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ABSTRACT 
 
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer 
characteristics of a dusty fluid over a flat stretching sheet in the presence of viscous dissipation. The basic equations 
governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to 
a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed 
equations are solved numerically by applying Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method). 
The effects of fluid-particle interaction parameter, Chandrasekhar number, Prandtl number, Eckert number on heat 
transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the 
prescribed wall heat flux (PHF) case are presented graphically and discussed. The skin friction and heat transfer 
coefficients are tabulated for a range of values of the parameters. Comparison of the obtained numerical results is 
made with existing literature. 
 
Key Words: Boundary layer flow, dusty fluid, Chandrasekhar number, viscous dissipation, fluid-particle interaction 
parameter, numerical solution. 
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INTRODUCTION 
 

The flow and heat transfer of a viscous and incompressible fluid induced by a continuously moving or stretching 
surface in a ambient fluid is relevant to the field of chemical engineering processes. Many chemical engineering 
processes like metallurgical process, polymer extrusion process involves cooling of a molten liquid being stretched 
into a cooling system. In such processes the fluid mechanical properties of the penultimate product would mainly 
depend on two things, one is the cooling liquid used and other is the rate of stretching. Some of the polymer fluids 
such as Polyethylene oxide, polyisobutylene solution in cetane, having better electromagnetic properties, are 
recommended as their flow can be regulated by external magnetic fields. An extreme care has to be given to control 
the rate at which in place of cooling liquids the extradite is stretched, rapid stretching results in sudden solidification 
thereby destroying the properties expected for the outcome. The problem addressed here is a fundamental one that 
arises in many practical situations such as polymer extrusion process. To name some of them, drawing, annealing 
and tinning of copper wires, continuous stretching, rolling and manufacturing of plastic films and artificial fibres, 
materials manufactured by extrusion process and heat treated materials traveling between a feed roll and windup 
rolls or on conveyer belts, glass blowing, crystal growing, paper production. 
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The behavior of boundary layer flow due to a moving flat surface immersed in an otherwise quiescent fluid was first 
studied by Sakiadis [1], who investigated it theoretically by both exact and approximate methods. Crane [2] 
presented a closed form exponential solution for the planar viscous flow of linear stretching case. Later this problem 
has been extended to various aspects by considering non-Newtonian fluids, more general stretching velocity, 
magnetohydrodynamic (MHD) effects, porous sheets, porous media and heat or mass transfer. Andreson et.al [3] 
extended the work of Crane [2] to non-Newtonian power law fluid over a linear stretching sheet. Chakrabarti and 
Gupta [4] have discussed the hydromagnetic flow and heat transfer over a stretching sheet. 
 
Gebhart [5] was the first author who studied the problem taking into account the viscous dissipation. The MHD and 
viscous dissipation effects of the heat transfer analysis were studied many authors such as Mahmoud [6], Vajravelu 
and Hadjinicalaou [7], Samad et.al [8] and Anjali Devi [9]. Further, Grubka and Bobba [10] analyzed heat transfer 
studies by considering the power-law variation of surface temperature. Cortell [11] studied the 
magnetohydrodynamics flow of a power-law fluid over a stretching sheet. Chen [12] analyzed mixed convection of 
a power law fluid past a stretching surface in the presence of thermal radiation and magnetic field. Power law model 
has some limitations as, it does not exhibit any elastic properties such as normal stress differences in shear flow. In 
certain polymer processing applications, flow of a viscoelastic fluid over a stretching sheet is important. On the basis 
of this reason Cortell [13] studied the effects of viscous dissipation and work done by deformation on the MHD flow 
and heat transfer of a viscoelastic fluid over a stretching sheet. Abel et.al [14] extended the work of [13] and studied 
the viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipation. Tsai et.al 
[15] studied an unsteady flow over a stretching surface with non-uniform heat source. Ishak et.al [16] obtained the 
solution to unsteady laminar boundary layer over a continuously stretching permeable surface. 
 
