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ABSTRACT

In this paper, a quantization approach based on fuzzy membership functions is proposed which is applied for image
compression. First the original image is decomposed to obtain bandlet coefficients. Then fuzzy quantization is
applied to the bandlet coefficients. The proposed approach includes the characteristics of fuzzy sets; thus better
compression with lesser loss of data is obtained. Experimental results show that more accurate reconstructed
values of bandlet coefficients compared to uniform quantization can be obtained which improves the quality of the
reconstructed image.
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INTRODUCTION

In recent years digital imaging techniques havetéed huge increase in the volume of images inouarfields like

medical imaging [1], remote sensing [2], photogragiic. Image compression techniques play a vibd m

efficient storage and transmission of images. d@erades wavelets have been used in many imagespioge
applications, in particular image compression. &@se of their various properties such as multicesi,

localization and critical sampling wavelets are edisn various image compression applications andgam
compression standards like Joint Photographic Espg&roup 2000 (JPEG2000) [3].

Wavelets are very good in representing point simgtigs. In two dimension (2D) wavelets are obtditby a tensor
product of one dimensional wavelets, so they ateahte to efficiently represent singularities aldimgs or curves.
This is the reason why they are not able to captibeegeometrical structures in images. A numbeirage
representations such as curvelets [4], wedgelgtbfamlets [6], contourlets [7] and bandlets {8¢re developed
which take advantage of geometrical regularitynod@e structures which is very useful for image casgion.

Quantization is the process of representing a laggef values with a much smaller set. It is ohéhe important
steps in compression and has a significant impadhe compression ratio and on the loss incurrathguossy
compression. If quantization is performed on scaidues, the process is called scalar quantizationuniform
quantizer [9] the intervals are the same size @xpegsibly for two outer intervals. The reconstiurt values are
the midpoints of the intervals. In nonuniform qtizers the position of the reconstruction valuecl®sen to
minimize the total absolute errors within each sieci region. This can be done by making the gmatitin
intervals smaller in the regions where the input hagh probability distribution. One of the mosidely used
nonuniform quantizer is Llyod-Max quantizer [LO¥.arious vector quantization techniques for imagmpmession
have also been proposed [11, 12].
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The Fuzzy set theory developed by Zadeh [13] hainteresting feature of partial membership vehame object
can belong to more than one partition or clusteh wiarious degrees of partition. Several variiaf fuzzy

clustering techniques have been developed for incaggpression [14, 15, 16, 17, 18]. In this paperpropose a
fuzzy scalar quantization technique based on fuzegnbership functions to ensure minimum distortidie fuzzy

quantization is used to quantize bandlet coeffisien

Review of Bandlet Transform

First bandlet bases were developed by Le Pennéc [l#ter works built on these bandlet bases hamdaruse of
the multiscale geometry defined over the coeffitsesf a wavelet basis [20]. Bandlet decomposifih 22, 23,
20] is computed with a geometric orthogonal tramafthat is applied on orthogonal wavelet coeffitsen Wavelet
transform, when applied to an imageNopixels, computes the set Bfdot products

<foh> for2/ <277 <N and0< nyn, < 27, < f, 5, > for0< nymny < 277 coemmeeeenes 1

where the projection ogif, functions produces a coarse approximation at $¢al@he scal@’ represents the level
at which we stop the wavelet transform. Theseeslan be conveniently stored in an arraiy gixels. A dyadic
square is a square obtained by recursively sgitie original wavelet transformed imag&into four sub-squares
of equal size. Let the width of the squares bpixels withd < L < 27//2, For each dyadic squa$e at a given
scale2’ and orientatiors of the wavelet transform 1D reordering of the gpimints is performed. The possible
number of 1D reordering may be equal to the numbelirectionsd joining pairs of points in squafeof width L .
1D reordering is done by projecting the samplingatmn along d and sorting the resulting 1D pofndsn left to
right. To the resulting 1D discrete signfl, 1D wavelet discrete wavelet transform is perfamd-or a given
thresholdr', the directiord , which generated the less approximation errorsetected. Letb, denote the
coefficients of 1D wavelet transform fif, andRz be the number of bits needed to code the quantiaetficients
QT(by). To select the best geometry, the direction triaimizes the Lagrangian

E(faR) = ||fd_de||2_/1T2(RG_RB) 2

wheref,y is the signal recovered from the quantized coeffits andR; is the number of bits needed to code the
geometric parametet with an entropy codera is taken a8/28 [8].

Rest of this paper is organized as follows. Secfigroposes a fuzzy scalar quantization technaeethe image
compression scheme which uses bandlet transform tlamdproposed fuzzy scalar quantization scheme. The
proposed method is verified through experimentseiction 3. Section 4 is the conclusion.

