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ABSTRACT

The present paper applies the homotopy analysis method (HAM) for finding solutions to a coupled system of
variable coefficient equations that arise in the problems of fluid dynamics. Flow of fluids particularly non-
newtonian fluids through pipes is a problem that has wide range of application. The mathematical formulations of
these problems generally give rise to non-linear (and/or) coupled (and/ or) variable coefficient equations. Thus
finding exact solutions of these problems is almost impossible. Thus researchers sought to numerical or
approximate analytical method for solving them. Here, in the present study, the flow of micropolar fluid in a rigid
circular tube is considered and an approximate analytical solution is found. The effect of the fluid flow parameter,
micro rotation parameter and the pressure gradient on the velocity and micro rotation of the fluid are studied. The
results are presented through graphs.
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INTRODUCTION

The study of incompressible viscous fluid flow igid pipes is a renowned classical problem. Arcesteady state
solution to this problem, under certain valid asptioms can be obtained by solving the governingatiqas called
Navier Stokes equations [1]. In practice, majodfythe fluids found in nature as well as in indiaggtor medical
applications are non- Newtonian. The flow of thdlsgds through rigid pipes have enormous applaradi in
polymer processing industries, bio medical engingeetc., Thus there is a definite need to undertak study the
flow of these non-Newtonian fluids through pipesilike the steady viscous flow, here, in these motd, it is
difficult to relate the instantaneous velocity ples and the volumetric flow rate to the instantare pressure
gradient. Further, in some cases the stress + stteaelation may be highly non- linear and misp de a function
of time. These make the problem of pipe flow of ndtewtonian fluids even more complicated and hence
mathematically intractable. Inspite of the diffibes in obtaining exact analytical solutions te tibove mentioned
problems, due to their practical importance, thpegblems have been attempted by several researéioens
diversified fields and they tried finding the saduts by making certain assumptions in order toagetnalytical
solution or a numerical solution [2-5].

Very recently, some promising approximate analytiv&thods such as Homotopy analysis method, Homotop
perturbation method, Optimal Homotopy asymptotichnd (OHAM) have been proposed [6-14]. These method
can be treated as intermediate methods for the exadytical methods and the numerical methodshave several
advantages over them. These approximate analytietiods, though cannot provide closed form of smistas the
exact analytical methods, can provide good appraténexpressions for the solution and hence care solwide
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class of problems whose solutions are almost iniplesby the classical methods. Obviously they fdha better
choice than the numerical methods in many casestaithe limitations of the numerical methods.

In the present paper, the flow of a non- Newtorfiaidl namely Micropolar fluid is considered for g This fluid

model was proposed by Erigen inorder to explain libbavior of real fluids in certain contexts. Eenghas
proposed this theory of micropolar fluids [15] 866 andLukaszewicz described this fluid model as#-founded
and significant generalization of the classical Ma6tokes model covering both in theory and apfibms, many
more phenomena than the classical one can [16].

Mathematical Formulation:
Consider the flow of incompressible micropolardlum a rigid circular pipe under a constant presgradient. A

schematic diagram of the problem can be foundgi¢lji The flow is assumed to be laminar.
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Fig(l): Schematic diagram of fluid flow
The equations governing the flow of micropolardlaire [15]
%2+ div(pd) =0 o
ot
p@ =pf-grad p+kecurl U —(u+k)curl curl g
dt 2)
+ (A, +2u+k)grad divg
O O;—'t’ = pl —2kv +kcurl G- ycurl curl 7 +(a + B+ y)grad divy 3)

in which G,V  are velocity and microrotation vectoréf_, ,I_ are body force per unit mass, body couple per unit
mass respectively arglis the fluid pressure at any poin@ and are density of the fluid and gyration parameters

respectively and are assumed to be constants. Beriai constants(A,, i/,K) are viscosity coefficients and
(a,B,y) are gyroviscosity coefficients. These constantsiom to the inequalities

The stress tensdl,rj and the couple stress tendoy; are given by

t; :(_ p+A +di\‘_1)é|-j +(2,U+k)qj' +k£|jm(wm _Vm) 4)
m za(divv)éij OV W ®)

in which the symbolséij €. 2W, and V,,, respectively denote Kronecker symbol, componehtste of strain ,
vorticity vector and microrotation vector;,, denotes the Levi- Civita symbol and comma denotesrtant

differentiation.