To study the two-phase flows, in which solid spherical particles are distributed in a fluid are of interest in a wide 
range of technical problems, such as flow through packed beds, sedimentation, environmental pollution, centrifugal 
separation of particles, and blood rheology etc., The study of the boundary layer flow of fluid-particle suspension 
flow is important in determining the particle accumulation and impingement of the particle on the surface. In view 
of these applications, Chakrabarti [17] analyzed the boundary layer flow of a dusty gas. Datta and Mishra [18] have 
investigated boundary layer flow of a dusty fluid over a semi-infinite flat plate. Further, researches in these fields 
have been studied by many mathematicians such as Evgeny and Sergei [19], XIE Ming-liang et.al [20], Palani et.al 
[21], Agranat [22] and Vajravelu et.al [23]. Abdul Aziz [24] obtained the numerical solution for laminar thermal 
boundary over a flat plate with a convective surface boundary condition using the symbolic algebra software Maple. 
Further he has found the similarity solution for existence of the energy equation, if the heat transfer coefficient ℎ� is 

proportional to ���
� , where � is the distance from the leading edge of the plate. Gireesha et. al [26, 27] studied 

boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with non-uniform heat source/sink. 
Further, they have obtained the solution to boundary layer flow and heat transfer of a dusty fluid over a stretching 
vertical surface with the help of Maple software. Kishan and Deepa [28] studied the effect of viscous dissipation on 
stagnation point flow and heat transfer of a micropolar fluid with uniform suction /blowing. Gaikwad and Rahuldev 
[29] analyzed the viscous dissipation effect of permeable fluid on laminar mixed convection in a vertical double 
passage channel. 
 
In view of the above discussion, present analysis is envisage to investigate two-dimensional study state 
incompressible boundary layer flow of a dusty fluid over a stretching sheet. Analysis on heat transfer is also carried 
out taking into the effect of viscous dissipation and magnetic field. In studying the heat transfer characteristics, two 
different types of boundary conditions are considered namely, PST and PHF boundary conditions. Highly non-linear 
momentum and heat transfer equations are solved numerically using RKF45 method. In the present investigation, we 
analyzed the effect of various physical parameters like fluid particle interaction parameter, Chandrasekher number, 
Prandtl number and Eckert number. 
 
Flow analysis of the problem 
Consider a steady two dimensional laminar boundary layer flow of an incompressible viscous dusty fluid over a 
vertical stretching sheet. The flow is generated by the action of two equal and opposite forces along the  �-axis and 
�-axis being normal to the flow. The sheet being stretched with the velocity 	
(�) along the �-axis, keeping the 
origin fixed. Further the flow field is exposed to the influence of an external transverse magnetic field of strength � 
(along y-axis). Both the fluid and dust particle clouds are suppose to be static at the beginning. The dust particles are 
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assumed to be spherical in shape and uniform in size and number density of the dust particle is taken as a constant 
throughout the flow.  
 
The momentum equations of the two dimensional boundary layer flow in usual notation are [23]: 
 

     
��
�� + ��

�� = 0,                 (2.1) 

 � ��
�� + � ��

�� = � ���
��� + ��

� ��� − �! − "#$��
� ,              (2.2) 

 ��
��%
�� + ��

��%
�� = �

& �� − ��!,                               (2.3) 

            ��
��%
�� + ��

��%
�� = �

& �� − ��!,                               (2.4) 

            
�

�� �'� ��! + �
�� �'� ��! = 0,                                                                            (2.5) 

 
where (�, �) and (�� , ��)  are the velocity components of the fluid and dust particle phases along � and � directions 
respectively.(,  ', '� and )  are the co-efficient of viscosity of the fluid, density of the fluid, density of the dust 
phase, number density of the particle phase, � is the strength of applied magnetic field, * is the stokes’ resistance 
(drag co-efficient, + is the mass of the dust particle respectively. It is also assumed that the external electric field is 
zero and the electric field due to polarization of charges is negligible. In deriving these equations, the drag force is 
considered for the interaction between the fluid and particle phases.  
 
The boundary conditions for the flow problem are given by 
  � = 	
(�), � = 0 at  � = 0, 
             � → 0, �� → 0, �� → �, '� → -' as � → ∞,                             (2.6) 
 
where 	
 (�) = .� is a stretching sheet velocity,  . > 0 is stretching rate, - is the density ratio. 
 