MATERIALSAND METHODS

Proposed Compression Scheme

Fuzzy Quantization: Quantization is very importdot efficiently encoding transform coefficients arfdr
improving the performance of the encoder. The glesif the quantizer affects the compression ratid the
information loss which occurs during compressidine process of representing a larger set of valitéisa smaller
one is known as quantization. For any given inpetrange of values is divided into a number oériviils. Each
interval is represented by a distinct codewordl ti#é inputs that fall in an interval is represehby the codeword
representing that interval. While reconstructithgg best possible value in the interval is madthageconstructed
value. Since quantization is the step where mb#teocompression is performed and loss of inforomabccurs, it
is one of the important steps in a compressiomiecie.

Let T be the threshold value described in the previacian. Letbh, represent the absolute values of bandlet
coefficients rounded off to nearest integer. lteg partition be represented 6§, T + 1,T + 2, ... max(b, + 1)}.

Let {4;} fori=1,2,..n be a set membership functions defined in the watefrom 0 to max(b,) as shown in
figure 1. Letx, the input to the fuzzy quantizer, be absoluteealf bandlet coefficient.
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T T+1 T+3 ... max(b,) max(b,)+1

Figure 1. Membership functions defined over an interval of Bandlet coefficients

The first triangular membership functic4;, has the parametef8 T T]. The last membership functi4,,, has
the parametergnax(b,) max (b,) + 1 max (b;) + 1]. All the other membership functions are defingc

L ifxe vy, vi)
Ai(x) = xL—v-l_:ll . 3
—= if x € [vy, V4]

Vi~Vit1
whereT + 1 < v; < max (by).
There are two possible cases for any given inplue\x:
Case lubs(x) < T

This meand < abs(x) < T. The absolute value of the input lies in thetfpartition. In this case none of t
membership functions get activated. The quantizdde is set a0.

Case 2T < abs(x) < max(by) + 1

In this case for any given input only two neighboring membership functions becomivated, that i<4;(x) =
0,....,4;1(x) = 0,4;(x) > 0,4;,,(x) > 0,4;,,(x) = 0,...,A,(x) = 0. Let x be any value in the interv
[vi, vi41], two membership funais, A; and4;,,, have the membership degrees greater 0. The quantized
value is obtained by using the weighted averagdoaet The quantized value is giver

o Vi*Ai+Vip1*Aipq

g = WAV 4

Ajt+Aiyq

Image Compression using Fuzzy Quantization of Bandlet Coefficients

The two dimensional (2D) imad(x,y), is first decomposed usng bandlet transform toaiobthe bandle
coefficients. Let the coefficients of 2D discrdtandelet transform of imac/(x,y) be represented ag(Ey).
Orthogonal bandelets use an adaptive segmentatidnaalocal geometr flow and is thus able to capture 1
anisotropic regularity of edge structu

Then fuzzy bandlet quantization of the bandlet ficiehts is performed as discussed in the prevemrdion. Fo
each of the bandlet coefficient it's absolute vadulen. Let the bandlet coefficient x and its absolute value be
abs(x). If abs(x) is less tharT (case 1) the quantized vallx, is set as 0. IT < abs(x) < max(b,) + 1 (case
2), two membership functiond, andA4,,,, have the membership glees greater thed. The quantized value is
given by equatiort. In this case if the bandlet coefficient is piesit the quantized value x. If the bandlet
coefficient is negative, the quantized valu—X. The block diagram of the proposszheme is given in figure

N Forward Fuzzy Bandlet Inverse — Reconstructed
Image Bandet Qua\r/]tization Bandlet Image
Transform Transform 8

Figure 2. Block diagram of the proposed compression scheme.
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RESULTSAND DISCUSSION

We have used four 2D images of dimension 512*51t#ere each pixel is of eight bits. The bandlet¢famm is
based on the bandlet toolbox available at [24]. Wdlee compared the performance of the proposed ressipn
scheme with scalar uniform quantization of the beincoefficients. In this method the quantizeduesis obtained
using

0 if |x| <T
= {sign(x)(l +§)T if qT < |x| < (¢ + DT

whereT is the threshold value,is floor(x/T) andx is a bandlet coefficient.

The results are given in table 1. The resultddpa, barbara, fingerprint and boat images are shinvigures 3, 4,
5 and 6 respectively. It can be interpreted thatgroposed fuzzy quantization of bandlet coeffitsds better than
scalar uniform quantization of bandlet coefficiefus various bit rates in terms of Mean-SquarebE(MSE) and
Peak-Signal-to-Noise Ratio (PSNR).

