a noteworthy reduction effect on metastases 
of PDAC [36]. Interestingly, HGF effect on metastasis 
was not successful when used with gemcitabine. The 
authors of this study explained this with the stimulating 
effect of Gemcitabine on cancer cell stemness [36, 48]. 
Accordingly, it was shown that Gemcitabine treatment 
increased the number of CSCs in PDAC [48, 167]. Li et al. 
found that treatment with both c-Met inhibitor XL184 and 
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gemcitabine reduced the cancer growth rate, while groups 
treated with XL184 or gemcitabine only had the same 
growth rate as controls [70].

In this regard, it was demonstrated that the inhibition 
of HGF/c-Met signaling declined the amount of PDAC CSCs 
and prevented sphere formation [56, 70, 82].

In conclusion, HGF/c-Met signaling might play an 
important role in different characteristics of PDAC. 
Accordingly, its inhibition might be an approach in cancer 
treatment. Different preclinical studies could already 
give evidence in this regard. Due to the complexity of this 
pathway, combined therapies seem to have the best effect. 
As our understanding of its molecular mechanisms is not 
completely clear, further studies are needed.
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