To convert the governing equations into a set of similarity equations, we now introduce the following transformation 
as, 

   � = .� 01(2), � =  −√�. 0(2), 2 = 45
6  �,                               (2.7) 

             �� = .� 7(2), �� = √�.8(2), '9 = (2). 
 

which are identically satisfies (2.1). Substituting (2.7) into (2.2) to (2.5), we obtain the following non-linear ordinary 
differential equations, 
 0;(2) + 0(2)0<(2) − =01(2)>? − @0′(2) + B∗D(2)=7(2) − 01(2)> = 0      (2.8) 
     8(2)71(2) + =7(2)>? + D=7(2) − 01(2)> = 0                                                           (2.9) 

            8(2)81(2) + D=0(2) + 8(2)> = 0                                                                       (2.10) 

            (2)7(2) + (2)81(2) + 8(2)1(2) = 0                                                                     (2.11) 

 

where a prime denotes differentiation with respect to 2  and  B∗ = +)/' , F = +/- is the relaxation time of the 

particle phase, D = 1/.F is the fluid particle interaction parameter, @ = "#$�
5�  is the Chandrasekhar number and 

'9 = '�/' is the relative density. 
 
 The boundary conditions defined as in (2.6) will becomes, 
         H(I) = J, H′(I) = K at I = J                                    (2.12) 
 

              0′(2) = 0, 7(2) = 0, 8(2) = −0(2), (2) = -   as 2 → ∞ 

If D = 0, the analytical solution of (2.8) with boundary condition (2.12) can be written in the form  0(2) = L�MNO
P , 

where Q = R@ + 1 
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2. Heat Transfer Analysis 
 The governing dusty boundary layer heat transport equations in the presence of viscous dissipation for two 
dimensional flow is given by [25] 

 '.� S� �T
�� + � �T

��U = -∗ ��T
��� + �5%

VW  �X� − X! + �
VY ��� − �!? + ( S��

��U?
                  (3.1)                           

            ��
�T%
�� + ��

�T%
�� = − 5%

5ZVW (X� − X)                                       (3.2) 

 

where X and X� is the temperature of the fluid and temperature of the dust particle, .� and .& are the specific heat of 
fluid and dust particles, FT is the thermal equilibrium time and is the time required by the dust cloud to adjust its 
temperature to the fluid, F� is the relaxation time of the of dust particle i.e., the time required by a dust particle to 
adjust its velocity relative to the fluid, -∗ is the thermal conductivity. 
 
The solution of the equations (3.1) and (3.2) depends on the nature of the prescribed boundary conditions. We 
employ two types of heating process as follows: 
(1) PST (Prescribed Power law Surface Temperature), 
(2) PHF (Prescribed Power law Heat Flux). 
 
CASE-1: Prescribed Surface Temperature (PST-Case) 
The boundary conditions in case of prescribed power law surface temperature are of the form 

 X = X
 = X[ + \ S�
] U?  at � = 0,         (3.3) 

 X → ∞, X� → X[  as � → ∞, 
 
where X
  and X[ denote the temperature at the wall and at large distance from the wall respectively, \ is a positive 

constant, B = 46
5  is a characteristic length. 

 Now define the non-dimensional fluid phase temperature _(2) and dust phase temperature _�(2) as 

 _(2) = T�T̀
Ta�T̀ , _�(2) = T%�T̀

Ta�T̀ ,                        (3.4) 

 

where X − X[ = \ S�
] U? _(2). 

Using (3.4) and (3.1) to (3.2), we obtain the following non-linear ordinary differential equations 

_<(2) + Pr=0(2)_1(2) − 20(2)1_(2)> + )ef
'. FT

S_�(2) −  _(2)U 

     + �
�Vg  ef h.�7(2) − 01(2)!? + efh.0<?(2) = 0,      (3.5) 

             27(2)_�(2) + 8(2)_�1 (2) + 5%
55ZVW �_�(2) − _(2)! = 0,                            (3.6) 

 

where ef = i5%
j  is the Prandtl number, h. = 5]�

k5% is the Eckert number,  

 
The corresponding boundary conditions for _(2) and _�(2) will becomes 
 _(2) = 1 at 2 = 0,                      (3.7)
 _(2) → 0, _�(2) → 0 as 2 → ∞. 
 
