
American Journal of Computer Science and Engineering Survey www.pubicon.co.in

 Original Article

Hadoop MapReduce: A Programming Model
for Large Scale Data Processing

Sunita B Aher* and Anita R. Kulkarni

Department of Computer Science & Engineering, Walchand Institute of Technology, Solapur, India

ABSTRACT

Hadoop is free open source framework for Cloud Computing
Environment. It is used to implement Googletm MapReduce
framework. Map-Reduce technique is a popular framework which is
used to process and generate large data on cloud. Map-Reduce
technique of Hadoop is used for large-scale data-intensive
applications like data mining and web indexing. If the problem is
modelled as MapReduce problem then it is possible to take advantage
of computing environment provided by Hadoop.
A Map-Reduce job usually splits the input data-set into independent
unit. These units are processed in parallel manner and combine the
result to obtain the final result. This paper presents the technique of
Map-Reduce framework of Hadoop. We also present the steps to
execute the program on Hadoop and explained result that we
obtained using MapReduce technique of Hadoop.

Keywords: Cloud computing, Hadoop, MapReduce framework, Sort
and Shuffle, Key-value pair.

INTRODUCTION

Now a day, data and web data are
increasing in terms of 10 to 100 terabytes
which cannot be mine or process on single
server. Yahoo and Apache developed
Hadoop which replicates the same data 3
times and distributes the pieces to several
systems connected in the network. So, if one
system goes down other 2 replicas are
available. So, it’s cheap, robust and fault
tolerant. Cloud BLAST, a distributed
implementation of NCBI BLAST using
Hadoop1 is investigated an efficient
approach to the execution of bioinformatics
applications.

The Apache Hadoop software library
is a framework that allows for the
distributed processing of large data sets
across clusters of computers using simple
programming models. It is designed to scale
up from single servers to thousands of
machines, each offering local computation
and storage12. The project includes modules
like Hadoop Common, Hadoop Distributed
File System (HDFS™), Hadoop YARN and
Hadoop Map-Reduce. Other Hadoop-related
projects at Apache include Ambari™,
Avro™, Cassandra™, Chukwa™ etc.

Address for

Correspondence

Department of
Computer Science &
Engineering,
Walchand Institute of
Technology, Solapur,
India.

E-mail: sunita_aher
@yahoo.com

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

How MapReduce technique of
Hadoop are used for scientific data analysis
and bioinformatics are explained in2,3. Cloud
Burst uses the open-source Hadoop
implementation of MapReduce to parallelize
execution using multiple compute nodes5.
The research in7 adds to Map-Reduce Merge
phase that can efficiently merge data already
partitioned and sorted by map and reduce
modules. Kyong-Ha Lee8 characterizes the
MapReduce framework and discuss its
inherent pros and cons. The paper9 discusses
the opportunities and challenges for efficient
parallel data processing in clouds and
present research project Nephele. Dominic
Battré et al.10 designed the PACT
programming model which is a
generalization of the well-known map/
reduce programming model.

This paper presents the technique of
Map-Reduce framework of Hadoop. We
also present the steps to execute the program
on Hadoop and explained result that we
obtained using MapReduce technique of
Hadoop.

Remaining part of the paper is
arranged as follows. Section 2 discusses
about Hadoop and the MapReduce
framework of Hadoop is presented in section
3. Section 4 discuss about the running the
application on Hadoop followed by the
result in section 5. Section 6 presents the
Hadoop on the cloud. Section 7 discusses
the conclusion followed by the references.

Hadoop

Apache Hadoop is an open-source
software framework for distributed
computing which is used for storage and
large-scale processing of data-sets on
clusters of commodity hardware.

The Apache Hadoop framework is
composed of the following modules:
 Hadoop Common – It consist of libraries

and utilities needed by other Hadoop
modules.

 Hadoop Distributed File System (HDFS)
– It is a distributed file-system that
stores data on commodity machines that
gives very high aggregate bandwidth
across the cluster. It provides high-
throughput access to application data.

 Hadoop YARN – This module is a
resource-management platform. This
module is responsible for managing
compute resources in clusters and using
them for scheduling of users'
applications.

 Hadoop MapReduce – This is a
programming model for large scale data
processing.

Apache Hadoop's MapReduce and
HDFS components are derived
from Google's MapReduce and Google File
System (GFS) respectively.

