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ABSTRACT

An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer
characteristics of a dusty fluid over a flat stretching sheet in the presence of viscous dissipation. The basic equations
governing the flow and heat transfer arein the form of partial differential equations, the same have been reduced to
a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed
equations are solved numerically by applying Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method).
The effects of fluid-particle interaction parameter, Chandrasekhar number, Prandtl number, Eckert number on heat
transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the
prescribed wall heat flux (PHF) case are presented graphically and discussed. The skin friction and heat transfer
coefficients are tabulated for a range of values of the parameters. Comparison of the obtained numerical resultsis
made with existing literature.

Key Words: Boundary layer flow, dusty fluid, Chandrasekhamiver, viscous dissipation, fluid-particle interacti
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INTRODUCTION

The flow and heat transfer of a viscous and incasgible fluid induced by a continuously moving trething
surface in a ambient fluid is relevant to the fiefdchemical engineering processes. Many chemiegineering
processes like metallurgical process, polymer sidruprocess involves cooling of a molten liquidnigestretched
into a cooling system. In such processes the fiugthanical properties of the penultimate produatid/anainly
depend on two things, one is the cooling liquidduaed other is the rate of stretching. Some ofptigmer fluids
such as Polyethylene oxide, polyisobutylene sofutio cetane, having better electromagnetic propgrtare
recommended as their flow can be regulated by eatenagnetic fields. An extreme care has to bergteecontrol
the rate at which in place of cooling liquids theradite is stretched, rapid stretching resultsudden solidification
thereby destroying the properties expected forotiteome. The problem addressed here is a fundahwreahat
arises in many practical situations such as polyex¢musion process. To name some of them, dravengealing
and tinning of copper wires, continuous stretchirdling and manufacturing of plastic films andifictal fibres,

materials manufactured by extrusion process antl themed materials traveling between a feed notl windup
rolls or on conveyer belts, glass blowing, crygiawing, paper production.
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The behavior of boundary layer flow due to a movilag surface immersed in an otherwise quiesced fivas first
studied by Sakiadis [1], who investigated it theicedly by both exact and approximate methods. €r§?]

presented a closed form exponential solution ferplanar viscous flow of linear stretching caseet ¢his problem
has been extended to various aspects by consideongNewtonian fluids, more general stretching eiyo

magnetohydrodynamic (MHD) effects, porous sheetsoys media and heat or mass transfer. Andresah[8}.
extended the work of Crane [2] to non-Newtonian poVaw fluid over a linear stretching sheet. Chhkré and
Gupta [4] have discussed the hydromagnetic flowlsaat transfer over a stretching sheet.

Gebhart [5] was the first author who studied thabpem taking into account the viscous dissipatidme MHD and
viscous dissipation effects of the heat transfexlyais were studied many authors such as Mahmaud/gravelu
and Hadjinicalaou [7], Samad et.al [8] and AnjaévD[9]. Further, Grubka and Bobba [10] analyzedtheansfer
studies by considering the power-law variation o@irface temperature. Cortell [11] studied the
magnetohydrodynamics flow of a power-law fluid ogestretching sheet. Chen [12] analyzed mixed octiose of
a power law fluid past a stretching surface inghesence of thermal radiation and magnetic fietovét law model
has some limitations as, it does not exhibit amgtid properties such as normal stress differeimcekear flow. In
certain polymer processing applications, flow eiscoelastic fluid over a stretching sheet is intgot. On the basis
of this reason Cortell [13] studied the effectvistous dissipation and work done by deformatiottenMHD flow
and heat transfer of a viscoelastic fluid overatshing sheet. Abel et.al [14] extended the wdrkl8] and studied
the viscoelastic MHD flow and heat transfer ovestr@tching sheet with viscous and ohmic dissipatisai et.al
[15] studied an unsteady flow over a stretchingamg with non-uniform heat source. Ishak et.al [@6fained the
solution to unsteady laminar boundary layer oveomtinuously stretching permeable surface.