In the absence of body forces and body couplegdfoations governing the steady flow is given by
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div( g) =0

(6)
—grad p+k curl v—(u+k)curl curl g=20
(7
—2kv +k curl g—ycurl curl v =20 ®)
Assumingq =(0,0w(r))and 7 =(0,v(r),0) , we get
op
-—=0 9
or ®)
Ei(rv)+’u_+ki rM —@:0 (10)
r dr rodr\ dr) oz
d(1d dw
—y—| =—(rv) [+k—+2kv=0 11
ydr(rdr( )j dr (11)
which is a system of coupled ordinary equationf wériable coefficients.
The boundary conditions are
w=0onr =R (no slip condition)
wis finite atr =0
v=0onr =R (no spin condition)
vis finite atr =0 (12)
Using the following non-dimensionalisation:
Al v ;W= w ;I =L and the non- dimensional parameters given by
Um’cro Uaverage R
U
p :'UTJrk (which is the polarity parameter that takes uplbuwadues ), fl =—2°_ which is referred to as flow
. y . . _ R dp :
parameter,ws:W the viscosity parameterPs= - e the pressure, equations (9) and (10) after
dropping ‘*' take the form
d d( dw
—(rv)+pl* fl—| r— |+rPs=0 13
dr (r)+e dr ( dr j 13)
—\/isi Ei(rv) + fl d—W+v:0 (14)
dr\rdr dr
HAM:
Consider a nonlinear differential equation of thent:
N(u(x))=0 (15)

whereN is a nonlinear operatoX is the independent variable an{X) is the unknown function. Letl,(X) be
the initial approximation of the exact solutiaf{X) and L be an auxiliary linear operator with the propehtt
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L(f)=0whenf =0. (16)

In this method, we construct the Homotopy which sontinuous mappingd : u(X) — qD(X; q) defined as
H (¢(xa);a) = (1-a) L(@(x:q) - u, (x)) —hH (x)aN (¢(x;a)) 17)

Here H (X)is an auxiliary function andhis an auxiliary parameter called the convergenaetrob parameter,
qD[O,]] is an embedding parameter a(ﬂ(jx;q) is the approximate solution to the given problene Wbtice

from equation (17) that the solution obtained uging method, depends on the four important factamrmely the
initial approximatiorl, (X) , the linear operatdr , the auxiliary functionH (X) and the auxiliary paramethr.

When ¢ =0and when the Homotopy defined by equation (17)alen to be zero, we get the zeroth order
deformation equation given by

L(¢(x0)-u,(x))=0 (18)
In view of the linearity of the operatoL’, the zeroth deformation equation is given by

@(x0) =u,(x) (19)
Now, when( =1, equation (17) takes the form

N(¢(x1)=0

This equation is same as the given equation prdvide

9(x1)=u(x) (20)

This shows that as the embedded parantetaries from 0 to 1go( X; q) varies from the initial guestd, (X) (asis

seen in equation (19)) to the exact solutigfX) (as seen equation (20)) .
Let's now define the fhorder deformation derivatives as

m "
470 = g (o) e

a=0

Then, using the Taylor’s theorenp( X; q) can be expanded as a power serieq| Gfs

= U (x)
p{xa)=g(x0)+2, = ~d 22)
m=1 .
y ul (x) | |
Writing Uy, (X) = p— and using equation (2.19), the above takes thma for
(x0) = U (x) + XUy (x)a" (23)
m=1

With suitable choice of the initial guess, the &iary linear operator, the convergence control pater and the
auxiliary function, Liao proved that the above poweries solution converges foy=1[10].
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Now, to find the solution using equation (2.23), meed to find the functiond, (X) for m=1,2,3...