CASE-2: Prescribed Heat Flux (PHF-Case) 
The power law heat flux on the wall surface is considered to be a quadratic power of � in the form 

−-∗ �T
�� = l
 = m S�

] U?
 at � = 0,                                                                                (3.8) 

X → X[, X� → X[ as � → ∞, 
 
where m is the positive constant. On the other hand define a non-dimensional temperatures g(2) and dust phase 
temperature n�(2) as 
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 n(2) = T�T̀
Ta�T̀ , n�(2) = T%�T̀

Ta�T̀ ,                        (3.9) 

 

where X
 − X[ = o
j∗ S�

] U? 46
5. 

 
Equations (3.1) to (3.2) on using (3.9) can be transformed in terms of n(2) and n�(2) as 

n<(2) + Pr=0(2)n1(2) − 20(2)1n(2)> + )ef
'. FT

Sn�(2) −  n(2)U 

     + �
�Vg  ef h.�7(2) − 01(2)!? + efh.0<?(2) = 0,    (3.10) 

              27(2)n�(2) + 8(2)n�1 (2) + 5%
55ZVW �n�(2) − n(2)! = 0,                          (3.11) 

 

where  h. = (-∗B?.p
�)/(m.���

� ) is the Eckert number. The corresponding boundary conditions to this case will 
becomes 
 n(2) = −1 at 2 = 0,                                          (3.12)                    
            n(2) → 0, n�(2) → 0 as 2 → ∞. 
 
3. Numerical Solution 
Equations (2.8) to (2.12), (3.5) to (3.7) and (3.10) to (3.12) are highly non-linear ordinary differential equations. To 
solve these equations we adopted symbolic algebra software Maple, which was given by Aziz [24].It is very 
efficient in using the well known Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method) to obtain the 
numerical solutions of a boundary value problem. In order to verify the accuracy of our present method, a 
comparison of velocity gradient – 0″(0) with those reported by Cortell [11] for various values of Chandrasekhar 
number is given in Table 1. The comparisons in all the above cases are found to be in excellent agreement. 
 

Table 1: Comparison results for the function – H″(J) for several values of s in the case of t = J, uv =
J, wx = J and y = J. 

 
 Cortell[11] Present Study 

@ −0′1(0) −0′1(0) 
at D = 0 

−0′1(0) 
at D = 0.5 

0.0 1.000 1.000 1.034 
0.2 1.095 1.095 1.126 
0.5 1.224 1.224 1.252 
1.0 1.414 1.414 1.438 
1.2 1.483 1.483 1.506 
1.5 1.581 1.581 1.602 
2.0 1.732 1.732 1.751 

 
RESULTS AND DISCUSSION 

 
An MHD boundary layer flow and heat transfer of a dusty fluid over a stretching sheet is investigated in presence of 
viscous dissipation. Numerical solutions are presented for highly non-linear thermal boundary layer equations, 
where the former is achieved by Runge Kutta Fehlberg fourth-fifth order method. Numerical computation of these 
solutions have been carried out to study the effect of various physical parameters such as fluid particle interaction 
parameter D, Chandrasekhar number @, Prandtl number ef and Eckert number h.. Further, the impact of some 
important physical parameters on wall temperature gradient _1(0) and wall temperature n(0) may be analyzed from 
Table 2. Sets of representative numerical results are illustrated graphically. 
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Figure-1: Variation of transverse velocity (H), non-dimensional particle velocity({), fluid 
velocity (H′) and particle velocity (|) components for several values of s. 

 
 Figures 1 shows the effect of Chandrashekhar number on velocity components of the fluid velocity 0′(2) , 
transverse velocity 0(2), particle velocity 7(2) and non-dimensional particle velocity 8(2). From these plots it is 
observed that the increasing @ clearly escalates the magnitude of the Lorentz retarding hydromagnetic body force 
which serves to retard the flow considerably but in non-dimensional particle velocity it is contrast. Also we can seen 
from the Table 1,  0″(0) is negative. Physically, negative values of 0″(0) means the solid surface exerts a drag force 
on the fluid. This is not surprising since the development of the velocity boundary layer is caused exclusively on the 
stretching plate.  
 