To study the two-phase flows, in which solid spba&lriparticles are distributed in a fluid are ofeirgtst in a wide
range of technical problems, such as flow througtkpd beds, sedimentation, environmental pollutb@ntrifugal

separation of particles, and blood rheology etbe $tudy of the boundary layer flow of fluid-palisuspension
flow is important in determining the particle acauation and impingement of the particle on the acef In view
of these applications, Chakrabarti [17] analyzexllibundary layer flow of a dusty gas. Datta andhkéi§18] have
investigated boundary layer flow of a dusty fluideo a semi-infinite flat plate. Further, researcheshese fields
have been studied by many mathematicians such geni\and Sergei [19], XIE Ming-liang et.al [20],|&a et.al

[21], Agranat [22] and Vajravelu et.al [23]. Abdakiz [24] obtained the numerical solution for laminthermal
boundary over a flat plate with a convective swefhoundary condition using the symbolic algebraveae Maple.
Further he has found the similarity solution foistance of the energy equation, if the heat traraefficienthy is

1
proportional tax 2, wherex is the distance from the leading edge of the pl&iecesha et. al [26, 27] studied
boundary layer flow and heat transfer of a dustydflover a stretching sheet with non-uniform heatree/sink.
Further, they have obtained the solution to boundtarer flow and heat transfer of a dusty fluid peestretching
vertical surface with the help of Maple softwarasi&an and Deepa [28] studied the effect of visaigsipation on
stagnation point flow and heat transfer of a miotapfluid with uniform suction /blowing. Gaikwadd Rahuldev
[29] analyzed the viscous dissipation effect ofnpesible fluid on laminar mixed convection in a \e&tidouble
passage channel.

In view of the above discussion, present analysisemvisage to investigate two-dimensional studyesta
incompressible boundary layer flow of a dusty floikr a stretching sheet. Analysis on heat transfalso carried
out taking into the effect of viscous dissipatiordanagnetic field. In studying the heat transfearebteristics, two
different types of boundary conditions are consgdemamely, PST and PHF boundary conditions. Higbly-linear
momentum and heat transfer equations are solve@meatly using RKF45 method. In the present ingzton, we
analyzed the effect of various physical paramdtkesfluid particle interaction parameter, Chanateser number,
Prandtl number and Eckert number.

Flow analysis of the problem

Consider a steady two dimensional laminar boundygr flow of an incompressible viscous dusty flaider a
vertical stretching sheet. The flow is generatedhgyaction of two equal and opposite forces altvegx-axis and
y-axis being normal to the flow. The sheet beingtstred with the velocity,,(x) along thex-axis, keeping the
origin fixed. Further the flow field is exposedtte influence of an external transverse magnegid ff strengtt,
(along y-axis). Both the fluid and dust particlewds are suppose to be static at the beginningduisieparticles are
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assumed to be spherical in shape and uniform eaizl number density of the dust particle is tak®@ constant
throughout the flow.

The momentum equations of the two dimensional baonthyer flow in usual notation are [23]:

o

ozt oy =0 2.1)
ou du _  9%u | KN oHZu
u%+v5;vm+7(up—u)— PR (22)
Uu u K
upa—;+vpa—;=z(u —uy), (2.3)
v v, K
upa—;’+vpa—;’=z(v—vp), (2.4)
a a
a(pp up) + 5(:01) ) =0, (2.5)

where(u, v) and(u,, v,) are the velocity components of the fluid and dusticle phases alongandy directions
respectivelyu, p,p, andN are the co-efficient of viscosity of the fluidembity of the fluid, density of the dust
phase, number density of the particle phaigeas the strength of applied magnetic fielljs the stokes’ resistance
(drag co-efficientm is the mass of the dust particle respectivelis #lso assumed that the external electric field is
zero and the electric field due to polarizatiorcbérges is negligible. In deriving these equatitins,drag force is
considered for the interaction between the fluid particle phases.

The boundary conditions for the flow problem areegi by
u=U,(kx),v=0aty=0,
u-0,u, -0, v, >v,p, > kpasy - o, (2.6)

whereU,, (x) = cx is a stretching sheet velocity,> 0 is stretching rate is the density ratio.

To convert the governing equations into a setmilarity equations, we now introduce the followitignsformation
as,

u=cxf'm,v= —Jve f(m),n =\/§y. (2.7)
u, = cx F(n), v, = veG(m), p, = H®).

which are identically satisfies (2.1). Substituti{2g7) into (2.2) to (2.5), we obtain the followingn-linear ordinary
differential equations,

")+ ff"m) = [f' M = Qf' () + U'BHMI[F ) — f'(m)] =0 (2.8)
GF' () + [F]* + BIFm) — f'(M] =0 (2.9)
GG M +BIfM+G6mM]=0 (2.10)
HmFMm) + HmMG () + GmH'(n) =0 (2.12)

where a prime denotes differentiation with resgesf and!* = mN/p,t = m/kis the relaxation time of the
2

particle phasef = 1/ct is the fluid particle interaction parameter,=% is the Chandrasekhar number and

pr = pp/p is the relative density.