A small Hadoop cluster includes a
single master and multiple worker nodes.
The master node consists of a JobTracker,
TaskTracker, NameNode and DataNode. A
worker node acts as both a DataNode and
TaskTracker. In a larger cluster, the HDFS
is managed through a dedicated NameNode
server to host the file system index, and a
secondary NameNode that can generate
snapshots of the namenode's memory
structures and prevent file-system corruption
and reducing loss of data. JobTracker server
can manage job scheduling11.

Hadoop implements a Map/Reduce,
where the application is divided into many
small unit of work, each of which are
executed or re-executed on any node in the
cluster. It provides a distributed file system
(HDFS) that stores data on the compute
nodes which provides very high bandwidth
across the cluster. Both MapReduce and the
Hadoop Distributed File System are
designed so that node failures if occurs, are
automatically handled by the framework13.

The multi node Hadoop cluster is
shown in figure 1.

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

 Hadoop-MapReduce framework
Hadoop Map-Reduce is a software

framework used to write applications which
process vast amounts of data in-parallel on
large clusters of commodity hardware in a
reliable, fault-tolerant manner.

A Map-Reduce job usually splits the
input data-set into independent unit or chunks.
These chunks are processed in isolation by
tasks called Mappers. The outputs from the
mappers denoted as intermediate outputs
(IOs) are given as input to the second set of
tasks called Reducers. The process of
bringing together IOs into a set of Reducers is
known as shuffling process. The Reducers
produce the final outputs (FOs)6.

Overall a MapReduce program
consists of two phases:

The map phase
a. The master node takes the input.
b. It divides the input into smaller sub-

problems.
c. The master node distributes these smaller

sub-problems to worker nodes.
d. A worker node may do this again to lead

to a multi-level tree structure.
e. The worker node processes the smaller

problem.
f. It passes the answer back to its master

node.

The reduce phase
a. The master node collects the answers to

all the sub-problems given by worker
nodes.

b. It combines all answers to form the
output to the original problem.

Detailed steps to be followed in
MapReduce technique are as follows:
1. Preparing the Map input – The system

selects the Map processors, allocates them
the input key value K1 to work on, and
provides that processor with all the input
data associated with that key value.

2. Execute the user-provided Map ()
code – Map () code is executed exactly
once for each K1 key value, generating
output that is organized by key values K2.

3. "Shuffle" the output of the Map() to
the Reduce processors – the Map-
Reduce system selects the Reduce
processors, assigns the K2 key value to
work on and provides that processor with
all the data generated by Map() associated
with that key value.

4. Execute the Reduce () code provided by
the user – Reduce () is run exactly once
for each K2 key value produced by the
Map step.

5. Produce the final output – the
MapReduce system collects all the output
generated by, Reduce () and sorts it by
key value K2 to produce the final
outcome6.

Figure 2 shows the MapReduce
phases.

Consider the example of subjects for
Computer Science and Engineering course:
ACA (Advanced Computer Architecture),
ADS (Advanced Database System), CC
(Compiler Construction), DBMS (Database
Management System), DMS (Discrete
Mathematical Structure), NS (Network
Security), TOC (Theory of Computation).

Two datasets with different
combinations of subjects are
Dataset 1: TOC DMS CC

 CC DBMS ADS
 DMS ACA NS

Dataset 2: TOC DBMS CC
 TOC ADS DMS
 ADS ACA TOC

Map step
For each of the record in dataset, map

(String key, String value) that is map (k1,v1)
 list(k2,v2) is produced as follows.

TOC DMS CC {(“TOC”,”1”),
(“DMS”,”1”), (“CC”,”1”)}

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

CC DBMS ADS {(“CC”,”1”),
(“DBMS”,”1”), (“ADS”,”1”)}

DMS ACA NS {(“DMS”,”1”),
(“ACA”,”1”), (“NS”,”1”)}

TOC DBMS CC {(“TOC”,”1”),
(“DBMS”,”1”), (“CC”,”1”)}

TOC ADS DMS {(“TOC”,”1”),
(“ADS”,”1”), (“DMS”,”1”)}

ADS ACA TOC {(“ADS”,”1”),
(“ACA”,”1”), (“TOC”,”1”)}

Reduce step

For each of the above Map result, the
obtained reduce (String key, Iterator values)
that is reduce (k2, list (v2))  list (v2) is as
follows:

reduce (“ACA”,<1, 1>)  2
reduce (“ADS”,<1, 1, 1>)  3
reduce (“CC”,<1, 1, 1, 1>)  4
reduce (“DBMS”,<1, 1>)  2
reduce (“DMS”,<1, 1, 1>)  3
reduce (“NS”,<1>)  1
reduce (“TOC”,<1, 1, 1, 1>)  4
So phases of MapReduce technique

with example is shown in figure 3.