 
 
 

Figure-2(a):Effect of Chandrasekhar number (s) on temperature distribution for PST case. 
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Figure-2(b):Effect of Chandrasekhar number (s) on temperature distribution for PHF case. 
 
Figures 2(a) and 2(b) depict the temperature profiles _(2), _�(2) versus 2 for the PST case and n(2), n�(2) versus 2 
for the PHF case respectively. From these plots it is observed that the transverse magnetic field contributes to the 
thickening of thermal boundary layer. It is evident from these graphs that an applied transverse magnetic field 
produces a body force, called a Lorentz force, which opposes the motion. The resistance offered to the flow is 
responsible in enhancing the temperature. 
 

 
 
 

Figure-3(a): Effect of Prandtl number (uv) on temperature distribution for PST case. 
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Figure-3(b): Effect of Prandtl number (uv) on temperature distribution for PHF case. 

 
The effect of Prandtl number on the heat transfer is shown in Figures 3(a) and 3(b). By analyzing these graphs it 
reveals that the effect of increasing the Pr is to decreases the temperature distribution in the flow region in both PST 
and PHF cases, it is evident that large values of Prandtl number results in thinning of thermal boundary layer. This is 
in contrast to the effects of other parameters on heat transfer. We have used throughout our thermal analysis the 
following values for different parameters, like FT  = F�  =  0.5 and .�  =  .&  =  0.2, ' =  0.5, . =  1. 
 

  
Figure-4(a): Effect of Eckert number (wx) on temperature distribution for PST case. 

 
Figure-4(b): Effect of Eckert number (wx) on temperature distribution for PHFcase. 
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Figures 4(a) and 4(b) is plotted for the temperature profiles for PST and PHF cases respectively, for different values 
of Ec. One can observe that the effect of increasing values of Eckert number is to enhance the temperature at a point 
which is true for both the PST and PHF cases of the fluid phase as well as dust phase particle. It is observed that the 
effect of viscous dissipation is to amplify the temperature both in PST and PHF cases. Also it is observed that the 
fluid phase temperature is higher than the dust phase temperature and also it indicates that the fluid particle 
temperature is parallel to that of dust particle. 

 
Table 2: Values of wall temperature gradient – }1(J) for different values of t, {v, uv, yv, HJ and wx. 

 
D h. ef @ PST case PHF case 

    −_1(0) n0) 
0.0 0.2 1.0 3.0 1.3966 0.7014 
0.2    1.4434 0.6720 
0.4    1.4729 0.6542 
0.5 0.0 1.0 3.0 1.6486 0.5279 

 0.25   1.5113 0.6278 
 0.5   1.3741 0.7277 

0.5 0.2 1.0 3.0 1.4839 0.6478 
  1.2  1.9619 0.6478 
  2.0  2.3713 0.3730 

0.5 0.2 1.0 0.0 1.6227 0.5964 
   2.0 1.5470 0.6226 
   3.0 1.4839 0.6478 

 
CONCLUSION 

 
Mathematical analysis has been carried out to study the Heat transfer in MHD flow of a dusty fluid over stretching 
sheet with viscous dissipation. The governing partial differential equations are converted into ordinary differential 
equations by using similarity transformations. The effect of several parameters controlling the velocity and 
temperature profiles is shown graphically and discussed briefly. The influence of the parameters D, @, h. and ef on 
dimensionless temperature profiles were examined. Some of the important observations of our analysis obtained by 
the graphical representation are reported as follows. 
 
1) Effect of Chandrasekhar number is to increase temperature distributions in the flow region in both the cases of 
PST and PHF for both the phases. 
2) The strength of external magnetic field should be as mild as possible for effective cooling of the stretching sheet. 
3) Fluid phase temperature is higher than the dust phase temperature. 
4) The rate of heat transfer −_(0)  and n(0)  decreases with increasing the Prandtl number and fluid-particle 
interaction parameter. While it increases with increasing the Eckert number. 
5) The effect of Prandtl number is to decreases the thermal boundary layer thickness. 
6) The PHF boundary condition is better suited for effective cooling of the stretching sheet. 
7) The limit D → 0 our results are coincide with the results of Cortell [11]. 
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