Table 1. Bits-Per-Pixel, M SE and PSNR for |mages using Bandlet Transform and Fuzzy Quantization

Image Threshold Bits per-pixel Bandlet Transform Bandlet Transfor_m
(M + Scalar Quantization | + Fuzzy Quantization
05 5.49 F’:ASS,\,ER 25?37 gg?
Lena 1.0 4.40 ySiER 27159 googl
30 257 P G50 s
05 6.03 F’:ASS,\,ER 85?39 gé?éz
Barbara 1.0 4.93 ySiER 27155 80024
30 312 A8 4702 4548
10 5.58 F’:ASS,\,ER 5?'71,;0 2'3931
Fingerprint 3.0 3.83 P“”SiER 27139 296;4
7.0 2.47 pMSSNER 2@;??3 ifil
1.0 4.66 F’:ASS,\,ER g%l,fz gbggs
Boat 3.0 2.84 PMSSNER 253_89 259.23
70 164 [ pem 4050 4170
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Figure 3. Bits-per-pixel and PSNR for lenaimage
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Figure 4. Bits-per-pixel and PSNR for barbaraimage
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Figure 5. Bits-per-pixel and PSNR for fingerprint image
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Figure 6. Bits-per-pixel and PSNR for boat image
CONCLUSION

In this paper a fuzzy quantization technique foag®m compression has been proposed. It has bednougeantize
bandlet coefficients. The method is able to mareueately quantize bandlet coefficients and thuproves the
quality of the reconstructed image compared toaumifscalar quantization for various images.

Acknowledgement
The authors are thankful to Bharathiar Universitywaluable support.

REFERENCES

[1] Ayoub HA, Dahawy MH, Hamza AN and Tammimy A, Advasdn Applied ResearcB013, 1(1), 285-290.

[2] Tuia D, IEEE International Conference on ImaBeocessing, 7-10 Novemb&009, Univ. of Lausanne,
Lausanne, Switzerland.

[3] Taubman D and Marcellin MJPEG2000: Image Compression Fundamentals, Sandards and Practice, Kluwer
Academic Publishers, Dordrec2001.

[4]Candes EJ and Donoho D L, In: Cohen A, Rabutn@d &chumaker LL (Eds), Curve and Surface Fitting,
(Vanderbilt University Pres4999), Saint-Malo.

[5] Donoho DL,Annals of Satistics, 1999, 27(3), 859-897.

[6]Donoho DL and Hu X, Technical Report, DepartmehStatistics, Stanford Universitg001.

[7]Do MN and Vetterli M, In: Stoeckler J and Welth&GV (Eds.) Contourlets: Beyond Wavelets, AcadeRriess,
2003.

[8] Le Pennec E and Mallat S, Proceedings of IEBErhational Conference on Image Processing, Octobe
2001, Thessaloniki, Greece.

[9] Abya EF and Wise GU,EEE Transactions on Information Theory, 1982, 28, 937-940.

[10] Lloyd SP,IEEE Transactions on Information Theory, 1982, 28, 127-135.

[11]Gray RM,IEEE ASSP Magazine, 1984, 1(2), 4-29.

[12] Linde Y, Buzo A and Gray RMEEE Transactions on Communications, 1980, 28, 84-95.

[13] Zadeh LA, Information Control, 1965, 8, 338-353.

[14] Bezdek JC, Pal N\leural Networks, 1995, 8(5), 729-764.

[15] Karayiannis NB, Pai PIEEE Transactions on Image Processing, 1995, 4(9), 1193-1201.

[16] Kong X, Wang R, Li GPattern Recognition, 2002, 35, 2439-2444.

[17] Tsekouras GEApplied Mathematics for Computing, 2005, 167, 539-560.

[18]Pedrycz W and Hirota KSignal Processing, 2007, 87, 2061-2074.

[19] Le Pennec E, Mallat $EEE Transactions on Image Processing, 2004, 14(4), 423-438.

[20] Peyre G, Mallat SCommunications on Pure and Applied Mathematics, 2008, 61(9), 1173-1212.

[21] Peyre G, Mallat SACM Transactions on Graphics, 2005, 24(3), 601-608.

145
Pelagia Research Library



R. Rajeswari et al Adv. Appl. Sci. Res,, 2013, 4(2):140-146

[22] Peyre G, Mallat S, IEEE International Confezemn Image Processing, 11-14 Septer2b@b, 1, 165-168.
[23] Peyre G, Mallat SNumerical Algorithms, 2007, 44(3), 205-234.
[24]Peyre G, 'Bandlets Homepage', http://www.cmalytechnique.fr/~peyre/bandelets/

146
Pelagia Research Library