Running data sets on Hadoop
Running the dataset on Hadoop is

given as6:
1. Put your input data files in the folder

named "input"; in the instructions below
the directory is assumed to be in your
home directory.

2. Output folder is named "output". Do not
explicitly create the folder, it may give an
error. Just give it's location in the
command as below. For subsequent runs,
you may need to delete the folder before
running the program below.

3. Go to the hadoop directory (cd
/users/fac/sudarsha/Hadoop). Run the
program using: ./bin/hadoop jar
~/WordCount.jar ~/input ~/output
(assuming Jar file, input folder and output
folder are in your home directory).

4. Output is created in the file part-00000 in
the output folder.

RESULTS

Here we consider two files check and
name4 given in first row of table 1. Row two
of table 1 shows the result of running these
dataset on Hadoop using MapReduce
technique.

Hadoop on cloud

Cloud computing refers to the
delivery of computing resources over the
Internet. Examples of cloud services include
online file storage, social networking sites,
webmail, and online business applications and
many more16. Cloud computing is used
various field like Entertainment, Security
issue, Military Operations, Business, finance,
Medical etc. Following are reasons for why
Hadoop in the cloud makes sense14:
 Low Cost of Innovation: Running

Hadoop on the cloud has same advantage
as running any other software offering on
the cloud. The cloud also makes sense for
a quick, one time use case involving big
data computation.

 Large scale resources are obtained
quickly: Google knew that there would
be need for more and more hardware
resources for processing huge amount of
data. As the analytics demand within
enterprises grew, there was a need to
expand the capacity of the Hadoop
clusters. The cloud, with instant access to
hardware resources, is the solution to
provide a platform that scales fast to meet
growing needs of business.

 Batch workloads are handled
efficiently: With a batch-oriented system,
Hadoop involve processing scheduled
jobs for new incoming data on a fixed,
temporal basis. Companies collect data
from devices or web server and input this
data into analytics application on Hadoop.

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

The cloud is more efficient to handle such
batch workloads.

 Variable resource requirements are
handled: The requirement of all Hadoop
jobs is not the same. Some of them
require some a lot of I/O bandwidth,
while some require more compute
resources and some require more
memory. A physical Hadoop cluster is
built of homogeneous machines which
handle the largest job.

Cloud solutions offer a choice to the
end user to provide clusters with different
types of machines for different types of
workloads.

For example, Amazon Elastic
MapReduce can be used to launch a cluster
with m2.large machines if Hadoop jobs
require more memory and c1.xlarge machines
if Hadoop jobs require intensive
computations.
 Running closer to the Data: As

businesses move their services to the
cloud, data starts living on the cloud. As
analytics thrives on large amount of data,
running Hadoop clusters in the cloud
environment is an efficient solution to this
problem.

 Hadoop operations are simplified: As
cluster consolidation happens in the
enterprise, all user jobs get bunched up in
a shared cluster. Hence the administrators
of the cluster face the problem such as
user jobs interfering with one another,
varied security constraints etc.

The cloud can provide different types
of clusters with different characteristics and
configurations, suitable for a particular set of
jobs.

Following are options for running
Hadoop in the Cloud15:
 Hadoop as a Service in the Public

Cloud – Hadoop distributions such as
Cloudera CDH, MapReduce, IBM
BigInsights, Hortonworks can be
launched and run on the public clouds like

AWS, Rackspace, MS Azure, IBM
SmartCloud, etc. that offer Infrastructure
as a Service (IAAS).

 MapReduce as a Service – Amazon’s
EMR such as Elastic MapReduce
provides a way to run MapReduce jobs
without having to install a Hadoop cluster
on its cloud.

 Hadoop on S3 – You can run Hadoop
using Amazon’s S3 to store data. Netflix
uses a Hadoop cluster using S3.

 Hadoop in private Cloud –in case of a
private cloud, there is more control over
infrastructure that will allow provisioning
bare-metal servers or creating a separate
isolated network for your Hadoop
clusters. Private cloud solutions support
Paas service that offers patterns for
deploying Hadoop clusters easily. IBM
offers patterns for deploying InfoSphere
Big Insights on their SmartCloud
Enterprise.

CONCLUSION

In this paper, we review the Map-
Reduce technique of Hadoop which is the free
open source software for the cloud computing
environment. We also presents the steps to
execute the dataset consisting of different
combination of subjects of Computer Science
and Engineering course on Hadoop and
explained result that we obtained using
MapReduce technique of Hadoop. Cloud
computing involves a large number of
computers connected through Internet. So the
reasons for why Hadoop in the cloud makes
sense and options for running Hadoop in the
Cloud are discussed.