The boundary conditions defined as in (2.6) widtbmes,
f=0,fm=1atn=0 (2.12)

f'm=0,F(m)=0,G() =—-f(n),Hm) =k asn->o

_ef
If B = 0, the analytical solution of (2.8) with boundary ddion (2.12) can be written in the forfi(n) = ! ; n,
where =,/Q +1
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2. Heat Transfer Analysis
The governing dusty boundary layer heat transpguitions in the presence of viscous dissipatiomvo
dimensional flow is given by [25]

aT T\ _ , . 0%T  Ngp _ N RY ou\?
PCp (ua + UE) =k pel + o (Tp T) + o (up u) +u (ay) (3.2)
aT, aT, c
upa—;+vpa—:= _Cm’;T (Tp -T) (3.2)

whereT andT, is the temperature of the fluid and temperaturthefdust particle;, andc,, are the specific heat of

fluid and dust particleg; is the thermal equilibrium time and is the timguieed by the dust cloud to adjust its
temperature to the fluid,, is the relaxation time of the of dust particle,ithe time required by a dust particle to
adjust its velocity relative to the flui&; is the thermal conductivity.

The solution of the equations (3.1) and (3.2) ddpeon the nature of the prescribed boundary camditiWe
employ two types of heating process as follows:

(1) PST (Prescribed Power law Surface Temperature),

(2) PHF (Prescribed Power law Heat Flux).

CASE-1: Prescribed Surface Temperature (PST-Case)
The boundary conditions in case of prescribed pdawrsurface temperature are of the form
2
T=T,=T,+A(%) aty=o, (3.3)
T - oo,Tp - T, asy — o,

whereT,, andT,, denote the temperature at the wall and at largtamite from the wall respectivel§,is a positive
constant] = \/% is a characteristic length.

Now define the non-dimensional fluid phase temfugesd (n) and dust phase temperatéygn) as

() = 7=, 6,(n) = 2= (3.4)

Tyw—Too Tyw—Teo

whereT —T,, = A (%)2 o).
Using (3.4) and (3.1) to (3.2), we obtain the faling non-linear ordinary differential equations
NP
0" () + Prlf (' () — 2£ () 0] +——(8,(n) — 6(n))
pcir
+p% Pr Ec(F(n) —]"(77))2 + PrEcf"?(n) =0, (3.5
2F ()6, (n) + GOy (n) + —2=(8,(m) — 6(n)) = 0, (3.6)

cemTr

2
wherePr = % is the Prandtl numbeEc = % is the Eckert number,
P

The corresponding boundary conditions égn) andé,(n) will becomes
6(m) =1atn =0, 3.7)
0(n) — 0,6,(n) - 0 asn — .

CASE-2: Prescribed Heat Flux (PHF-Case)

The power law heat flux on the wall surface is ideed to be a quadratic powerxoin the form
LT 2

—k*Z=q, =D () aty=o, (3.8)

T > Ty, T, = Ty @Sy — o,

whereD is the positive constant. On the other hand dedingon-dimensional temperature§pand dust phase
temperaturgy,(n) as
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T—Too
TW_TOO

Tp—Teo

9 ===, (3.9)

g(m) =
whereT,, — T,, = kﬁ(f)z %
Equations (3.1) to (3.2) on using (3.9) can bedi@med in terms of () andg,(n) as

NP
9" () + Prif (g’ () — 2/ @) 9] +——— (g, — g())
pcTr
+p% Pr Ec(F(n) —f’(n))2 + PrEcf"*(n) =0, (3.10)
2F (M) gp () + G gpm) + —2=(g,(m) — g(m)) = 0, (3.12)

cemtr

where Ec = (k*lzc%)/(Dcpv%) is the Eckert numberThe corresponding boundary conditions to this cagle
becomes
gn) =—-1atn =0, (3.12)
g(@m — 0,g,(n) - 0 asn - co.