Liao [10] has derived that these functions are mivg the nff' order deformation equation defined as follows:

L (U (%) = Xles (X)) = hH (X) R, (01 (X)) (24)

where

R0 (0)= g s (M ot)) | =
O,m<1

and m= {1,otherwise 20

After determiningU,, (X) for m=1,2..., an approximate solution to the probgmen in (14) is

u(x):uo(x)+m21um(x) (27)

Solution:
Let L,=w' (28)
L, =V +x°W (29)
Here N, Ei(rv)+ pl * fl i(rd—WjHPs:O
dr dr{ dr
N, =- 'siiéi(rv)j+ fl—+v=0
dr\rdr dr (30)

Construct the homotopy for the above nonlinear tElipquations as:
H (w(r;a);a) = (1-a) L (w(r;a) ~w (r)) -hN,, (w(r:q))
H(v(r:q);a) = (1-a)L(v(r;a) = v (r)) -hN, (v(r;q)) (31)

Using zero initial approximations and assumingdbleitions as

w(r;q) =w, (/7)+mZi;Wm (7)a

V(1) =V (1) + X v ()"

m=1 (32)
W, (r) andv,, (I’ ) are obtained using equations (24)- (26).

Using MATHEMATICA, the first four approximations fothe fluid velocitycomponelw(r)and the micro

rotation componenv(r) are calculated and the plots are presented.
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RESULTSAND DISCUSSION

To find the values of the convergence control patemh’ in equations (31), thé-graphs forWi.eV\/'(h) is

plotted at/7 =0 an in Fig 1. It can be seen that for Ps = 0.25; pl = 0.1;fp = 0.01; Vp = 0.01,the control
parameter ‘h’ satisfies -0.5<h<0.5

Similarly, to find the convergence control paramétéor findingV, theh-graph forVis plotted as in Fig3.

L4 L2

Fig(2) Plot of w' (h) to find the conver gence parameter (-0.5<h<0.5)for Ps = 0.25;pl = 0.1;fp = 0.01;Vp = 0.01;
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Fig(2) Plot of W(r) for Ps = 0.25;pl = 0.1;fp = 0.01; Vp = 0.01;
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4 2 2 4

Fig(3) : Plot of V' (h) for Ps = 0.25; pl = 0.1;fp = 0.01; Vp = 0.01;
(-0.5<h<0.5)
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Fig(4) : Plot of V(r) for Ps = 0.25;pl = 0.1; fp = 0.01; Vp = 0.01;

Fig(s) Plot of W' (h) for Ps = 0.5;pl = 0.1; fp = 0.01; Vp = 0.01;
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Fig(®): Plot of W(I ) ps = 0.5;

0.2 0.4 0.6

0.8

1.C

pl=0.1;fp = 0.01;Vp = 0.01;
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Fig(8): Plot of V(r) Ps=0.5pl=0.1;fp = 0.01;Vp = 0.01;
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Fig(10): Plot of w(r) Ps = 0.25;pl = 0.4;fp = 0.01; Vp = 0.01
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Fig(11) : Plot of V" (h) for Ps = 0.25; pl = 0.4; fp = 0.01; Vp = 0.01
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Fig(12): Plot of v(r) Ps = 0.25;pl = 0.4;fp = 0.01;Vp = 0.01
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Fig(13) Plot of W' (h) for for Ps = 0.25;pl = 0.1; fp = 0.1; Vp = 0.01
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Fig(14): Plot of W(r) for for Ps = 0.25;pl = 0.1;fp = 0.1; Vp = 0.01
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Fig(16): Plot of V(r) for Ps = 0.25;pl = 0.1;fp=0.1;Vp = 0.01

CONCLUSION

From the above graphs, we draw the following caosiols:

1. As the pressure gradient (Ps) increases, the welotfluid at the center of the tube increasessaseen in fig(2)
and fig(6).

2. As the reciprocal of the micro polarity (pl) decses, the velocity of the fluid increases as is sedig(2) and

(20).

3. Also as the reciprocal of the micro polarity (pBadeases, the micro rotation of the fluid increasess seen in
fig(4) and (12).

4. As the fluid flow parameter increases, the velooityhe fluid decreases(fig (2) and (14) ) andrtiero rotation

increases (fig (4) and (16).
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