REFERENCES

1. A. Matsunaga et al., Cloudblast: Combining

mapreduce and virtualization on distributed
resources for bioinformatics applications, in
Fourth IEEE International Conference on
eScience, pages 222–229, 2008.

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

2. J. Ekanayake et al., Mapreduce for data
intensive scientific analyses. In the 4th IEEE
International Conference on eScience, pages
277–284, 2008.

3. R. Taylor., An overview of the
Hadoop/MapReduce/HBase framework and
its current applications in bioinformatics,
BMC bioinformatics, 2010.

4. http://www.it.iitb.ac.in/moodle/course/view.p
hp?id=74.

5. M.C. Schatz. CloudBurst: highly sensitive
read mapping with MapReduce.
Bioinformatics, 25(11):1363, 2009.

6. http://en.wikipedia.org/wiki/MapReduce
7. H. Yang et al., Map-reduce-merge: simplified

relational data processing on large clusters, In
Proceedings of the 2007 ACM SIGMOD,
pages 1029–1040, 2007.

8. Kyong-Ha Lee et al., Parallel Data Processing
with MapReduce: A Survey, SIGMOD
Record, December 2011 (Vol. 40, No. 4).

9. D. Warneke et al . Nephele: efficient parallel
data processing in the cloud. In Proceedings
of the 2nd MTAGS, pages 1–10, 2009.

10. D. Battr´e et al . Nephele/PACTs: a
programming model and execution
framework for web-scale analytical
processing. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 119–
130, 2010.

11. http://en.wikipedia.org/wiki/Apache_Hadoop
12. http://hadoop.apache.org/
13. http://wiki.apache.org/hadoop/
14. http://www.thoughtworks.com/insights/blog/6

-reasons-why-hadoop-cloud-makes-sense
15. http://www.ibmbigdatahub.com/blog/running-

hadoop-cloud.
16. Introduction to Cloud Computing, accessed

on 11-03-2014 from http://www.priv.gc.
ca/resource/fs-fi/02_05_d_51_cc_e.pdf.

Table 1. Files used and result using MapReduce technique of Hadoop

File Check
In computer science, an inverted index (also referred to as postings file or inverted file) is an index
data structure storing a mapping from content, such as words or numbers, to its locations in a
database file, or in a document or a set of documents. The purpose of an inverted index is to allow
fast full text searches, at a cost of increased processing when a document is added to the database.
The inverted file may be the database file itself, rather than its index.
test:output&hello@echo*iitb'asd?why

File Name
rajesh
satish
rajesh
satish
ledu
ledu
rajesh
database is the tough

In {check 1}
The {check 47} {check 74}
a {check 61} {check 22} {check 40} {check 67} {check 43} {check 35}
added {check 70}
allow {check 55}
also {check 7}
an {check 4} {check 50} {check 17}

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

as {check 10} {check 27}
asd {check 92}
at {check 60}
be {check 78}
computer {check 2}
content {check 25}
cost {check 62}
data {check 19}
database {check 73} {check 80} {check 36} {names 1}
document {check 68} {check 41}
documents {check 46}
echo {check 90}
fast {check 56}
file {check 15} {check 76} {check 12} {check 81} {check 37}
from {check 24}
full {check 57}
hello {check 89}
iitb {check 91}
in {check 39} {check 34}
increased {check 64}
index {check 6} {check 18} {check 86} {check 52}
inverted {check 5} {check 51} {check 75} {check 14}
is {check 53} {check 69} {check 16} {names 2}
its {check 32} {check 85}
itself {check 82}
ledu {names 1} {names 1}
locations {check 33}
mapping {check 23}
may {check 77}
numbers {check 30}
of {check 49} {check 45} {check 63}
or {check 42} {check 13} {check 29} {check 38}
output {check 88}
postings {check 11}
processing {check 65}
purpose {check 48}
rajesh {names 1} {names 1} {names 1}
rather {check 83}
referred {check 8}
satish {names 1} {names 1}
science {check 3}
searches {check 59}
set {check 44}
storing {check 21}
structure {check 20}
such {check 26}
test {check 87}
text {check 58}

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

than {check 84}
the {check 72} {check 79} {names 3}
to {check 9} {check 31} {check 71} {check 54}
tough {names 4}
when {check 66}
why {check 93}
words {check 28}

Figure 1. Multi-node Hadoop cluster11

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

Figure 2. MapReduce Phases

 Aher et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 001-010

Figure 3. Working of MapReduce phases with example