3. Numerical Solution

Equations (2.8) to (2.12), (3.5) to (3.7) and (3.t10(3.12) are highly non-linear ordinary diffetiah equations. To
solve these equations we adopted symbolic algebitvaze Maple, which was given by Aziz [24].1t i®ry
efficient in using the well known Runge Kutta Fedry fourth-fifth order method (RKF45 Method) to aiot the
numerical solutions of a boundary value problem.ohder to verify the accuracy of our present methad
comparison of velocity gradientf”(0) with those reported by Cortell [11] for variouslues of Chandrasekhar
number is given in Table 1. The comparisons inredlabove cases are found to be in excellent agnetem

Table 1: Comparison resultsfor the function - f”(0) for several valuesof Q inthecaseof g = 0, Pr =
0,Ec=0and N = 0.

Cortell[11] Present Study
Q =" =" -0
atf=0 atp=05

0.0 1.000 1.000 1.034
0.2 1.095 1.095 1.126
0.t 1.22¢ 1.22¢ 1.252

1.0 1.414 1414 1.438
1.2 1.483 1.483 1.506
1t 1.581 1.581 1.60:

2.0 1.732 1.732 1.751

RESULTSAND DISCUSSION

An MHD boundary layer flow and heat transfer ofusty fluid over a stretching sheet is investigatedresence of
viscous dissipation. Numerical solutions are prekrior highly non-linear thermal boundary layemations,
where the former is achieved by Runge Kutta Feblbeurth-fifth order method. Numerical computatiohthese
solutions have been carried out to study the efféstarious physical parameters such as fluid plartinteraction
parametey, Chandrasekhar numb@r, Prandtl numbePr and Eckert numbefc. Further, the impact of some
important physical parameters on wall temperatuagligntd’(0) and wall temperaturg(0) may be analyzed from
Table 2. Sets of representative numerical resudtéllastrated graphically.
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Figure-1: Variation of transverse velocity (f), non-dimensional particle velocity(G), fluid
velocity (f') and particle velocity (F) componentsfor several valuesof Q.

Figures 1 shows the effect of Chandrashekhar nurobevelocity components of the fluid velocify(n),
transverse velocity(n), particle velocityF (n) and non-dimensional particle velocitfn). From these plots it is
observed that the increasifigclearly escalates the magnitude of the Lorentard@tg hydromagnetic body force
which serves to retard the flow considerably butdm-dimensional particle velocity it is contra&lso we can seen
from the Table 1,/"(0) is negative. Physically, negative valueg6§0) means the solid surface exerts a drag force
on the fluid. This is not surprising since the depenent of the velocity boundary layer is causedsively on the
stretching plate.

0.8
1.0 -
——B=0.0 —B=0.0
o i e =05
0.8 T B0 0.6 4% p
PST - Case : PST - Case
=) Pr=1.0
0.6 Ec=0.2 . Ec=0.2
= N =0.5 £ 044 N =05
£ k =02 @ k =02
0.4 -]
Q=1.0,20,3.0
Q=1.0,2.0,3.0 0.2+
0.2
0.0 ; : . =1 : 0.0 : i : : ;
0 1 2 n 3 4 5 0 1 2 n 3 4 5

Figure-2(a): Effect of Chandrasekhar number (Q) on temperature distribution for PST case.
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Figure-2(b): Effect of Chandrasekhar number (@) on temperature distribution for PHF case.

Figures 2(a) and 2(b) depict the temperature @®di(n), 8, () versus; for the PST case arg(n), g,(n) versusy
for the PHF case respectively. From these plois dbserved that the transverse magnetic fieldritrtés to the
thickening of thermal boundary layer. It is eviddram these graphs that an applied transverse niagfeld
produces a body force, called a Lorentz force, twhipposes the motion. The resistance offered tdflthve is
responsible in enhancing the temperature.

0.7 4
1.0
0.6+
——B=00 P00
0.8 wrrmrems = 0.5 054 % - p=05
PST - Case |\ PST - Case
Ec=0.2 ‘ Ec=0.2
» Q=02 e Q=02
] N =05 G N =05
= k=02 " k =02
(<5} 0.3 o
0.4 )
, A\ Pr=0.72,1.0,2.0
Pr=0.72, 1.0, 2.0 0= A\
0.2
0.1 4
0.0 T T T T T 0.0 T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
| n

Figure-3(a): Effect of Prandtl number (Pr) on temperaturedistribution for PST case.
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® 03 N =05
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e
0.2 4
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T T 00 — — f &l T T
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2 n 3
Figure-3(b): Effect of Prandtl number (Pr) on temperaturedistribution for PHF case.

The effect of Prandtl number on the heat transfeshiown in Figures 3(a) and 3(b). By analyzing éhgsaphs it
reveals that the effect of increasing the Pr iddoreases the temperature distribution in the feegion in both PST
and PHF cases, it is evident that large valuegaridR’l number results in thinning of thermal bouydayer. This is
in contrast to the effects of other parameters eat fransfer. We have used throughout our thermalysis the
following values for different parameters, likg = 7, = 0.5 andc, = ¢, = 0.2,p = 0.5,c = 1.

1.0
0.6+
—B=00
08 B p=05 05 ——pB=00
PST - Case ‘ e =05
Pr=1.0 | PST - Case
0.6 Q=02 0.4 4 Pr=1.0
= N =05 £ 1 W Q=02
=3 k=02 B o R\ N =05
0.4+ k =02
024
Ec=0.0,0.25, 0.5
0.2 4
0.1 4
0.0 T T 7 T T T 0.0 4
0 1 2 n 4 5 0
Figure-4(a): Effect of Eckert number (Ec) on temperaturedistribution for PST case.
0.6 -
——p=00
S = N\
PHF - Case T p=b
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S I r= s £ PHEF - Case
= ) Q=0 =5 oy
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0.3 iy K = 5 024 Ay Q=02
) =8 AN N =05
: k =0.2
0.2 4 ‘.“
0.1 4 i
Ec=0.0,025,0.5
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U 5 T ; T T e T T é
= 0 1 2 n 3 4 5

Figure-4(b): Effect of Eckert number (Ec) on temperaturedistribution for PHFcase.
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Figures 4(a) and 4(b) is plotted for the temperpnofiles for PST and PHF cases respectivelydififerent values
of Ec. One can observe that the effect of increpgaiues of Eckert number is to enhance the tertyrerat a point
which is true for both the PST and PHF cases ofltié phase as well as dust phase particle. dbiserved that the
effect of viscous dissipation is to amplify the fgerature both in PST and PHF cases. Also it isrgbdethat the
fluid phase temperature is higher than the duss@hamperature and also it indicates that the fhadicle
temperature is parallel to that of dust particle.

Table 2: Values of wall temperature gradient - 8'(0) for different valuesof B, Gr, Pr,Nr, f, and Ec.

B Ec Pr Q PST case PHF case

—0"(0) 99)
00 02 1.0 3.0 1.3966 0.7014
0.2 1.443¢ 0.672(
0.4 1.4729 0.6542
05 00 1.0 3.0 1.6486 0.5279
0.25 1.5113 0.6278
0.5 1.3741 0.7277
05 02 10 30 1.4839 0.6478
1.2 1.9619 0.6478
2.0 2.3713 0.3730

05 02 10 00 1.6227 0.5964
2.0 1.5470 0.6226
3.0 1.4839 0.6478

CONCLUSION

Mathematical analysis has been carried out to sthelyHeat transfer in MHD flow of a dusty fluid ov&retching
sheet with viscous dissipation. The governing phdifferential equations are converted into ordjndifferential
equations by using similarity transformations. Tékect of several parameters controlling the vejo@nd
temperature profiles is shown graphically and dised briefly. The influence of the paramei&r@, Ec andPr on
dimensionless temperature profiles were examinetheSof the important observations of our analybigined by
the graphical representation are reported as fsllow

1) Effect of Chandrasekhar number is to increase temype distributions in the flow region in both tbases of
PST and PHF for both the phases.

2) The strength of external magnetic field should ®endd as possible for effective cooling of theeithing sheet.
3) Fluid phase temperature is higher than the dustepteamperature.

4) The rate of heat transfer6(0) andg(0) decreases with increasing the Prandtl number #&rid-garticle
interaction parameter. While it increases with @asing the Eckert number.

5) The effect of Prandtl number is to decreases thartal boundary layer thickness.

6) The PHF boundary condition is better suited foeff’e cooling of the stretching sheet.

7) The limit 8 — 0 our results are coincide with the results of Abfid].
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